

    
      Navigation

      
        	
          index

        	Basho Docs latest documentation 
 
      

    


    
      
          
            
  
Welcome to Read the Docs

This is an autogenerated index file.

Please create a ./index.rst or ./README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.





          

      

      

    


    
         Copyright .
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	Basho Docs latest documentation 
 
      

    


    
      
          
            

Index



 




          

      

      

    


    
         Copyright .
      Created using Sphinx 1.3.1.
    

  source/languages/en/riakcs/cookbooks/configuration/Configuring-MDC.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Configuring Riak CS Multi-Datacenter
project: riakcs
header: riakee
version: 1.3.0+
document: cookbook
toc: true
audience: intermediate
keywords: [operator, mdc, cs, repl]
moved: {
‘1.5.2-‘: ‘riakcs:/cookbooks/configuration/Configuring-MDC’
}





Riak CS Enterprise requires a separate download

Please note that Riak CS Enterprise requires a download separate from
the open-source Riak CS, which will not work in conjunction with Riak
Enterprise.

Configuring Multi-Datacenter Replication in Riak CS requires the
addition of a new group of settings to the app.config configuration
file for all Riak CS and Riak Enterprise nodes that are part of the Riak
CS cluster.



Riak Enterprise Configuration


As of Riak release 1.4.0, there are two different MDC replication modes
that Riak CS can use to request data from remote clusters. Please see
the [[comparison|Multi Data Center Replication: Comparison]] doc for
more information.



Replication Version 3 Configuration


For each Riak node in the cluster, update the mdc.proxy_get setting in
riak.conf, or by appending the {proxy_get, enabled} setting to the
riak_repl section of the old-style advanced.config or app.config files,
as shown in the following example:


mdc.proxy_get = on



{riak_repl, [
             %% Other configs
             {fullsync_on_connect, true},
             {fullsync_interval, 360},
             {data_root, "/var/lib/riak/data/riak_repl"},
             {proxy_get, enabled}
             %% Other configs
            ]}



{riak_repl, [
             %% Other configs
             {fullsync_on_connect, true},
             {fullsync_interval, 360},
             {data_root, "/var/lib/riak/data/riak_repl"},
             {proxy_get, enabled}
             %% Other configs
            ]}



Version 3 replication requires additional configuration in the source
cluster via the command line.


riak-repl proxy_get enable <sink_cluster_name>



The sink_cluster_name should be replaced with the name of your
configured sink cluster.


See also:



		[[Upgrading from v2 to v3|Multi Data Center Replication: Upgrading
from V2 to V3]]


		[[Comparing v2 and v3|Multi Data Center Replication: Comparison]]


		[[Multi-Datacenter Operations|Multi Data Center Replication v3
Operations]]










Riak CS Configuration


For each Riak CS node in the cluster, update the riak_cs section of the
advanced.config, or the old-style app.config files, by appending the
proxy_get setting as shown in the following example:


{riak_cs, [
           %% Other configs
           {proxy_get, enabled},
           %% Other configs
          ]}



{riak_cs, [
           %% Other configs
           {proxy_get, enabled},
           %% Other configs
          ]}




Note on restarting Riak nodes

Be sure that you restart cluster nodes in a rolling fashion after making
configuration changes. In particular, after restarting a node, be sure
that you wait for Riak's key/value store to become available before
restarting the next node. To check the status of `riak_kv` on a node
after restarting, execute the following command:riak-admin wait-for-service riak_kv <nodename>



Replace the node variable above with the nodename specified in the
vm.args configuration file.






Stanchion Configuration


Though there is no specific configuration for [[Stanchion]], note that
Stanchion should be a single, globally unique process to which every
Riak CS node sends requests, even if there are multiple replicated
sites.  Unlike Riak and Riak CS, Stanchion should run on only one node
in a given cluster, perhaps on its own, dedicated hardware if you wish.
Stanchion runs on only one node because it manages strongly consistent
updates to [[globally unique
entities|Stanchion#Globally-Unique-Entities]] like users and buckets.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/cookbooks/configuration/Configuring-Transmit.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Configuring Transmit
project: riakcs
version: 1.2.0+
document: cookbook
toc: true
audience: intermediate
keywords: [user, configuration]




Transmit [https://www.panic.com/transmit/] is an S3-compatible client with a
graphical user interface for Mac OS X. The following guide describes configuration of Transmit for use with Riak CS.


Note
S3 support was added in Transmit version 4.4, so ensure that you're following along with a version that supports S3 before continuing.

Define a Connection


When Transmit is started, a new connection window appears. Ensure that you’ve
selected the S3 tab, then complete the details in the Connect to S3
dialog as follows:



		Server — Enter the fully qualified domain name of the Riak CS server here. Be sure that this matches the value specified for cs_root_host in the Riak CS app.config.


		Access Key ID — Enter the Access Key ID (key_id) for the user account you will use to connect to Riak CS.


		Secret — Enter the Access Key Secret (key_secret) matching the user account you entered for the Access Key ID above.


		Initial Path — If you’re connecting to a Riak CS instance with existing buckets to which the user account has access, you can optionally enter a specific bucket name to use for this connection here.





Defining a connection looks like this:


[image: Trasmit screenshot]


Note
Transmit expects a secure connection, so ensure that your Riak CS proxy server is configured with SSL support. For information on configuring a software solution like HAProxy with SSL for use with Riak CS, see [[Load Balancing and Proxy Configuration]].
Finally, test the connection to Riak CS by clicking Connect.





Create a Bucket


After successfully connecting to Riak CS, verify that you can create a bucket.



		From the File menu, select New Bucket...


		In the bucket creation dialog, enter the name of the new bucket


		Click Create





The new bucket creation dialog looks like this:


[image: Trasmit screenshot]


The newly created bucket is listed in the right hand pane of the Transmit interface:


[image: Trasmit screenshot]





Copy Files


Now that you’ve created a bucket, you can perform a basic file copy test.


Double-click the bucket icon in the right hand pane of the Transmit interface
to access the bucket.


Drag and drop one or more files to the right hand pane to initiate
copying of the files to the bucket.


After copying, the files will appear in the bucket:


[image: Trasmit screenshot]


You have now successfully configured a Transmit connection to Riak CS and
verified basic file copying capabilities.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/cookbooks/configuration/index.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Configuring Riak CS Overview
project: riakcs
version: 1.2.0+
document: cookbook
toc: false
index: true
audience: intermediate
keywords: [operator, configuration]




In a Riak CS storage system, three components work in conjunction with one another, which means that you must configure each component to work with the others:



		Riak — The database system that acts as the backend storage


		Riak CS — The cloud storage layer over Riak which exposes the storage and  billing APIs, storing files and metadata in Riak, and streaming them back to  users


		Stanchion — Manages requests involving globally unique system entities, such as  buckets and users sent to a Riak instance, for example, to create users or to create or delete buckets





In addition, you must also configure the S3 client you use to communicate with your Riak CS system.


You should plan on having one Riak node for every Riak CS node in your system. Riak and Riak CS nodes can be run on separate physical machines, but in many cases it is preferable to run one Riak and one Riak CS node on the same physical machine. Assuming the single physical machine has sufficient capacity to meet the needs of both a Riak and a Riak CS node, you will typically see better performance due to reduced network latency.


If your system consists of several nodes, configuration primarily represents setting up the communication between components. Other settings, such as where log files are stored, are set to default values and need to be changed only if you want to use non-default values.



Configuration of System Components



		[[Configuring Riak|Configuring Riak for CS]]


		[[Configuring Riak CS]]


		[[Configuring Stanchion]]


		[[Configuring an S3 client]]









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/cookbooks/configuration/Configuring-an-S3-Client.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Configuring an S3 Client
project: riakcs
version: 1.2.0+
document: cookbook
toc: true
audience: intermediate
keywords: [operator, configuration]




This tutorial will show you how to use s3cmd [http://s3tools.org/s3cmd]
as an S3 client. While it won’t cover all of the client’s features, it
will show you how to create a configuration and run some basic commands.



Initial Setup


To use s3cmd in conjunction with Riak CS, you must configure it to
interact with your Riak CS system. One way to do so is to create a
.s3cfg file and store it in your home directory. When you run any
s3cmd-related command, the contents of that file will be read by
default.  Alternatively, you can specify a non-default configuration
file location using the -c flag.  Here’s an example:


s3cmd -c /PATH/TO/CONFIG/FILE <command>



Another way to configure s3cmd is to run s3cmd --configure, which
launches an interactive tool that will assemble a configuration file for
you on the basis of what you enter.


In the next section you’ll find a few sample .s3cfg files that can be
used to configure s3cmd to interact with Riak CS.





Sample s3cmd Configuration File for Local Use


Use this .s3cfg configuration file example to interact with Riak CS
locally via port 8080 with s3cmd (remember to use information specific
to your Riak CS installation where necessary):


[default]
access_key = 8QON4KC7BMAYYBCEX5J+
bucket_location = US
cloudfront_host = cloudfront.amazonaws.com
cloudfront_resource = /2010-07-15/distribution
default_mime_type = binary/octet-stream
delete_removed = False
dry_run = False
enable_multipart = False
encoding = UTF-8
encrypt = False
follow_symlinks = False
force = False
get_continue = False
gpg_command = /usr/local/bin/gpg
gpg_decrypt = %(gpg_command)s -d --verbose --no-use-agent --batch --yes --passphrase-fd %(passphrase_fd)s -o %(output_file)s %(input_file)s
gpg_encrypt = %(gpg_command)s -c --verbose --no-use-agent --batch --yes --passphrase-fd %(passphrase_fd)s -o %(output_file)s %(input_file)s
gpg_passphrase = password
guess_mime_type = True
host_base = s3.amazonaws.com
host_bucket = %(bucket)s.s3.amazonaws.com
human_readable_sizes = False
list_md5 = False
log_target_prefix =
preserve_attrs = True
progress_meter = True
proxy_host = localhost
proxy_port = 8080
recursive = False
recv_chunk = 4096
reduced_redundancy = False
secret_key = rGyDLBi7clBuvrdrkFA6mAJkwJ3ApUVr4Pr9Aw==
send_chunk = 4096
simpledb_host = sdb.amazonaws.com
skip_existing = False
socket_timeout = 300
urlencoding_mode = normal
use_https = False
verbosity = WARNING
signature_v2 = True






Sample s3cmd Configuration File for Production Use


Use this .s3cfg configuration file example to interact with Riak CS
using s3cmd in a production system:


[default]
access_key = EJ8IUJX9X0F2P9HAMIB0
bucket_location = US
cloudfront_host = cloudfront.amazonaws.com
cloudfront_resource = /2010-07-15/distribution
default_mime_type = binary/octet-stream
delete_removed = False
dry_run = False
enable_multipart = False
encoding = UTF-8
encrypt = False
follow_symlinks = False
force = False
get_continue = False
gpg_command = /usr/local/bin/gpg
gpg_decrypt = %(gpg_command)s -d --verbose --no-use-agent --batch --yes --passphrase-fd %(passphrase_fd)s -o %(output_file)s %(input_file)s
gpg_encrypt = %(gpg_command)s -c --verbose --no-use-agent --batch --yes --passphrase-fd %(passphrase_fd)s -o %(output_file)s %(input_file)s
gpg_passphrase = password
guess_mime_type = True
host_base = <YOUR DOMAIN HERE>
host_bucket = %(bucket)s.<YOUR DOMAIN HERE>
human_readable_sizes = False
list_md5 = False
log_target_prefix =
preserve_attrs = True
progress_meter = True
proxy_host =
proxy_port = 0
recursive = False
recv_chunk = 4096
reduced_redundancy = False
secret_key = XOY/9IFKVEDUl6Allrkj7oyH9XW+CANnFLEVuw==
send_chunk = 4096
simpledb_host = sdb.amazonaws.com
skip_existing = False
socket_timeout = 300
urlencoding_mode = normal
use_https = True
verbosity = WARNING
signature_v2 = True



To configure the s3cmd client for the user, you must change the
access_key and secret_key settings.





Specifying Storage Location


By default, the .s3cfg file uses the Amazon S3 service as the storage
backend. For a Riak CS system, change the following settings to point to
your storage system:



		host_base — Specify the domain name or the path to your data
storage, such as data.example.com


		host_bucket — Specify the bucket location, such as
my_cs_bucket.data.example.com.








Enabling SSL in the Client


If you are using SSL, set use_https equal to True.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/cookbooks/configuration/configuration-reference.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Riak CS Configuration Reference
project: riakcs
version: 1.5.0+
document: reference
audience: intermediate
keywords: [cs, operator, configuration]




Note on Legacy app.config usage

**If you choose to use the legacy `app.config` files for Riak CS and/or
Stanchion, some parameters have changed names and must be updated**.In particular, for the Riak CS app.config:- cs_ip and cs_port have been combined into listener.- riak_ip and riak_pb_port have been combined into riak_host.- stanchion_ip and stanchion_port have been combined into
stanchion_host.- admin_ip and admin_port have been combined into admin_listener.- webmachine_log_handler has become webmachine_access_log_handler.- {max_open_files, 50} has been depricated and should be replaced with
{total_leveldb_mem_percent, 30}.


For the Stanchion app.config:- stanchion_ip and stanchion_port have been combined into listener.- riak_ip and riak_port have been combined into riak_host.


Each of the above pairs follows a similar form. For example, if your legacy
app.config configuration was previously:


{riak_cs, [
    {cs_ip, "127.0.0.1"},
    {cs_port, 8080 },
    . . .
]},



It should now read:


{riak_cs, [
    {listener, {"127.0.0.1", 8080}},
    . . .
]},



and so on. More details can be found at [[Configuring Riak CS]].



This document is intended as a reference listing of all configurable parameters
for Riak CS. For a more narrative-style walkthrough of configuring Riak CS, we
recommend consulting the [[Configuring Riak CS]] tutorial.


The configuration for Riak CS is handled through either the riak-cs.conf and
advanced.config file pair, which were introduced in Riak CS 2.0.0, or the two
old-style app.config and vm.args files. All configuration files will be
located in each Riak CS node’s /etc directory. Please note that you may only
use one of these pairs at a time, as the app.config/vm.args pair will take
priority over the new-style configuration files.


If you are using it, the vm.args file will house settings related to the
Erlang VM [http://www.erlang.org/] on which both Riak and Riak CS run. These
settings have been folded into the riak-cs.conf and riak.conf configuration
files in newer systems.


The app.config and advanced.config files share an identical format, and can
control all of Riak CS’s behaviors. The files are divided into the following
sections:



		riak_cs — Most settings are housed in this section of the file


		webmachine — Settings related to
Webmachine [https://github.com/basho/webmachine], the HTTP server
framework that Riak CS uses for HTTP connections


		lager — Settings for lager [https://github.com/basho/lager], the
Erlang logging framework used by Riak CS


		sasl — There is only one setting in this section,
sasl_error_lager, which determines whether and how Riak CS uses
Erlang’s SASL error
logger [http://www.erlang.org/doc/man/sasl_app.html]





Most of the settings you will need to manipulate have been ported into the newer
riak-cs.conf configuration format, but there may be some advanced settings –
such as setting up customized lager streams – that will need to be configured
in advanced.config.


A Note About Time Values

In the `app.config` configuration files, time periods were generally written
as either seconds or milliseconds, with no real indication of which was being
used. With the update to `riak-cs.conf`, all values that describe a period of
time are written as an integer and a character, describing the unit of time and
the number of times that unit should be repeated for the period. For example
`31d` represents 31 days, `6h` represents six hours, `6000ms` represents 6,000
milliseconds.

The full list of valid time units are as follows:

`f` -- Fortnights

`w` -- Weeks

`d` -- Days

`h` -- Hours

`m` -- Minutes

`s` -- Seconds

`ms` -- Milliseconds


The tables below will show settings for both riak-cs.conf and
advanced.config/app.config where applicable, organized by functionality.



Connection Information



riak-cs.conf



		Config		Description		Default




		listener
		The IP address/port for the Riak CS node
		127.0.0.1:8080




		riak_host
		The IP address/port for the Riak CS node's corresponding Riak node (used by
Riak's [[Protocol Buffers|PBC API]] interface)
		127.0.0.1:8087




		root_host
		The root host name accepted by Riak CS. Changing this setting to,
for example, my_cs_host would enable users to make requests
to a URL such as http://bucket.my_cs_host/object/ (or to
the corresponding HTTP host).
		s3.amazonaws.com









advanced.config/app.config



		Config		Description		Default




		listener
		The IP address for the Riak CS node
		{"127.0.0.1", 8080}




		riak_host
		The TCP IP/port for the Riak CS node's corresponding Riak node (used by
Riak's [[Protocol Buffers|PBC API]] interface)
		{"127.0.0.1", 8087}




		cs_root_host
		The root host name accepted by Riak CS. Changing this setting to,
for example, my_cs_host would enable users to make requests
to a URL such as http://bucket.my_cs_host/object/ (or to
the corresponding HTTP host).
		s3.amazonaws.com











Connection Pools


Riak CS enables you to establish connection pools for normal requests
(such as GET and PUT) as well as for bucket listing requests.



riak-cs.conf



		Config		Description		Default




		pool.request.size
		Fixed-Size settings for the general request pool for Riak CS. Please note
that we recommend setting Riak's protobuf.backlog setting to be
higher than pool.request.size's fixed size, i.e. higher than 128.
The default for protobuf.backlog is 128.
		128




		pool.request.overflow
		Overflow-size settings for the general request pool for Riak CS.
		0




		pool.list.size
		Fixed-Size settings for the bucket listing request pool for Riak CS.
		5




		pool.list.overflow
		Overflow-size settings for the bucket listing request pool for Riak CS.
		0









advanced.config/app.config


In these files, each pool is specified as a nested tuple of the following form:


{riak_cs, [
           {Name, {FixedSize, OverflowSize}}
          ]}




		Config		Description		Default




		request_pool
		Settings for the general request pool for Riak CS. Please note that
we recommend setting Riak's pb_backlog setting higher than
request_pool's fixed size, i.e. higher than 128. The
default for pb_backlog is 128.
		{128, 0}




		bucket_list_pool
		Settings for the bucket listing request pool for Riak CS
		{5, 0}











Stanchion



riak-cs.conf



		Config		Description		Default




		stanchion_host
		The IP address/port for the Stanchion node in the cluster. Please note that
there should be only one Stanchion node in the cluster.
		127.0.0.1:8085




		stanchion_ssl
		Whether SSL is enabled for connections between the Riak CS node and
Stanchion
		off









advanced.config/app.config



		Config		Description		Default




		stanchion_host
		The IP address/port for the Stanchion node in the cluster. Please note that
there should be only one Stanchion node in the cluster.
		{"127.0.0.1",8085}




		stanchion_ssl
		Whether SSL is enabled for connections between the Riak CS node and
Stanchion
		false











Admin and Authentication Settings



riak-cs.conf



		Config		Description		Default




		admin.listener
		You have the option to provide a special endpoint for performing system
administration tasks in Riak CS. This setting sets the IP address and port for
that endpoint. If you leave this setting commented out, then administrative
tasks use the IP and port as all other Riak CS traffic.
		127.0.0.1:8000




		admin.key
		The admin key used for administrative access to Riak CS, e.g. usage of the
/riak-cs/stats endpoint. Please note that both
admin.key and admin.secret must match the
corresponding settings in the [[Stanchion]] node's stanchion.conf.

		admin-key




		admin.secret
		The admin secret used for administrative access to Riak CS. See the
description for admin.key above for more information.
		admin-secret




		anonymous_user_creation
		You will need to set this parameter to on to allow for the
creation of an admin user when setting up a new Riak CS cluster. We recommend,
however, that you enable anonymous user creation only temporarily,
unless your use case specifically dictates that anonymous users should
be able to create accounts.
		off




		auth_module
		The module used by Riak CS for authentication. We do not recommend changing
this setting unless you implement a custom authentication scheme.
		riak_cs_s3_auth




		rewrite_module
		A rewrite module contains a set of rules for translating requests made using
a particular API to requests in the the native [[Riak CS storage API]]. We do
not recommend changing this setting unless you implement a custom module.
		riak_cs_s3_rewrite









advanced.config/app.config



		Config		Description		Default




		admin_listener
		You have the option to provide a special endpoint for performing system
administration tasks in Riak CS. This setting sets the IP address and port for
that endpoint. If you leave this setting commented out, then administrative
tasks use the IP and port as all other Riak CS traffic.
		{"127.0.0.1",8000}


		admin_key
		The admin key used for administrative access to Riak CS, e.g. usage
of the /riak-cs/stats endpoint. Please note that both
admin_key and admin_secret must match the
corresponding settings in the [[Stanchion]] node's
app.config.
		




		admin_secret
		The admin secret used for administrative access to Riak CS. See the
description for admin_key above for more information.
		




		anonymous_user_creation
		You will need to set this parameter to true to allow
for the creation of an admin user when setting up a new Riak CS cluster.
We recommend, however, that you enable anonymous user creation only
temporarily, unless your use case specifically dictates that
anonymous users should be able to create accounts.
		false




		auth_module
		The module used by Riak CS for authentication. We do not recommend
changing this setting unless you implement a custom authentication
scheme.
		riak_cs_s3_auth




		max_buckets_per_user
		The number of buckets that can be created by each user. If a user
exceeds the bucket creation limit, they are still able to perform other
actions, including bucket deletion.
		100




		rewrite_module
		A rewrite module contains a set of rules for translating requests
made using a particular API to requests in the the native [[Riak CS
storage API]]. We do not recommend changing this setting unless you
implement a custom module.
		riak_cs_s3_rewrite











Usage Recording


These settings relate to Riak CS’s [[access logs|Usage and Billing Data]].



riak-cs.conf



		Config		Description		Default




		stats.access.archive_period
		How large each access archive object is. This setting should be a multiple
of stats.access.flush_factor. Expressed as a time-value.
		1h




		stats.access.archiver.max_backlog
		The number of access logs that are allowed to accumulate in the archiver's
queue before it begins skipping to catch up. Expressed as an integer number of
logs.
		2




		stats.access.flush_factor
		How often the access log should be flushed, as a factor of
access_archive_period, where 1 means once per period,
2 means twice per period, etc.
		1




		access_log_flush_size
		The additional access log flush trigger. After this many accesses have been
recorded, the log will be flushed, even if the flush interval has not expired.
Expressed as an integer number of accesses.
		1000000




		riak_cs.usage_request_limit
		How many archive periods a user can request in one usage read, applied
independently to access/usage and billing/storage. Expressed as a time-value
		31d




		stats.storage.schedule.$time
		When to automatically start storage calculation batches. Expressed as an
HH:MM UTC time. For example, "06:00" would calculate
at 6 am UTC every day. If you would like to schedule multiple batches, changing
$time for each entry. For example stats.storage.schedule.2 =
"18:00" could be the second entry, scheduled for 6:00pm UTC.
		"06:00"




		stats.storage.archive_period
		The size of each storage archive object. Should be chosen such that each
stats.storage.schedule-based calculation falls in a different
period. Expressed as a time-value.
		1h









advanced.config/app.config



		Config		Description		Default




		access_archive_period
		How large each access archive object is. This setting should be a
multiple of access_log_flush_factor. Expressed as an
integer number of seconds (e.g. 3600 translates to 1 hour).
		3600




		access_archive_max_backlog
		The number of access logs that are allowed to accumulate in the
archiver's queue before it begins skipping to catch up. Expressed as an
integer number of logs.
		2




		access_log_flush_factor
		How often the access log should be flushed, as a factor of
access_archive_period, where 1 means once per
period, 2 means twice per period, etc.
		1




		access_log_flush_size
		The additional access log flush trigger. After this many accesses
have been recorded, the log will be flushed, even if the flush interval
has not expired. Expressed as an integer number of accesses.
		1000000




		usage_request_limit
		How many archive periods a user can request in one usage read,
applied independently to access/usage and billing/storage. Expressed as
an integer number of intervals. The default of 744 thus translates to
one month at one-hour intervals.
of 744
		744




		storage_schedule
		When to automatically start storage calculation batches. Expressed
as a list of HHMM UTC times. For example,
["0600"] would calculate at 6 am UTC every day,
["0600", "1945"] would calculate at 6 am and 7:45 pm UTC
every day, and so on.
		[]




		storage_archive_period
		The size of each storage archive object. Should be chosen such
that each storage_schedule-based calculation falls in a
different period. Expressed as an integer number of seconds. The default
of 86400 translates to 1 day.
		86400











Garbage Collection


Settings related to Riak CS’s [[garbage collection]] (GC) process.



riak-cs.conf



		Config		Description		Default



		gc.interval
		How often the GC daemon waits between GC batch operations. Expressed as a
time-value.
		15m




		gc.max_workers
		The maximum number of worker processes that may be started by the GC daemon
to use for concurrent reaping of GC-eligible objects.
		2




		gc.retry_interval
		How long a move to the GC to-do list can remain failed before it is
re-attempted. Expressed as a time-value.
		6h




		gc.leeway_period
		How long to retain the block for an object after it has been deleted. This
leeway period is set to give the delete indication enough time to propagate to
all replicas. Expressed as a time-value.
		24h









advanced.config/app.config



		Config		Description		Default




		epoch_start
		The time that the GC daemon uses to begin collecting keys from the
GC eligibility bucket. Records in this bucket use keys based the epoch
time the record is created plus leeway_seconds. The default
is 0 and should be sufficient for general use. A case for
readjusting this value is if the secondary index query run by the GC
daemon continually times out. Raising the starting value can decrease
the range of the query and make it more likely that the query will
succeed. The value must be specified in Erlang binary format, e.g. set
it to `<<10>>` to specify 10.
		0




		gc_batch_size
		This option is used only when gc_paginated_indexes is
set to true. It represents the size used for paginating the
results of the secondary index query.
		1000



		gc_interval
		How often the GC daemon waits between GC batch operations. Expressed
as an integer number of seconds.
		900 (15 minutes)




		gc_max_workers
		The maximum number of worker processes that may be started by the GC
daemon to use for concurrent reaping of GC-eligible objects.
		5



		gc_paginated_indexes
		If you're running Riak nodes that are of a version prior to 1.4.0,
set this to false. Otherwise, you will not need to adjust
this setting.
		true




		gc_retry_interval
		How long a move to the GC to-do list can remain failed before it is
re-attempted. Expressed as an integer number of seconds.
		21600 (6 hours)




		leeway_seconds 		The number of seconds to retain
the block for an object after it has been deleted. This leeway time is
set to give the delete indication time to propagate to all replicas.
Expressed as an integer number of seconds.
		86400 (24 hours)




		max_scheduled_delete_manifests
		The maximum number of manifests (representative of object versions)
that can be in the scheduled_delete state for a given key.
A value of unlimited means that there is no maximum and
that pruning will not be based on count. An example of where this option
is useful is a use case involving a lot of churn on a fixed set of keys
in a time frame that is relatively short compared to the
leeway_seconds value. This can result in the manifest
objects reaching a size that can negatively impact system performance.

		unlimited











Concurrency and Buffering



advanced.config/app.config Only


There are two parameters related to concurrency and buffering that you should
consider adding to your Riak CS settings if you are having issues with PUT
requests. Raising the value of both of these settings may provide higher single-
client throughput.



		Config		Description		Default




		put_buffer_factor
		The number of blocks that will be buffered in-memory in Riak CS
before it begins to slow down reading from the HTTP client.
		1




		put_concurrency
		The number of threads inside of Riak CS that are used to write
blocks to Riak.
		1











Miscellaneous Settings



riak-cs.conf



		Config		Description		Default




		cs_version
		The Riak CS version number. This number is used to selectively enable new
features for the current version to better support [[rolling upgrades]]. New
installs shouldn't need to modify this. If you're performing a rolling upgrade,
keep the original value (if not defined, Riak CS uses 0) of the old
app.config until all nodes have been upgraded. At that point, set
it to the new value.
		10300




		dtrace
		If your Erlang VM supports DTrace
or SystemTap,
set this parameter to on.
		off




		trust_x_forwarded_for
		If your load balancer adds an X-Forwarded-For header and is
reliable, i.e. the load balancer is able to guarantee that it is not added by a
malicious user, set this option to on. Otherwise, Riak CS takes the
source IP address as an input (which is the default).
		off









advanced.config/app.config



		Config		Description		Default




		cs_version
		The Riak CS version number. This number is used to selectively
enable new features for the current version to better support [[rolling
upgrades]]. New installs shouldn't need to modify this. If you're
performing a rolling upgrade, keep the original value (if not defined,
Riak CS uses 0) of the old app.config until
all nodes have been upgraded. At that point, set to the new value.
		




		dtrace_support
		If your Erlang VM supports DTrace
or SystemTap,
set this parameter to true.
		false




		fold_objects_for_list_keys
		If your Riak CS cluster is running Riak nodes prior to version
1.4.0, set this parameter to false. Otherwise, you will not
need to modify it.This setting has been deprecated and will be
removed in the next major version.
		true




		n_val_1_get_requests
		If set to true, Riak CS will use a special request
option when retrieving the blocks of an object. This special option
instructs Riak to only send a request for the object block to a single
eligible virtual node (vnode) instead of to all eligible vnodes. This
differs from the standard r request option provided by Riak
in that r affects how many vnode responses to wait for
before returning and has no effect on how many vnodes are actually
contacted. Enabling this option (the default) has the effect of
greatly reducing the intra-cluster bandwidth used by Riak when
retrieving objects with Riak CS. This option is harmless when used with
a version of Riak prior to 1.4.0, but the option to disable is provided
as a safety measure. This setting has been deprecated and
will be removed in the next major version.
		true




		trust_x_forwarded_for
		If your load balancer adds an X-Forwarded-For
header and is reliable, i.e. the load balancer is able to guarantee that
it is not added by a malicious user, set this option to
true. Otherwise, Riak CS takes the source IP address as an
input (which is the default).
		false











Timeouts on each Riak call


As Riak CS stores all data in underlying Riak, Riak CS processes
communicate to Riak over an API using protocol buffers. This is a typical remote
call - depending on system requirements, the timeout could be configured
to avoid unnecessary timeouts.


{{#1.5.3-}}


In Riak CS 1.5.2 or before, configurations should be in the riakc
section of app.config:


{riakc, [
   {timeout, 5000},
   {mapred_timeout, 1200000}
   ]},



This example changes the default timeout of each primitive put and get
call to Riak from the default 60 seconds to 5 seconds, which will improve latency at the possible cost of more frequent timeout errors. It
also changes the mapred_timeout of the storage calculation call timeout on
each bucket from the default 60 seconds to 20 minutes, which increases the
duration of storage calculation proportionally to the number
of keys in a bucket.


{{/1.5.3-}}


{{#1.5.3+}}


In Riak 1.5.3 or later, configurations under riakc section are unavailable. Timeouts are configurable depending on each
access case. This enables fine grained tuning or ad-hoc reaction in
production environment issues. These items are only configurable in
riak_cs section of advanced.config. All units in the chart below
are milliseconds.



		Config		Description		Default



		ping_timeout		A timeout value used in ping API		5000


		get_user_timeout		A timeout value on retrieving user informantion for authentication, authentication		60000


		get_bucket_timeout		A timeout value on retrieving bucket information, for ACL or policy informantion		60000


		get_manifest_timeout		A timeout value on retrieving manifest of a key		60000


		get_block_timeout		A timeout value on retrieving a chunk of an object		60000


		local_block_timeout		A timeout value on retrieving a local chunk of an object		5000


		proxy_get_block_timeout		A timeout value of proxy get request to remote cluster (EE only)		60000


		get_access_timeout		A timeout value of retrieving a timeslot information of access statistics		60000


		get_gckey_timeout		A timeout value of retrieving a key in GC bucket		60000


		put_manifest_timeout		A timeout value on putting a new manifest		60000


		put_block_timeout		A timeout value on putting a chunk of a object		60000


		put_access_timeout		A timeout value of putting an entry into access statistics		60000


		put_gckey_timeout		A timeout value of putting an entry into GC bucket		60000


		put_user_usage_timeout		A timeout value on storing a result of storage calculation of each user		60000


		delete_manifest_timeout		A timeout value on deleting a manifest in garbage collection		60000


		delete_block_timeout		A timeout value on deleting a chunk of an object in garbage collection		60000


		delete_gckey_timeout		A timeout value on deleting an entry in GC bucket		60000


		list_keys_list_objects_timeout		A timeout value on listing objects of a bucket, older version (will be removed in 2.x)		60000


		list_keys_list_users_timeout		A timeout value on listing users		60000


		storage_calc_timeout		A timeout value on running storage calculation on a bucket		60000


		list_objects_timeout		A timeout value on listing objects of a bucket, older version (will be removed in 2.x)		60000


		fold_objects_timeout		A timeout value on listing objedts of a bucket (default since 1.5.0)		60000


		get_index_range_gckeys_timeout		A timeout value on listing keys in garbage collection bucket, overall call		60000


		get_index_range_gckeys_call_timeout		A timeout value on listing keys in garbage collection bucket, each continuation call		60000


		get_index_list_multipart_uploads_timeout		A timeout value on lsting incomplete multipart uplaods of an object		60000




{{/1.5.3+}}





Webmachine



advanced.config/app.config Only


Settings specific to Webmachine [https://github.com/basho/webmachine], the web
server that handles all HTTP and HTTPS connections to Riak CS. The
riak_cs_access_log_handler and webmachine_log_handler settings are part of a
log_handlers sub-grouping:


{webmachine, [
              %% Other configs
              {log_handlers, [
                              {webmachine_access_log_handler, ...},
                              {riak_cs_access_log_handler, ...},
                              ]},
              %% Other configs
             ]}




		Config		Description		Default




		server_name
		
		




		webmachine_log_handler
		If this setting is commented out or removed, access to Webmachine
log handling will be disabled.
		["./log"]




		riak_cs_access_log_handler
		We do not recommend changing or removing this setting.
		[]











Logging



advanced.config/app.config Only


These settings relate to lager [https://github.com/basho/lager], the Erlang
logging framework used by Riak CS. They are included in the lager settings in
app.config.


The lager_console_backend and lager_file_backend settings are part of a
handlers sub-group:


{lager, [
         %% Other configs
         {handlers, [
                     {lager_console_backend, ...},
                     {lager_file_backend, ...}
                    ]},
         %% Other configs
        ]}




		Config		Description		Default




		lager_console_backend
		See the lager
documentation for more details.
		




		lager_file_backend
		See the lager
documentation for more details.
		







		Config		Description		Default




		crash_log
		Whether to write to a crash log and where. If commented out,
omitted, or undefined, no crash logging will take place.
		./log/crash.log




		crash_log_count
		The number of crash logs to keep. Setting this parameter to
0 (the default) means that only the current log will be
kept.
		0




		crash_log_date
		When to rotate the crash log. The default is no time rotation. For
documentation on the syntax of this parameter, see here.
		$D0




		crash_log_msg_size
		The maximum size of events in the crash log, expressed as a number
of bytes.
		65536




		crash_log_size
		The maximum size of the crash log, in bytes, before it is rotated.
Setting this parameter to 0 disables rotation.
		10485760




		error_logger_redirect
		Whether to redirect error_logger messages into
lager.
		true











SASL



advanced.config/app.config Only



		Config		Description		Default




		sasl_error_lager
		Whether to enable , Erlang's built-in
error logger.
		false












          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/running/nodes/inspecting.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Inspecting a Node
project: riak
version: 0.10.0+
document: appendix
toc: true
audience: intermediate
keywords: [operator, status, riaknostic]
moved: {
‘1.4.0-‘: ‘/references/appendices/Inspecting-a-Node’
}




When inspection of a Riak node to gather metrics on performance or
potential issues is desired, a number of tools are available to help,
and are either included with Riak itself or made available through the
Riak community.


This guide provides starting points and details on some of the available
tools for inspecting a Riak node.



riak-admin status


riak-admin status is a subcommand of the riak-admin command that is
included with every installation of Riak. The status subcommand
provides data related to the current operating status for a node. The
output of riak-admin status is categorized and detailed below.


Please note, for some counters, such as node_get_fsm_objsize, a
minimum of 5 transactions is required for statistics to be generated.



Performance


{{#1.2.0-1.2.1}}
The riak-admin status command should not be executed more than once a
minute as statistics are recalculated every time the command is
executed.
{{/1.2.0-1.2.1}}


{{#1.3.0+}}
Repeated runs of the riak-admin status command does not have a
negative performance impact as the statstics are cached internally in
Riak.
{{/1.3.0+}}





Active Stats


Active Stats represent current activity on the node.


Stat                    | Description
————————|—————————————————
pbc_active            | Number of active Protocol Buffers connections
node_get_fsm_active   | Number of active GET FSMs
node_put_fsm_active   | Number of active PUT FSMs
index_fsm_active      | Number of active Secondary Index FSMs
list_fsm_active       | Number of active Keylisting FSMs
node_get_fsm_rejected | Number of GET FSMs actively being rejected by Sidejob’s overload protection
node_put_fsm_rejected | Number of PUT FSMs actively being rejected by Sidejob’s overload protection





Average Stats


Average Stats represent an average calculated as (total occurrences /
number of samples) since this node was started.  In the below stats the
sample time is 1s, giving us a per-second average.  Currently, the only
Average Stats are reported by Sidejob - an Erlang library that
implements a parallel, capacity-limited request pool.


Stat                    | Description
————————|—————————————————
node_get_fsm_in_rate  | Average number of GET FSMs enqueued by Sidejob
node_get_fsm_out_rate | Average number of GET FSMs dequeued by Sidejob
node_put_fsm_in_rate  | Average number of PUT FSMs enqueued by Sidejob
node_put_fsm_out_rate | Average number of PUT FSMs dequeued by Sidejob





One-Minute Stats


One-Minute Stats represent the number of times a particular activity has
occurred within the last minute on this node.



General One-Minute Stats


Stat                                  | Description
————————————–|—————————————————
node_gets                           | Number of GETs coordinated by this node, including GETs to non-local vnodes in the last minute
node_puts                           | Number of PUTs coordinated by this node, where a PUT is sent to a local vnode in the last minute
vnode_gets                          | Number of GET operations coordinated by local vnodes on this node in the last minute
vnode_puts                          | Number of PUT operations coordinated by local vnodes on this node in the last minute
vnode_index_refreshes               | Number of secondary indexes refreshed on this node during secondary index anti-entropy in the last minute
vnode_index_reads                   | Number of local replicas participating in secondary index reads in the last minute
vnode_index_writes                  | Number of local replicas participating in secondary index writes in the last minute
vnode_index_writes_postings         | Number of individual secondary index values written in the last minute
vnode_index_deletes                 | Number of local replicas participating in secondary index deletes in the last minute
vnode_index_deletes_postings        | Number of individual secondary index values deleted in the last minute
pbc_connects                        | Number of Protocol Buffers connections made in the last minute
node_get_fsm_active_60s             | Number of GET FSMs active in the last minute
node_put_fsm_active_60s             | Number of PUT FSMs active in the last minute
node_get_fsm_rejected_60s           | Number of GET FSMs rejected by Sidejob’s overload protection in the last minute
node_put_fsm_rejected_60s           | Number of PUT FSMs rejected by Sidejob’s overload protection in the last minute
index_fsm_create                    | Number of Secondary Index query FSMs created in the last minute
index_fsm_create_error              | Number of Secondary Index query FSM creation errors in the last minute
list_fsm_create                     | Number of Keylisting FSMs created in the last minute
list_fsm_create_error               | Number of Keylisting FSM creation errors in the last minute
read_repairs                        | Number of read repair operations this node has coordinated in the last minute
read_repairs_primary_outofdate_one  | Number of read repair operations performed on primary vnodes in the last minute due to stale replicas
read_repairs_primary_notfound_one   | Number of read repair operations performed on primary vnodes in the last minute due to missing replicas
read_repairs_fallback_outofdate_one | Number of read repair operations performed on fallback vnodes in the last minute due to stale replicas
read_repairs_fallback_notfound_one  | Number of read repair operations performed on fallback vnodes in the last minute due to missing replicas





FSM Time


FSM Time Stats represent the amount of time in microseconds required to
traverse the GET or PUT Finite State Machine code, offering a picture of
general node health. From your application’s perspective, FSM Time
effectively represents experienced latency. Mean, Median, and 95th-,
99th-, and 100th-percentile (Max) counters are displayed. These are
one-minute stats.


Stat                       | Description
—————————|—————————————————
node_get_fsm_time_mean   | Mean time between reception of client GET request and subsequent response to client
node_get_fsm_time_median | Median time between reception of client GET request and subsequent response to client
node_get_fsm_time_95     | 95th percentile time between reception of client GET request and subsequent response to client
node_get_fsm_time_99     | 99th percentile time between reception of client GET request and subsequent response to client
node_get_fsm_time_100    | 100th percentile time between reception of client GET request and subsequent response to client
node_put_fsm_time_mean   | Mean time between reception of client PUT request and subsequent response to client
node_put_fsm_time_median | Median time between reception of client PUT request and subsequent response to client
node_put_fsm_time_95     | 95th percentile time between reception of client PUT request and subsequent response to client
node_put_fsm_time_99     | 99th percentile time between reception of client PUT request and subsequent response to client
node_put_fsm_time_100    | 100th percentile time between reception of client PUT request and subsequent response to client





GET FSM Siblings


GET FSM Sibling Stats offer a count of the number of siblings
encountered by this node on the occasion of a GET request. These are
one-minute stats.


Stat                           | Description
——————————-|—————————————————
node_get_fsm_siblings_mean   | Mean number of siblings encountered during all GET operations by this node within the last minute
node_get_fsm_siblings_median | Median number of siblings encountered during all GET operations by this node within the last minute
node_get_fsm_siblings_95     | 95th percentile of siblings encountered during all GET operations by this node within the last minute
node_get_fsm_siblings_99     | 99th percentile of siblings encountered during all GET operations by this node within the last minute
node_get_fsm_siblings_100    | 100th percentile of siblings encountered during all GET operations by this node within the last minute





GET FSM Objsize


GET FSM Objsize Stats represent a view of the sizes of objects flowing
through this node’s GET FSMs. The size of an object is obtained by
summing the length of the bucket name, key, serialized vector clock,
value, and serialized metadata of each sibling. GET FSM Objsize and GET
FSM Siblings are inextricably linked. These are one-minute stats.


Stat                          | Description
——————————|—————————————————
node_get_fsm_objsize_mean   | Mean object size encountered by this node within the last minute
node_get_fsm_objsize_median | Median object size encountered by this node within the last minute
node_get_fsm_objsize_95     | 95th percentile object size encountered by this node within the last minute
node_get_fsm_objsize_99     | 99th percentile object size encountered by this node within the last minute
node_get_fsm_objsize_100    | 100th percentile object size encountered by this node within the last minute







Total Stats


Total Stats represent the total number of times a particular activity
has occurred since this node was started.


Stat                                   | Description
—————————————|—————————————————
node_gets_total                      | Total number of GETs coordinated by this node, including GETs to non-local vnodes
node_puts_total                      | Total number of PUTs coordinated by this node, including PUTs to non-local vnodes
vnode_gets_total                     | Total number of GETs coordinated by local vnodes
vnode_puts_total                     | Total number of PUTS coordinated by local vnodes
read_repairs_total                   | Total number of Read Repairs this node has coordinated
coord_redirs_total                   | Total number of requests this node has redirected to other nodes for coordination
vnode_index_refreshes_total          | Total number of indexes refreshed during secondary index anti-entropy
vnode_index_reads_total              | Total number of local replicas participating in secondary index reads
vnode_index_writes_total             | Total number of local replicas participating in secondary index writes
vnode_index_writes_postings_total    | Total number of individual secondary index values written
vnode_index_deletes_total            | Total number of local replicas participating in secondary index deletes
vnode_index_deletes_postings_total   | Total number of individual secondary index values deleted
pbc_connects_total                   | Total number of Protocol Buffers connections made
precommit_fail                       | Total number of pre-commit hook failures
postcommit_fail                      | Total number of post-commit hook failures
node_get_fsm_rejected_total          | Total number of GET FSMs rejected by Sidejob’s overload protection
node_put_fsm_rejected_total          | Total number of PUT FSMs rejected by Sidejob’s overload protection
read_repairs_primary_outofdate_count | Total number of read repair operations performed on primary vnodes due to stale replicas
read_repairs_primary_notfound_count  | Total number of read repair operations performed on primary vnodes due to missing replicas
read_repairs_fallback_outofdate_count| Total number of read repair operations performed on fallback vnodes due to stale replicas
read_repairs_fallback_notfound_count | Total number of read repair operations performed on fallback vnodes due to missing replicas





Timestamps


Some of the Erlang applications that Riak is comprised of contribute
statistics to riak-admin status.  The below timestamps record, in
Epoch time, the last time statistics for that application were
generated.


Stat                | Description
——————–|—————————————————
riak_kv_stat_ts   | The last time Riak KV stats were generated.
riak_pipe_stat_ts | The last time Riak Pipe stats were generated.





Ring


General ring information is reported in riak-admin status.


Stat                 | Description
———————|—————————————————
ring_members       | List of nodes that are members of the ring
ring_num_partitions| The number of partitions in the ring
ring_ownership     | List of all nodes in the ring and their associated partition ownership
ring_creation_size | Ring size this cluster was created with





CPU and Memory


CPU statistics are taken directly from Erlang’s cpu_sup module.
Documentation for which can be found at ErlDocs:
cpu_sup [http://erldocs.com/R14B04/os_mon/cpu_sup.html].


Stat         | Description
————-|—————————————————
cpu_nprocs | Number of operating system processes
cpu_avg1   | The average number of active processes for the last 1 minute (equivalent to top(1) command’s load average when divided by 256())
cpu_avg5   | The average number of active processes for the last 5 minutes (equivalent to top(1) command’s load average when divided by 256())
cpu_avg15  | The average number of active processes for the last 15 minutes (equivalent to top(1) command’s load average when divided by 256())


Memory statistics are taken directly from the Erlang virtual machine.
Documentation for which can be found at ErlDocs:
Memory [http://erldocs.com/R14B04/erts/erlang.html?i=0&search=erlang:memory#memory/0].


Stat                    | Description
————————|—————————————————
memory_total          | Total allocated memory (sum of processes and system)
memory_processes      | Total amount of memory allocated for Erlang processes
memory_processes_used | Total amount of memory used by Erlang processes
memory_system         | Total allocated memory that is not directly related to an Erlang process
memory_atom           | Total amount of memory currently allocated for atom storage
memory_atom_used      | Total amount of memory currently used for atom storage
memory_binary         | Total amount of memory used for binaries
memory_code           | Total amount of memory allocated for Erlang code
memory_ets            | Total memory allocated for Erlang Term Storage
mem_total             | Total available system memory
mem_allocated         | Total memory allocated for this node





Erlang VM


The below statistics describe properties of the Erlang VM.


Stat                      | Description
————————–|—————————————————
nodename                | The name this node uses to identify itself
connected_nodes         | A list of the nodes that this node is aware of at this time
sys_driver_version      | String representing the Erlang driver version in use by the runtime system
sys_global_heaps_size   | Current size of the shared global heap
sys_heap_type           | String representing the heap type in use (one of private, shared, hybrid)
sys_logical_processors  | Number of logical processors available on the system
sys_otp_release         | Erlang OTP release version in use on the node
sys_process_count       | Number of processes currently running in the Erlang VM
sys_smp_support         | Boolean value representing whether symmetric multi-processing (SMP) is available
sys_system_version      | Detailed Erlang version information
sys_system_architecture | The node operating system and hardware architecture
sys_threads_enabled     | Boolean value representing whether threads are enabled
sys_thread_pool_size    | Number of threads in the asynchronous thread pool
sys_wordsize            | Size of Erlang term words in bytes as an integer, for examples, on 32-bit architectures 4 is returned and on 64-bit architectures 8 is returned





Miscellaneous Information


Miscellaneous Information provide additional details particular to this
node.


Stat                       | Description
—————————|—————————————————
leveldb_read_block_error | The number of LevelDB read block errors.  Will read as undefined if LevelDB is not being used.
disk                     | Information about the disk, taken from Erlang’s disksup module.  Reported as [{“ID”,KBytes_Used,Percent_Util}].
storage_backend          | The storage backend currently in use.


{{#1.2.0+}}





Pipeline Metrics


The following metrics from from riak_pipe are generated during MapReduce
operations.


Stat                            | Description
——————————–|—————————————————
pipeline_active               | The number of pipelines active in the last 60 seconds
pipeline_create_count         | The total number of pipelines created since the node was started
pipeline_create_error_count   | The total number of pipeline creation errors since the node was started
pipeline_create_error_one     | The number of pipeline creation errors in the last 60 seconds
pipeline_create_one           | The number of pipelines created in the last 60 seconds
{{/1.2.0+}}





Application and Subsystem Versions


The specific version of each Erlang application and subsystem which
makes up a Riak node is present in the riak-admin status output.  Each
application is linked below next to it’s version identifier.


Stat                    | Description
————————|—————————————————
erlydtl_version       | ErlyDTL [http://github.com/erlydtl/erlydtl]
riak_control_version  | Riak Control [http://github.com/basho/riak_control]
cluster_info_version  | Cluster Information [http://github.com/basho/cluster_info]
riak_search_version   | Riak Search [http://github.com/basho/riak_search]
merge_index_version   | Merge Index [http://github.com/basho/merge_index]
riak_kv_version       | Riak KV [http://github.com/basho/riak_kv]
sidejob_version       | Sidejob [http://github.com/basho/sidejob]
riak_api_version      | Riak API [http://github.com/basho/riak_api]
riak_pipe_version     | Riak Pipe [http://github.com/basho/riak_pipe]
riak_core_version     | Riak Core [http://github.com/basho/riak_core]
bitcask_version       | Bitcask [http://github.com/basho/bitcask]
basho_stats_version   | Basho Stats [http://github.com/basho/basho_stats] {{#<1.3.0}}
webmachine_version   | Webmachine [http://github.com/basho/webmachine]
mochiweb_version      | MochiWeb [http://github.com/basho/mochiweb]
inets_version         | inets [http://erlang.org/doc/apps/inets/]
erlang_js_version     | Erlang JS [http://github.com/basho/erlang_js]
runtime_tools_version | Erlang Runtime Tools [http://erlang.org/doc/apps/runtime_tools/]
os_mon_version        | Erlang Operating System Monitor [http://erlang.org/doc/apps/os_mon/]
riak_sysmon_version   | Riak System Monitor [http://github.com/basho/riak_sysmon]
ssl_version           | Erlang Secure Sockets Layer (SSL) [http://erlang.org/doc/apps/ssl/]
public_key_version    | Erlang Public Key [http://erlang.org/doc/apps/public_key/]
crypto_version        | Erlang crypto [http://erlang.org/doc/apps/crypto/]
sasl_version          | SASL [http://erlang.org/doc/apps/sasl/]
lager_version         | Lager [http://github.com/DeadZen/lager]
goldrush_version      | Goldrush [http://github.com/DeadZen/goldrush]
compiler_version      | Erlang Compiler [http://erlang.org/doc/apps/compiler/]
syntax_tools_version  | Erlang Syntax Tools [http://www.erlang.org/doc/apps/syntax_tools/]
stdlib_version        | Standard Library [http://erlang.org/doc/apps/stdlib/]
kernel_version        | Kernel [http://erlang.org/doc/apps/kernel/]





Riak Search Statistics


The following statistics related to Riak Search message queues are
available.


Stat                         | Description
—————————–|—————————————————
riak_search_vnodeq_max     | Maximum number of unprocessed messages all virtual node (vnode) message queues in the Riak Search subsystem have received on this node in the last minute
riak_search_vnodeq_mean    | Mean number of unprocessed messages all vnode message queues in the Riak Search subsystem have received on this node in the last minute
riak_search_vnodeq_median  | Median number of unprocessed messages all vnode message queues in the Riak Search subsystem have received on this node in the last minute
riak_search_vnodeq_min     | Minimum number of unprocessed messages all vnode message queues in the Riak Search subsystem have received on this node in the last minute
riak_search_vnodeq_total   | Total number of unprocessed messages all vnode message queues in the Riak Search subsystem have received on this node since it was started
riak_search_vnodes_running | Total number of vnodes currently running in the Riak Search subsystem


Note that under ideal operation and with the exception of
riak_search_vnodes_running these statistics should contain low values
(e.g., 0-10). Presence of higher values could be indicative of an issue.







Riaknostic


Riaknostic [http://riaknostic.basho.com/] is a small suite of
diagnostic checks that can be run against a Riak node to discover common
problems. It often offers recommendations about how to resolve those
problems as well. These checks are derived from the experience of the
Basho Client Services Team as well as numerous public discussions on the
mailing list, #riak IRC channel, and other online media.


Getting started with Riaknostic is easy, and instructions for
installation and use are provided on the Riaknostic
website [http://riaknostic.basho.com/]. Once downloaded and installed,
Riaknostic adds a diag subcommand to the riak-admin
command.{{/1.3.0-}}


Riaknostic is installed with Riak by default and exposed through the
riak-admin diag command interface. It is an open source project
developed by Basho Technologies and Riak community members. The code is
available in the Riaknostic Github repository.





Strong Consistency Stats


Riak tabulates a variety of stats related to Riak’s optional [[strong
consistency]] feature. The table below lists those stats.



GET-related stats


Stat | Description
:—-|:———–
consistent_gets | Number of strongly consistent GETs coordinated by this node in the last minute
consistent_gets_total | Total number of strongly consistent GETs coordinated by this node
consistent_get_objsize_mean | Mean object size for strongly consistent GETs on this node in the last minute
consistent_get_objsize_median | Median object size for strongly consistent GETs on this node in the last minute
consistent_get_objsize_95 | 95th-percentile object size for strongly consistent GETs on this node in the last minute
consistent_get_objsize_99 | 99th-percentile object size for strongly consistent GETs on this node in the last minute
consistent_get_objsize_100 | 100th-percentile object size for strongly consistent GETs on this node in the last minute
consistent_get_time_mean | Mean time between reception of client GETs to strongly consistent keys and subsequent response
consistent_get_time_median | Median time between reception of client GETs to strongly consistent keys and subsequent response
consistent_get_time_95 | 95th-percentile time between reception of client GETs to strongly consistent keys and subsequent response
consistent_get_time_99 | 99th-percentile time between reception of client GETs to strongly consistent keys and subsequent response
consistent_get_time_100 | 100th-percentile time between reception of client GETs to strongly consistent keys and subsequent response





PUT-related stats


Stat | Description
:—-|:———–
consistent_puts | Number of strongly consistent PUTs coordinated by this node in the last minute
consistent_puts_total | Total number of strongly consistent PUTs coordinated by this node
consistent_put_objsize_mean | Mean object size for strongly consistent PUTs on this node in the last minute
consistent_put_objsize_median | Median object size for strongly consistent PUTs on this node in the last minute
consistent_put_objsize_95 | 95th-percentile object size for strongly consistent PUTs on this node in the last minute
consistent_put_objsize_99 | 99th-percentile object size for strongly consistent PUTs on this node in the last minute
consistent_put_objsize_100 | 100th-percentile object size for strongly consistent PUTs on this node in the last minute
consistent_put_time_mean | Mean time between reception of client PUTs to strongly consistent keys and subsequent response
consistent_put_time_median | Median time between reception of client PUTs to strongly consistent keys and subsequent response
consistent_put_time_95 | 95th-percentile time between reception of client PUTs to strongly consistent keys and subsequent response
consistent_put_time_99 | 99th-percentile time between reception of client PUTs to strongly consistent keys and subsequent response
consistent_put_time_100 | 100th-percentile time between reception of client PUTs to strongly consistent keys and subsequent response







riak-admin diag


Running riak-admin diag by itself will perform a check of all of the
data partitions in your cluster. It will return a listing of partitions
that have been checked, each of which looks something like this:


{1392993748081016843912887106182707253109560705024, % the partition checked
 'dev-rel@127.0.0.1'},                              % that partition's nodename



At the end of that (potentially very long) listing of checked
partitions, it will print notices, warnings, and other pieces of
information about issues that it has found, including date/time, message
type, and a detailed description. Here’s an example:


15:34:52.736 [warning] Riak crashed at Wed, 07 Dec 2011 21:47:50 GMT, leaving crash dump in /srv/riak/log/erl_crash.dump. Please inspect or remove the file.
15:34:52.736 [notice] Data directory /srv/riak/data/bitcask is not mounted with 'noatime'. Please remount its disk with the 'noatime' flag to improve performance.



Messages bear the following types (derived from
syslog [http://en.wikipedia.org/wiki/Syslog] security levels):



		debug


		info


		notice


		warning


		error


		critical


		alert


		emergency






Command flags


Attaching the --help flag will return a list of flags and commands
that can be used with Riaknostic:


Usage: riak-admin diag [-d <level>] [-l] [-h] [--export] [check_name ...]

-h, --help            Display help/usage dialogue
-d, --level           Minimum message severity level (default: notice)
-l, --list            Describe available diagnostic tasks
--export              Package system info in '/export.zip'
check_name            A specific check to run



Running riak-admin diag  with the --list flag will return a list of
available diagnostic checks. The following checks are available:


Check | Description
:—–|:———–
disk | Data directory permissions and atime
dumps | Find crash dumps
memory_use | Measure memory usage
nodes_connected | Cluster node liveness
ring_membership | Cluster membership validity
ring_preflists | Check if the ring satisfies n_val
ring_size | Check if the ring size valid
search | Check whether Riak Search is enabled on all nodes


The --level flag enables you to specify the log level and thus to
filter messages based on type. You can pass in any of the message types
listed above (debug, info, etc.).


The --level flag can be used when running riak-admin diag with or
without specifying a diagnostic check.





Contributing


Do you have an idea that would help us improve Riaknostic? If so, fork
the GitHub repository [https://github.com/basho/riaknostic] and send us
a pull request with your changes. The code is documented with
edoc [http://riaknostic.basho.com/edoc/index.html], so give the API
Docs a read before you contribute.


If you want to run the Riaknostic script while developing and you don’t
have it hooked up to your local Riak installation, you can invoke it
directly like so:


./riaknostic --etc ~/code/riak/rel/riak/etc --base ~/code/riak/rel/riak --user `whoami` [other options]



Those extra options are usually assigned by the riak-admin script for
you, but here’s how to set them:



		--etc — The location of your Riak configuration directory (usually
/etc). In the example above, configuration is in the generated
directory of a source checkout of Riak.


		--base — The “base” directory of Riak, usually the root of the
generated directory or /usr/lib/riak on Linux. Scan the
riak-admin script for how the RUNNER_BASE_DIR variable is
assigned on your platform.


		--user — The user/UID as which the Riak node runs. In a source
checkout, it’s the current user; on most systems, it’s riak.










Related Resources



		[[The riak-admin configuration management tool|riak-admin Command
Line]]


		Riaknostic [http://riaknostic.basho.com/]


		[[HTTP API Status|HTTP Status]]









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/protocol-buffers/list-buckets.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: PBC List Buckets
project: riak
version: 0.14.0+
document: api
toc: true
audience: advanced
keywords: [api, protocol-buffer]
group_by: “Bucket Operations”
moved: {
‘1.4.0-‘: ‘/references/apis/protocol-buffers/PBC-List-Buckets’
}




List all of the bucket names available.



Caution
This call can be expensive for the server. Do not use in
performance-sensitive code.




Request


Only the message code is required.





Response


message RpbListBucketsResp {
    repeated bytes buckets = 1;
}



Values



		buckets — Buckets on the server








Example



Request


Hex      00 00 00 01 0F
Erlang <<0,0,0,1,15>>

RpbListBucketsReq - only message code defined






Response


Hex      00 00 00 2A 10 0A 02 62 31 0A 02 62 35 0A 02 62
         34 0A 02 62 38 0A 02 62 33 0A 03 62 31 30 0A 02
         62 39 0A 02 62 32 0A 02 62 36 0A 02 62 37
Erlang <<0,0,0,42,16,10,2,98,49,10,2,98,53,10,2,98,52,10,2,98,56,10,2,98,51,10,
         3,98,49,48,10,2,98,57,10,2,98,50,10,2,98,54,10,2,98,55>>

RpbListBucketsResp protoc decode:
buckets: "b1"
buckets: "b5"
buckets: "b4"
buckets: "b8"
buckets: "b3"
buckets: "b10"
buckets: "b9"
buckets: "b2"
buckets: "b6"
buckets: "b7"









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/cookbooks/configuration/Configuring-Stanchion.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Configuring Stanchion
project: riakcs
version: 1.2.0+
document: cookbook
toc: true
audience: intermediate
keywords: [operator, configuration]




In your cluster, you must include one – and only one – Stanchion node. All the
Riak CS nodes in that cluster must then be configured to communicate with that
Stanchion node so that the cluster is able to track and negotiate
causally-sensitive operations.


All of the settings used by the Stanchion node are stored in the
stanchion.conf file, which is located in the /etc/riak-cs folder on most
operating systems.


If you’re upgrading from a version of Riak CS prior to 2.0.0 – when the
stanchion.conf and riak-cs.conf files was introduced – you can still use
the old-style app.config configuration files. Examples for both configuration
types will be provided.


configuration.name = value



{stanchion, [
             %% Configs here
            ]}




Specifying the Stanchion IP Address and Port


If you have a single node, you don’t have to change the Stanchion settings
because Stanchion simply listens to the requests from the local host. If your
Riak CS cluster has multiple nodes, you must set the IP address and port that
Stanchion listens on for requests from other nodes.


You can set the IP using the listener parameter. Replace 127.0.0.1 with the
IP address of the Stanchion node, and 8080 with the port of the Stanchion
node.


listener = 127.0.0.1:8080



{stanchion, [
             {host, {"127.0.0.1", 8085}},
             %% Other configs
            ]}



Note on matching IP addresses

The IP address you enter here must match the IP address specified for the
stanchion_host variable in the Riak riak.conf file and
the Riak CS riak-cs.conf file.

If you want to use SSL, make sure the ssl.certfile and ssl.keyfile settings
are not commented out, and have been set correctly.


ssl.certfile = "./etc/cert.pem"
ssl.keyfile = "./etc/key.pem"



{stanchion, [
             {ssl, [
                    {certfile, "./etc/cert.pem"},
                    {keyfile, "./etc/key.pem"}
                   ]},
             %% Other configs
            ]}






Specifying Riak Information


If you are running a single node for experimentation, or if a Riak node is
running locally and configured to listen for protocol buffer traffic on
0.0.0.0, the default Riak configuration for Stanchion should be fine.


Otherwise, update the IP address and port for the Riak host in the Stanchion
configuration file.


riak_host = 127.0.0.1:8087



{stanchion, [
             {riak_host, {"127.0.0.1", 8087}},
             %% Other configs
            ]}







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/protocol-buffers/dt-union.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: PBC Data Type Union
project: riak
version: 2.0.0+
document: api
toc: true
audience: advanced
keywords: [api, protocol-buffer, datatypes]
group_by: “Object/Key Operations”




A “union” type for update operations.



Request


message DtOp {
    optional CounterOp counter_op = 1;
    optional SetOp     set_op     = 2;
    optional MapOp     map_op     = 3;
}



The included operation depends on the Data Type that is being updated.
DtOp messages are sent only as part of a [[DtUpdateReq|PBC Data Type Store]] message.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/running/nodes/renaming.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Renaming Nodes
project: riak
version: 1.2.0+
document: cookbook
toc: true
audience: advanced
keywords: [operator]
moved: {
‘1.4.0-‘: ‘/cookbooks/Renaming-Nodes’
}





Single Node Clusters


To rename a single-node development cluster:



		Stop the node with riak stop.


		Change the node’s nodename parameter in riak.conf, or -name parameter in vm.args to the new name.


		Change any IP addresses in riak.conf or app.config if necessary. Specifically: listener.protobuf.$name, listener.http.$name, and listener.https.$name in riak.conf, and pb_ip, http, https, and cluster_mgr in app.config.


		Delete the contents of the node’s ring directory. The location of the ring directory is the value for the ring.state_dir in riak.conf, or ring_state_dir in app.config.


		Start Riak on the node with riak start.








Multi-Node Clusters


For multi-node clusters, a rename is a slightly more complex procedure; however, it is very similar to the process for renaming a single node.


Previous to Riak version 1.2, a cluster node’s name could only be changed with the [[riak-admin reip|riak-admin Command Line#reip]] command, which involves downtime for the entire cluster. As of Riak version 1.2, that method has been superseded by [[riak-admin cluster force-replace|riak-admin Command Line#cluster-force-replace]], which is safer and does not require cluster wide downtime.


There still exist scenarios that require nodes to be renamed while stopped, such as seeding a cluster with backups from another cluster that does not share the same node names. Please see the [[Clusters from Backups|Renaming Nodes#Clusters-From-Backups]] section for more details on renaming in this scenario.


The following example describes reconfiguring node names with the new riak-admin cluster force-replace method.



Example Scenario


For this example scenario, Riak is operating in a cluster of 5 nodes with the following network configuration:



		riak@10.1.42.11 on node1.localdomain →


 IP address changing to 192.168.17.11


		riak@10.1.42.12 on node2.localdomain →


 IP address changing to 192.168.17.12


		riak@10.1.42.13 on node3.localdomain →


 IP address changing to 192.168.17.13


		riak@10.1.42.14 on node4.localdomain →


 IP address changing to 192.168.17.14


		riak@10.1.42.15 on node5.localdomain →


 IP address changing to 192.168.17.15





The above list shows the network configuration details for our 5 nodes, including the Erlang node name value, the node’s fully qualified domain name, and the new IP address each node will be configured to use.


The nodes in our example cluster are currently configured to use the 10.1.42. private subnetwork range. Our goal for this example will be to configure the nodes to instead use the  192.168.17. private subnetwork range and do so in a rolling fashion without interrupting cluster operation.





Process


This process can be accomplished in three phases. The details and steps required of each phase are presented in the following section.



		[[Down the node to be reconfigured|Renaming-Nodes#down]]


		[[Reconfigure node to use new address|Renaming-Nodes#reconfigure]]


		[[Repeat previous steps on each node|Renaming-Nodes#repeat]]









Down the Node



		Stop Riak on node1.localdomain:


riak stop



The output should look like this:


Attempting to restart script through sudo -H -u riak
ok






		From the node2.localdomain node, mark riak@10.1.42.11 down:


riak-admin down riak@10.1.42.11



Successfully marking the node down should produce output like this:


Attempting to restart script through sudo -H -u riak
Success: "riak@10.1.42.11" marked as down



This step informs the cluster that riak@10.1.42.11 is offline and ring-state transitions should be allowed. While we’re executing the riak-admin down command from node2.localdomain in this example, the command can be executed from any currently running node.














Reconfigure Node to Use New Address


Reconfigure node1.localdomain to listen on the new private IP address 192.168.17.11 by following these steps:



		Change the node’s nodename parameter in riak.conf, or -name parameter in vm.args, to reflect the new node name. For example:


riak.conf: nodename = riak@192.168.17.11vm.args : -name riak@192.168.17.11





		Change any IP addresses to 192.168.17.11 in riak.conf or app.config as previously described in step 3 of [[Single Node Clusters|Renaming Nodes#Single-Node-Clusters]].





		Rename the node’s ring directory, the location of which is described in step 4 of [[Single Node Clusters|Renaming Nodes#Single-Node-Clusters]].  You may rename it to whatever you like, as it will only be used as a backup during the node renaming process.





		Start Riak on node1.localdomain.


riak start






		Join the node back into the cluster.


riak-admin cluster join riak@10.1.42.12



Successful staging of the join request should have output like this:


Attempting to restart script through sudo -H -u riak
Success: staged join request for 'riak@192.168.17.11' to 'riak@10.1.42.12'






		Use riak-admin cluster force-replace to change all ownership references from riak@10.1.42.11 to riak@192.168.17.11:


riak-admin cluster force-replace riak@10.1.42.11 riak@192.168.17.11



Successful force replacement staging output looks like this:


Attempting to restart script through sudo -H -u riak
Success: staged forced replacement of 'riak@10.1.42.11' with 'riak@192.168.17.11'






		Review the new changes with riak-admin cluster plan:


riak-admin cluster plan



Example output:


Attempting to restart script through sudo -H -u riak
=========================== Staged Changes ============================
Action         Nodes(s)
-----------------------------------------------------------------------
join           'riak@192.168.17.11'
force-replace  'riak@10.1.42.11' with 'riak@192.168.17.11'
-----------------------------------------------------------------------

WARNING: All of 'riak@10.1.42.11' replicas will be lost

NOTE: Applying these changes will result in 1 cluster transition

#######################################################################
                     After cluster transition 1/1
#######################################################################

============================= Membership ==============================
Status     Ring    Pending    Node
-----------------------------------------------------------------------
valid      20.3%      --      'riak@192.168.17.11'
valid      20.3%      --      'riak@10.1.42.12'
valid      20.3%      --      'riak@10.1.42.13'
valid      20.3%      --      'riak@10.1.42.14'
valid      18.8%      --      'riak@10.1.42.15'
-----------------------------------------------------------------------
Valid:5 / Leaving:0 / Exiting:0 / Joining:0 / Down:0

Partitions reassigned from cluster changes: 13
13 reassigned from 'riak@10.1.42.11' to 'riak@192.168.17.11'






		Commit the new changes to the cluster with riak-admin cluster commit:


riak-admin cluster commit



Output from the command should resemble this example:


Attempting to restart script through sudo -H -u riak
Cluster changes committed






		Check that the node is participating in the cluster and functioning as expected:


riak-admin member-status



Output should resemble this example:


Attempting to restart script through sudo -H -u riak
============================= Membership ==============================
Status     Ring    Pending    Node
-----------------------------------------------------------------------
valid      20.3%      --      'riak@192.168.17.11'
valid      20.3%      --      'riak@10.1.42.12'
valid      20.3%      --      'riak@10.1.42.13'
valid      20.3%      --      'riak@10.1.42.14'
valid      18.8%      --      'riak@10.1.42.15'
-----------------------------------------------------------------------
Valid:5 / Leaving:0 / Exiting:0 / Joining:0 / Down:0






		Monitor hinted handoff transfers to ensure they have finished with the riak-admin transfers command.





		Clean up by deleting the renamed ring directory once all previous steps have been successfully completed.








Note

When using the `riak-admin force-replace` command, you will always get a warning message like: `WARNING: All of 'riak@10.1.42.11' replicas will be lost`. Since we didn't delete any data files and we are replacing the node with itself under a new name, we will not lose any replicas.







Repeat previous steps on each node


Repeat the steps above for each of the remaining nodes in the cluster.


Use riak@192.168.17.11 as the target node for further riak-admin cluster join commands issued from subsequently reconfigured nodes to join those nodes to the cluster.


riak-admin cluster join riak@192.168.17.11



A successful join request staging produces output similar to this example:


Attempting to restart script through sudo -H -u riak
Success: staged join request for 'riak@192.168.17.12' to 'riak@192.168.17.11'










Clusters from Backups


The above steps describe a process for renaming nodes in a running cluster. When seeding a new cluster with backups where the nodes must have new names, typically done as a secondary cluster or in a disaster recovery scenario, a slightly different process must be used. This is because the node names must resolve to the new hosts in order for the nodes to start and communicate with each other.


Expanding on the Example Scenario above, the below steps can be used to rename nodes in a cluster that is being restored from backups. The below steps assume every node is offline, and they will indicate when to bring each node online.



Bringing Up the First Node


In order to bring our first node online, we’ll first need to use the riak-admin reip command on a single node. In this example, we’ll use riak@10.1.42.11 as our first node.



		In riak.conf change nodename, -name in vm.args, from riak@10.1.42.11 to your new nodename, riak@192.168.17.11.





		On node1.localdomain run riak-admin reip riak@10.1.42.11 riak@192.168.17.11. This will change the name of riak@10.1.42.11 to riak@192.168.17.11 in the Riak ring.





		Start Riak on node1.localdomain.





		Once Riak is started on node1.localdomain, mark the rest of the nodes in the cluster down, using riak-admin down. For example, we would down riak@10.1.42.12 with riak-admin down riak@10.1.42.12.





		Confirm every other node in the cluster is marked down by running riak-admin member-status on node1.localdomain:


================================= Membership ==================================
Status     Ring        Pending    Node
-------------------------------------------------------------------------------
valid       20.3%      --      'riak@192.168.17.11'
down        20.3%      --      'riak@10.1.42.12'
down        20.3%      --      'riak@10.1.42.13'
down        20.3%      --      'riak@10.1.42.14'
down        18.8%      --      'riak@10.1.42.15'
-------------------------------------------------------------------------------
Valid:1 / Leaving:0 / Exiting:0 / Joining:0 / Down:4







		Ensure riak@192.168.17.11 is listed as the claimant by running riak-admin ring-status on node1.localdomain:


================================== Claimant ===================================
Claimant:  'riak@192.168.17.11'
Status:     up
Ring Ready: true

============================== Ownership Handoff ==============================
No pending changes.

============================== Unreachable Nodes ==============================
All nodes are up and reachable









Once all nodes are marked as down and our first node is listed as the claimant, we can proceed with the rest of the nodes.





Bringing Up the Remaining Nodes



		On each of the remaining nodes, change nodename in riak.conf, or -name in vm.args as described above.





		Move aside the ring directory. As in [[Multi-Node Clusters|Renaming Nodes#Multi-Node-Clusters]], we will save this ring directory as a backup until were finished.





		Start each node. They will start as if they are each a member of their own cluster, but will retain their restored data.





		Join each node to our first node using riak-admin cluster join riak@192.168.17.11.





		Force replace each node with its old node name. For example, riak-admin cluster force-replace riak@10.1.42.12 riak@192.168.17.12.





		Once the above is complete for each node, run riak-admin cluster plan on any node. The output should look similar to below:


=============================== Staged Changes ================================
Action         Details(s)
-------------------------------------------------------------------------------
force-replace  'riak@10.1.42.12' with 'riak@192.168.17.12'
force-replace  'riak@10.1.42.13' with 'riak@192.168.17.13'
force-replace  'riak@10.1.42.14' with 'riak@192.168.17.14'
force-replace  'riak@10.1.42.15' with 'riak@192.168.17.15'
join           'riak@192.168.17.12'
join           'riak@192.168.17.13'
join           'riak@192.168.17.14'
join           'riak@192.168.17.15'
-------------------------------------------------------------------------------

WARNING: All of 'riak@10.1.42.12' replicas will be lost
WARNING: All of 'riak@10.1.42.13' replicas will be lost
WARNING: All of 'riak@10.1.42.14' replicas will be lost
WARNING: All of 'riak@10.1.42.15' replicas will be lost

NOTE: Applying these changes will result in 1 cluster transition

###############################################################################
                         After cluster transition 1/1
###############################################################################

================================= Membership ==================================
Status     Ring    Pending    Node
-------------------------------------------------------------------------------
valid       20.3%      --      'riak@192.168.17.11'
valid       20.3%      --      'riak@192.168.17.12'
valid       20.3%      --      'riak@192.168.17.13'
valid       20.3%      --      'riak@192.168.17.14'
valid       18.8%      --      'riak@192.168.17.15'
-------------------------------------------------------------------------------
Valid:5 / Leaving:0 / Exiting:0 / Joining:0 / Down:0

Partitions reassigned from cluster changes: 51
  13 reassigned from 'riak@10.1.42.12' to 'riak@192.168.17.12'
  13 reassigned from 'riak@10.1.42.13' to 'riak@192.168.17.13'
  13 reassigned from 'riak@10.1.42.14' to 'riak@192.168.17.14'
  12 reassigned from 'riak@10.1.42.15' to 'riak@192.168.17.15'






		If the above plan looks correct, commit the cluster changes with riak-admin cluster commit.





		Once the cluster transition has completed, all node names should be changed and be marked as valid in riak-admin member-status like below:


================================= Membership ==================================
Status       Ring       Pending    Node
-------------------------------------------------------------------------------
valid        20.3%      --        'riak@192.168.17.11'
valid        20.3%      --        'riak@192.168.17.12'
valid        20.3%      --        'riak@192.168.17.13'
valid        20.3%      --        'riak@192.168.17.14'
valid        18.8%      --        'riak@192.168.17.15'
-------------------------------------------------------------------------------
Valid:5 / Leaving:0 / Exiting:0 / Joining:0 / Down:0
















          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/protocol-buffers/set-bucket-props.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: PBC Set Bucket Properties
project: riak
version: 0.14.0+
document: api
toc: true
audience: advanced
keywords: [api, protocol-buffer]
group_by: “Bucket Operations”
moved: {
‘1.4.0-‘: ‘/references/apis/protocol-buffers/PBC-Set-Bucket-Properties’
}




Sets the properties for a bucket.



Request


message RpbSetBucketReq {
    required bytes bucket = 1;
    required RpbBucketProps props = 2;
    optional bytes type = 3;
}



You must specify the name of the bucket (bucket) and include an
RpbBucketProps message. More on that message type can be found in the
[[PBC Get Bucket Properties]] documentation.


You can also specify a [[bucket type|Using Bucket Types]] using the
type value. If you do not specify a bucket type, the default bucket
type will be used by Riak.





Response


Only the message code is returned.





Example


Change allow_mult to true for the bucket friends:



Request


Hex      00 00 00 0E 15 0A 07 66 72 69 65 6E 64 73 12 02
         10 01
Erlang <<0,0,0,14,21,10,7,102,114,105,101,110,100,115,18,2,16,1>>

RpbSetBucketReq protoc decode:
bucket: "friends"
props {
  allow_mult: true
}







Response


Hex      00 00 00 01 16
Erlang <<0,0,0,1,22>>

RpbSetBucketResp - only message code defined









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/running/nodes/adding-removing.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Adding and Removing Nodes
project: riak
version: 0.10.0+
document: cookbook
toc: true
audience: intermediate
keywords: [operator]
moved: {
‘1.4.0-‘: ‘/cookbooks/Adding-and-Removing-Nodes’
}




This page describes the process of adding and removing nodes to and from
a Riak cluster. We’ll look at how you join nodes together into a
cluster, and what happens when you add or remove nodes.



Preconditions


First, you will need to install Riak. Use one of our OS- or
cloud-platform-specific installation docs to do so:



		[[Debian and Ubuntu|Installing on Debian and Ubuntu]]


		[[RHEL and CentOS|Installing on RHEL and CentOS]]


		[[Mac OS X|Installing on Mac OS X]]


		[[FreeBSD|Installing on FreeBSD]]


		[[SmartOS|Installing on SmartOS]]


		[[Solaris|Installing on Solaris]]


		[[SUSE|Installing on SUSE]]


		[[Windows Azure|Installing on Windows Azure]]


		[[Amazon Web Services|Installing on AWS Marketplace]]





You may also install Riak [[from source|Installing Riak from Source]].


For most operations you need to access [[configuration files]], whose
location depends on your mode of installation and the operating system.
You may want to have any configuration files open throughout this
process.





Creating the First Node


After installing Riak on a system using either the binary packages or
from source, there are some initial configuration steps you need to take
that depend on your networking infrastructure and desired security
measures.


First, your node should not be running. If it is, stop it using [[riak stop|riak Command Line#stop]]. But before you can start up the node
again, a couple of changes need to made. If your new node was already
running before making the configuration changes outlined below, it’s
best to delete your ring directory before starting it up again. Just
delete the directory /ring in your Riak /data directory. In general,
the steps outlined below should be taken before you bring up a new node.





Change the Node Name


The node name is an important setting for the Erlang VM, especially when
you want to build a cluster of nodes, as the node name identifies both
the Erlang application and the host name on the network. All nodes in
the Riak cluster need these node names to communicate and coordinate
with each other.


In your configuration files, the node name defaults to riak@127.0.0.1.
To change the node name, change the following line:


nodename = riak@127.0.0.1



-name riak@127.0.0.1



Change it to something that corresponds to either the IP address or a
resolvable host name for this particular node, like so:


nodename = riak@192.168.1.10



-name riak@192.168.1.10






Change the HTTP and Protocol Buffers binding address


By default, Riak’s HTTP and Protocol Buffers services are bound to the
local interface, i.e. 127.0.0.1, and are therefore unable to serve
requests from the outside network. The relevant setting is in your
[[configuration files]]:


# For HTTP
listener.http.internal = {"127.0.0.1",8098}

# For Protocol Buffers
listener.protobuf.internal = {"127.0.0.1",8087}



% In the riak_core section

% For HTTP
{http, [ {"127.0.0.1", 8098 } ]},

% For Protocol Buffers
{pb_ip,   "127.0.0.1" },



Either change it to use an IP address that corresponds to one of the
server’s network interfaces, or 0.0.0.0 to allow access from all
interfaces and networks, e.g.:


listener.http.internal = {"0.0.0.0",8098}



% In the riak_core section
{http, [ {"0.0.0.0", 8098 } ]},



The same configuration should be changed for the Protocol Buffers
interface if you intend on using it (which we recommend). Change the
following line:


listener.protobuf.internal = {"0.0.0.0",8087}



% In the riak_core section
{pb_ip,   "127.0.0.1" },






Start the Node


Just like the initial configuration steps, this step has to be repeated
for every node in your cluster. Before a node can join an existing
cluster it needs to be started. Depending on your mode of installation,
use either the init scripts installed by the Riak binary packages or
simply the script [[riak|riak Command Line]]:


/etc/init.d/riak start



or


bin/riak start



When the node starts, it will look for a cluster description, known as
the ring file, in its data directory. If a ring file does not exist,
it will create a new ring file based on the initially configured
ring_size (or ring_creation_size if you’re using the older,
app.config-based configuration system), claiming all partitions for
itself. Once this process completes, the node will be ready to serve
requests.





Add a Node to an Existing Cluster


Once the node is running, it can be added to an existing cluster. Note
that this step isn’t necessary for the first node; it’s necessary only
for nodes that you want to add later.


To join the node to an existing cluster, use the cluster join command:


bin/riak-admin cluster join <node_in_cluster>



The <node_in_cluster> in the example above can be any node in the
cluster you want to join to. So if the existing cluster consists of
nodes A, B, and C, any of the following commands would join the
new node:


bin/riak-admin cluster join A
bin/riak-admin cluster join B
bin/riak-admin cluster join C



To give a more realistic example, let’s say that you have an isolated
node named riak@192.168.2.5 and you want to join it to an existing
cluster that contains a node named riak@192.168.2.2. This command
would stage a join to that cluster:


bin/riak-admin cluster join riak@192.168.2.2



If the join request is successful, you should see the following:


Success: staged join request for 'riak@192.168.2.5' to 'riak@192.168.2.2'



If you have multiple nodes that you would like to join to an existing
cluster, repeat this process for each of them.





Joining Nodes to Form a Cluster


The process of joining a cluster involves several steps, including
staging the proposed cluster nodes, reviewing the cluster plan, and
committing the changes.


After staging each of the cluster nodes with riak-admin cluster join
commands, as in the section above, the next step in forming a cluster is
to review the proposed plan of changes. This can be done with the
riak-admin cluster plan command, which is shown in the example below.


=============================== Staged Changes ================================
Action         Nodes(s)
-------------------------------------------------------------------------------
join           'riak@192.168.2.2'
join           'riak@192.168.2.2'
join           'riak@192.168.2.2'
join           'riak@192.168.2.2'
-------------------------------------------------------------------------------


NOTE: Applying these changes will result in 1 cluster transition

###############################################################################
                         After cluster transition 1/1
###############################################################################

================================= Membership ==================================
Status     Ring    Pending    Node
-------------------------------------------------------------------------------
valid     100.0%     20.3%    'riak@192.168.2.2'
valid       0.0%     20.3%    'riak@192.168.2.3'
valid       0.0%     20.3%    'riak@192.168.2.4'
valid       0.0%     20.3%    'riak@192.168.2.5'
valid       0.0%     18.8%    'riak@192.168.2.6'
-------------------------------------------------------------------------------
Valid:5 / Leaving:0 / Exiting:0 / Joining:0 / Down:0

Transfers resulting from cluster changes: 51
  12 transfers from 'riak@192.168.2.2' to 'riak@192.168.2.3'
  13 transfers from 'riak@192.168.2.2' to 'riak@192.168.2.4'
  13 transfers from 'riak@192.168.2.2' to 'riak@192.168.2.5'
  13 transfers from 'riak@192.168.2.2' to 'riak@192.168.2.6'



If the plan is to your liking, submit the changes by running riak-admin cluster commit.



Note on ring changes

The algorithm that distributes partitions across the cluster
during membership changes is non-deterministic. As a result, there is no
optimal ring. In the event that a plan results in a slightly uneven
distribution of partitions, the plan can be cleared. Clearing a cluster
plan with `riak-admin cluster clear` and running `riak-admin cluster
plan` again will produce a slightly different ring.




Removing a Node From a Cluster


A node can be removed from the cluster in two ways. One assumes that a
node is decommissioned, for example, because its added capacity is not
needed anymore or because it’s explicitly replaced with a new one. The
second is relevant for failure scenarios in which a node has crashed and
is irrecoverable and thus must be removed from the cluster from another
node.


The command to remove a running node is riak-admin cluster leave. This
command must be executed on the node that you intend to removed from the
cluster.


Similarly to joining a node, after executing riak-admin cluster leave
the cluster plan must be reviewed with riak-admin cluster plan and
the changes committed with riak-admin cluster commit.


The other command is riak-admin cluster leave <node>, where <node>
is the node name as specified in the node’s configuration files:


riak-admin cluster leave riak@192.168.2.1



This command can be run from any other node in the cluster.


Under the hood, both commands do basically the same thing. Running
riak-admin cluster leave <node> selects the current node for you
automatically.


As with riak-admin cluster leave, the plan to have a node leave the
cluster must be first reviewed with riak-admin cluster plan and
committed with riak-admin cluster commit before any changes will
actually take place.





How Cluster Membership Changes Work


When a node joins or leaves the cluster, the cluster’s claimant creates
a new ring, attempting to distribute partitions evenly across the
cluster. This ring is not immediately used, but serves as a template for
the final state of the cluster’s ring once all partition ownership
transfers have completed.


Once created, the claimant uses this new ring to generate a list of
pending changes to the cluster. These changes need to occur before the
transition to the new ring can be completed. This list consists of
partitions whose ownership needs to be transferred between nodes, as well
as the state of the transfers (complete or awaiting). This list is
distributed to the cluster members via the gossip protocol.


Once the pending changes list is gossiped to the other members of the
cluster, nodes will begin handing off partitions. As transfers of
partitions between nodes complete, the pending changes list is updated.
The updated pending changes list is distributed to members of the
cluster as updates are made to it.


Throughout the handoff process, the claimant uses this updated list to
make incremental changes to the ring. Each time an incremental change
is made, the new ring is distributed to all cluster members to reflect
the new owner of the recently transferred partition. Once all transfers
are complete, the ring distributed by the claimant will be the one
created when the join command was executed, and the ownership handoff
process will be complete.


In the case of leaving a node, the leaving node will shutdown once all
if its partitions have been transferred successfully.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/protocol-buffers/mapreduce.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: PBC MapReduce
project: riak
version: 0.14.0+
document: api
toc: true
audience: advanced
keywords: [api, protocol-buffer]
group_by: “Query Operations”
moved: {
‘1.4.0-‘: ‘/references/apis/protocol-buffers/PBC-MapReduce’
}




Execute a MapReduce job.



Request


message RpbMapRedReq {
    required bytes request = 1;
    required bytes content_type = 2;
}



Required Parameters



		request — MapReduce job


		content_type - Encoding for MapReduce job





Mapreduce jobs can be encoded in two different ways



		application/json — JSON-encoded MapReduce job


		application/x-erlang-binary — Erlang external term format





The JSON encoding is the same as [[REST API|Using MapReduce#rest]] and
the external term format is the same as the [[local Erlang API|Advanced
MapReduce#erlang]]





Response


The results of the MapReduce job is returned for each phase that
generates a result, encoded in the same format the job was submitted in.
Multiple response messages will be returned followed by a final message
at the end of the job.


message RpbMapRedResp {
    optional uint32 phase = 1;
    optional bytes response = 2;
    optional bool done = 3;
}



Values



		phase — Phase number of the MapReduce job


		response - Response encoded with the content_type submitted


		done - Set true on the last response packet








Example


Here is how submitting a JSON encoded job to sum up a bucket full of
JSON encoded values.


{"inputs": "bucket_501653",
 "query":
    [{"map": {"arg": null,
              "name": "Riak.mapValuesJson",
              "language": "javascript",
              "keep": false}},
     {"reduce": {"arg": null,
                   "name": "Riak.reduceSum",
                   "language": "javascript",
                   "keep": true}}]}"



Request


Hex      00 00 00 F8 17 0A E2 01 7B 22 69 6E 70 75 74 73
         22 3A 20 22 62 75 63 6B 65 74 5F 35 30 31 36 35
         33 22 2C 20 22 71 75 65 72 79 22 3A 20 5B 7B 22
         6D 61 70 22 3A 20 7B 22 61 72 67 22 3A 20 6E 75
         6C 6C 2C 20 22 6E 61 6D 65 22 3A 20 22 52 69 61
         6B 2E 6D 61 70 56 61 6C 75 65 73 4A 73 6F 6E 22
         2C 20 22 6C 61 6E 67 75 61 67 65 22 3A 20 22 6A
         61 76 61 73 63 72 69 70 74 22 2C 20 22 6B 65 65
         70 22 3A 20 66 61 6C 73 65 7D 7D 2C 20 7B 22 72
         65 64 75 63 65 22 3A 20 7B 22 61 72 67 22 3A 20
         6E 75 6C 6C 2C 20 22 6E 61 6D 65 22 3A 20 22 52
         69 61 6B 2E 72 65 64 75 63 65 53 75 6D 22 2C 20
         22 6C 61 6E 67 75 61 67 65 22 3A 20 22 6A 61 76
         61 73 63 72 69 70 74 22 2C 20 22 6B 65 65 70 22
         3A 20 74 72 75 65 7D 7D 5D 7D 12 10 61 70 70 6C
         69 63 61 74 69 6F 6E 2F 6A 73 6F 6E
Erlang <<0,0,0,248,23,10,226,1,123,34,105,110,112,117,116,115,34,58,32,34,98,
         117,99,107,101,116,95,53,48,49,54,53,51,34,44,32,34,113,117,101,114,
         121,34,58,32,91,123,34,109,97,112,34,58,32,123,34,97,114,103,34,58,32,
         110,117,108,108,44,32,34,110,97,109,101,34,58,32,34,82,105,97,107,46,
         109,97,112,86,97,108,117,101,115,74,115,111,110,34,44,32,34,108,97,
         110,103,117,97,103,101,34,58,32,34,106,97,118,97,115,99,114,105,112,
         116,34,44,32,34,107,101,101,112,34,58,32,102,97,108,115,101,125,125,
         44,32,123,34,114,101,100,117,99,101,34,58,32,123,34,97,114,103,34,58,
         32,110,117,108,108,44,32,34,110,97,109,101,34,58,32,34,82,105,97,107,
         46,114,101,100,117,99,101,83,117,109,34,44,32,34,108,97,110,103,117,
         97,103,101,34,58,32,34,106,97,118,97,115,99,114,105,112,116,34,44,32,
         34,107,101,101,112,34,58,32,116,114,117,101,125,125,93,125,18,16,97,
         112,112,108,105,99,97,116,105,111,110,47,106,115,111,110>>

RpbMapRedReq protoc decode:
request: "{"inputs": "bucket_501653", "query": [{"map": {"arg": null,
"name": "Riak.mapValuesJson", "language": "javascript", "keep": false}},
 {"reduce": {"arg": null, "name": "Riak.reduceSum", "language":
"javascript", "keep": true}}]}"
content_type: "application/json"




Response 1 - result from phase 1


Hex      00 00 00 08 18 08 01 12 03 5B 39 5D
Erlang <<0,0,0,8,24,8,1,18,3,91,57,93>>

RpbMapRedResp protoc decode:
phase: 1
response: "[[9]]"




Response 2 - end of MapReduce job


Hex      00 00 00 03 18 18 01
Erlang <<0,0,0,3,24,24,1>>

RpbMapRedResp protoc decode:
done: true








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/upgrading/production-checklist.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Production Checklist
project: riak
version: 1.4.0+
document: guide
toc: true
audience: intermediate
keywords: [operators, building]




Making the transition from running Riak in a development or testing
environment to deploying it in a realtime, production environment can
often be a complex process. While the specifics of that process will
always depend on the use case at hand, there are nonetheless some things
that you might want to consider and a few questions that you might want
to ask while making this transition.



System



		Are all systems in your cluster as close to identical as possible in
terms of both hardware and software?


		Have you set appropriate [[open files limits|Open Files Limit]] on all
of your systems?


		Have you applied the [[System tuning recommendations|System
Performance Tuning]]?








Network



		Are all systems using the same NTP servers [http://www.ntp.org/] to
synchronize clocks?


		Are you sure that your NTP clients’ configuration is monotonic (i.e.
that your clocks will not roll back)?


		Is DNS correctly configured for all systems’ production deployments?


		Are connections correctly routed between all Riak nodes?


		Are connections correctly set up in your load balancer?


		Are your [[firewalls|Security and Firewalls]] correctly configured?


		Check that network latency and throughput as expected for all of the
following (we suggest using iperf [http://www.ntp.org/] to verify):
		between nodes in the cluster


		between the load balancer and all nodes in the cluster


		between application servers and the load balancer








		Do all Riak nodes appear in the load balancer’s rotation?


		Is the load balancer configured to balance connections with roundrobin
or a similarly random [[distribution scheme|Load Balancing and Proxy
Configuration]]?








Riak



		Check [[configuration files]]:



		Does each machine have the correct name and IP settings in
riak.conf (or in app.config if you’re using the older
configuration files)?


		Are all [[configurable settings|Configuration Files]] identical
across the cluster?


		Have all of the settings in your configuration file(s) that were
changed for debugging purposes been reverted back to production
settings?


		If you’re using [[multiple data backends|Multi]], are all of your
bucket types configured to use the correct backend?


		If you are using Riak Security, have you checked off all items in
the [[security checklist|Authentication and
Authorization#security-checklist]] and turned on security?


		If you’re using [[multiple data backends|Multi]], do all machines’
config files agree on their configuration?


		Do all nodes agree on the value of the [[allow_mult|Basic Configuration]] setting?


		Do you have a [[sibling resolution|Conflict Resolution]] strategy in
place if allow_mult is set to true?


		Have you carefully weighed the [[consistency trade-offs|Eventual
Consistency]] that must be made if allow_mult is set to false?


		Are all of your [[replication properties]] configured correctly and
uniformly across the cluster?


		If you are using [[Riak Search|Using Search]], is it enabled on all
nodes? If you are not, has it been disabled on all nodes?


		If you are using [[strong consistency]] for some or all of your
data:
		Does your cluster consist of at least three nodes? If it does
not, you will not be able to use this feature, and you are
advised against enabling it.


		If your cluster does consist of at least three nodes, has the
strong consistency subsystem been [[enabled|Managing Strong
Consistency#Enabling-Strong-Consistency]] on all nodes?


		Is the [[target_n_val|Configuration Files#Advanced-Configuration]]
that is set on each node higher than any n_val that you intend
to use for strongly consistent bucket types (or any bucket
types for that matter)? The default is 4, which will likely need
to be raised if you are using strong consistency.








		Have all [[bucket types|Using Bucket Types]] that you intend to use
been created and successfully activated?


		If you are using [[Riak Control]], is it enabled on the node(s) from
which you intend to use it?








		Check data mount points:



		Is /var/lib/riak mounted?


		Can you grow that disk later when it starts filling up?


		Do all nodes have their own storage systems (i.e. no
SANs [http://en.wikipedia.org/wiki/Storage_area_network]), or do
you have a plan in place for switching to that configuration later?








		Are all Riak nodes up?



		Run riak ping on all nodes. You should get pong as a response.





		Run riak-admin wait-for-service riak_kv <node_name>@<IP> on each
node. You should get riak_kv is up as a response.


The <node_name>@<IP> string should come from your [[configuration
file(s)|Configuration Files#Node-Metadata]].











		Do all nodes agree on the ring state?



		Run riak-admin ringready. You should get TRUE ALL nodes agree on the ring [list_of_nodes].


		Run riak-admin member-status. All nodes should be valid (i.e.
listed as Valid: 1), and all nodes should appear in the list


		Run riak-admin ring-status. The ring should be ready (Ring Ready: true), there should be no unreachable nodes (All nodes are up and reachable), and there should be no pending changes to the ring
(No pending changes).


		Run riak-admin transfers. There should be no active transfers (No transfers active).














Operations



		Does your monitoring system ensure that NTP [http://www.ntp.org/] is
running?


		Are you collecting [[time series data|Statistics and Monitoring]] on
the whole cluster?
		System metrics
		CPU load


		Memory used


		Network throughput


		Disk space used/available


		Disk input/output operations per second (IOPS)








		Riak metrics (from the [[/stats|HTTP Status]] HTTP endpoint or
using [[riak-admin|Inspecting a Node]])
		Latencies: GET and PUT (mean/median/95th/99th/100th)


		Vnode stats: GETs, PUTs, GET totals, PUT totals


		Node stats: GETs, PUTs, GET totals, PUT totals


		Finite state machine (FSM) stats:
		GET/PUT FSM objsize (99th and 100th percentile)


		GET/PUT FSM times (mean/median/95th/99th/100th)








		Protocol buffer connection stats
		pbc_connects


		pbc_active


		pbc_connects_total




















		Are the following being graphed (at least the key metrics)?
		Basic system status


		Median and 95th and 99th percentile latencies (as these tend to be
leading indicators of trouble)














Application and Load



		Have you benchmarked your cluster with simulated load to confirm that
your configuration will meet your performance needs?


		Are the [[client libraries]] in use in your application up to date?


		Do the client libraries that you’re using support the version of Riak
that you’re deploying?








Confirming Configuration with Riaknostic


Recent versions of Riak ship with Riaknostic, a diagnostic utility that
can be invoked by running riak-admin diag <check>, where check is
one of the following:



		disk


		dumps


		memory_use


		nodes_connected


		ring_membership


		ring_preflists


		ring_size


		search


		sysctl





Running riak-admin diag with no additional arguments will run all
checks and report the findings. This is a good way of verifying that
you’ve gotten at least some of the configurations mentioned above
correct, that all nodes in your cluster are up, and that nothing is
grossly misconfigured. Any warnings produced by riak-admin diag should
be addressed before going to production.





Troubleshooting and Support



		Does your team, including developing and operations, know how to open
support requests with Basho?


		Is your team familiar with Basho Support’s Service-Level Agreement
(SLA) levels?
		Normal and Low are for issues not immediately impacting production
systems


		High is for problems that impact production or soon-to-be-production
systems, but where stability is not currently compromised


		Urgent is for problems causing production outages or for those
issues that are likely to turn into production outages very soon.
On-call engineers respond to urgent requests within 30 minutes,
24/7.








		Does your team know how to gather riak-debug results from the whole
cluster when opening tickets? If not, that process goes something like
this:
		SSH into each machine, run riak-debug, and grab the resultant
.tar.gz file


		Attach all debug tarballs from the whole cluster each time you open
a new High- or Urgent-priority ticket














The Final Step: Taking it to Production


Once you’ve been running in production for a month or so, look back at
the metrics gathered above. Based on the numbers you’re seeing so far,
configure alerting thresholds on your latencies, disk consumption, and
memory. These are the places most likely to give you advance warning of
trouble.


When you go to increase capacity down the line, having historic metrics
will give you very clear indicators of having resolved scaling problems,
as well as metrics for understanding what to upgrade and when.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/protocol-buffers/ping.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: PBC Ping
project: riak
version: 0.14.0+
document: api
toc: true
audience: advanced
keywords: [api, protocol-buffer]
group_by: “Server Operations”
moved: {
‘1.4.0-‘: ‘/references/apis/protocol-buffers/PBC-Ping’
}




Check if the server is alive



Request


Just the RpbPingReq message code. No request message defined.





Response


Just the RpbPingResp message code. No response message defined.





Example


Request


Hex    00 00 00 01 01
Erlang <<0,0,0,1,1>>



Response


Hex    00 00 00 01 02
Erlang <<0,0,0,1,2>>







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/running/nodes/replacing.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Replacing a Node
project: riak
version: 1.2.0+
document: cookbook
toc: true
audience: advanced
keywords: [operator]
moved: {
‘1.4.0-‘: ‘/cookbooks/Replacing-a-Node’
}




At some point, for various reasons, you might need to replace a node in
your Riak cluster (which is different from [[recovering a failed
node|Recovering a failed node]]). Here is the recommended way to go
about replacing a node.



		Back up your data directory on the node in question. In this example
scenario, we’ll call the node riak4:


sudo tar -czf riak_backup.tar.gz /var/lib/riak /etc/riak



If you have any unforeseen issues at any point in the node
replacement process, you can restore the node’s data from this
backup.





		Download and install Riak on the new node you wish to bring into the
cluster and have it replace the riak4 node. We’ll call the new node
riak7 for the purpose of this example.





		Start the new riak7 node with [[riak start|Command Line Tools#start]]:


riak start






		Plan the join of the new riak7 node to an existing node already
participating in the cluster; for example riak0 with the [[riak-admin cluster join|riak-admin Command Line#cluster]] command executed on the
new riak7 node:


riak-admin cluster join riak0






		Plan the replacement of the existing riak4 node with the new
riak7 node using the [[riak-admin cluster replace|riak-admin Command Line#cluster]] command:


riak-admin cluster replace riak4 riak7



 
 Single Nodes

 If a node is started singly using default settings (as, for example,
 you might do when you are building your first test environment), you
 will need to remove the ring files from the data directory after you
 edit `/etc/vm.args`. `riak-admin cluster replace` will not work as
 the node has not been joined to a cluster.
 



		Examine the proposed cluster changes with the [[riak-admin cluster plan|riak-admin Command Line#cluster]] command executed on the new
riak7 node:


riak-admin cluster plan






		If the changes are correct, you can commit them with the
[[riak-admin cluster commit|riak-admin Command Line#cluster]] command:


riak-admin cluster commit



If you need to clear the proposed plan and start over, use [[riak-admin cluster clear|riak-admin Command Line#cluster]]:


riak-admin cluster clear









Once you have successfully replaced the node, it should begin leaving
the cluster. You can check on ring readiness after replacing the node
with the [[riak-admin ringready|riak-admin Command Line#ringready]]
and [[riak-admin member-status|riak-admin Command Line#member-status]]
commands.



Ring Settling

You'll need to make sure that no other ring changes occur between the
time when you start the new node and the ring settles with the new IP
info.The ring is considered settled when the new node reports true when you
run the riak-admin ringready command.





          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/protocol-buffers/yz-index-get.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: PBC Yokozuna Index Get
project: riak
version: 2.0.0+
document: api
toc: true
audience: advanced
keywords: [api, protocol-buffer, yokozuna, search]
group_by: “Object/Key Operations”




Retrieve a search index from Riak Search.



Request


The name parameter is the name of the index to fetch as a binary.


message RpbYokozunaIndexGetReq {
    optional bytes name  =  1;
}






Response


If a name is passed through the RpbYokozunaIndexGetReq request, zero
or one index objects are returned. If name is empty, then a list of
all indexes will be returned.


Both requests will return a response of this form.


message RpbYokozunaIndexGetResp {
    repeated RpbYokozunaIndex index  =  1;
}



This message will contain any number of RpbYokozunaIndex messages,
depending on how many indexes are returned.


message RpbYokozunaIndex {
    required bytes name   =  1;
    optional bytes schema =  2;
    optional uint32 n_val =  3;
}



Each message specifying an index must include the index’s name as a
binary (as name). Optionally, you can specify a [[schema|search schema]] name and/or an n_val, i.e. the number of nodes on which the
index is stored (for GET requests) or on which you wish the index to be
stored (for PUT requests). An index’s n_val must match the associated
bucket’s n_val.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/upgrading/rolling-upgrades.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Rolling Upgrades
project: riak
version: 1.2.0+
document: cookbook
toc: true
audience: advanced
keywords: [upgrading]
moved: {
‘1.4.0-‘: ‘/cookbooks/Rolling-Upgrades’
}





Note on upgrading Riak from older versions

Riak upgrades are tested and supported for two feature release versions.
For example, upgrades from 1.1.x to 1.3.x are tested and supported,
while upgrades from 1.1.x to 1.4.x are not. When upgrading to a new
version of Riak that is more than two feature releases ahead, we
recommend first upgrading to an intermediate version. For example, in an
upgrade from 1.1.x to 1.4.x, we recommend upgrading from 1.1.x to 1.3.x
before upgrading to 1.4.x.If you run [[Riak Control]], you should disable it during the rolling
upgrade process.


Although undocumented, versions of Riak prior to 2.0 did not prevent
the use of the Erlang VM’s -sname configuration parameter. As of 2.0
this is no longer permitted. See the [[Upgrading to 2.0]]
document for details on how to migrate to the supported -name.



Riak nodes now negotiate with each other to determine supported
operating modes. This allows clusters containing mixed-versions of Riak
to properly interoperate without special configuration, and simplifies
rolling upgrades.


In previous Riak versions, users were required to disable new features
during the rolling upgrade process, and then enable them after all nodes
were upgraded. This is now handled automatically by Riak. For more on
this process, see our documentation on [[capability negotiation]].



Debian/Ubuntu


The following example demonstrates upgrading a Riak node that has been
installed with the Debian packages provided by Basho.


1. Stop Riak


riak stop



2. Back up the Riak node’s /etc and /data directories


sudo tar -czf riak_backup.tar.gz /var/lib/riak /etc/riak



3. Upgrade Riak


sudo dpkg -i <riak_package_name>.deb



4. Restart Riak


riak start



5. Verify Riak is running the new version


riak-admin status



6. Wait for the riak_kv service to start


riak-admin wait-for-service riak_kv <target_node>




		<target_node> is the node which you have just upgraded (e.g.
riak@192.168.1.11)





7. Wait for any hinted handoff transfers to complete


riak-admin transfers




		While the node was offline, other nodes may have accepted writes on its
behalf. This data is transferred to the node when it becomes available.





8. Repeat the process for the remaining nodes in the cluster



Note for secondary index (2i) users

If you use Riak's [[secondary indexes|Using Secondary Indexes]] and are
upgrading from a version prior to Riak version 1.3.1, you need to
reformat the indexes using the [[riak-admin
reformat-indexes|riak-admin Command Line#reformat-indexes]]
command. More details about reformatting indexes are available in the
[release
notes](https://github.com/basho/riak/blob/master/RELEASE-NOTES.md).




RHEL/CentOS


The following example demonstrates upgrading a Riak node that has been
installed with the RHEL/CentOS packages provided by Basho.


1. Stop Riak


riak stop



2. Back up Riak’s /etc and /data directories


sudo tar -czf riak_backup.tar.gz /var/lib/riak /etc/riak



3. Upgrade Riak


sudo rpm -Uvh <riak_package_name>.rpm



4. Restart Riak


riak start



5. Verify that Riak is running the new version


riak-admin status



6. Wait for the riak_kv service to start


riak-admin wait-for-service riak_kv <target_node>




		<target_node> is the node which you have just upgraded (e.g.
riak@192.168.1.11)





7. Wait for any hinted handoff transfers to complete


riak-admin transfers




		While the node was offline, other nodes may have accepted writes on its
behalf. This data is transferred to the node when it becomes available.





8. Repeat the process for the remaining nodes in the cluster



Note for secondary index (2i) users

If you use Riak's Secondary Indexes and are upgrading from a version
prior to Riak version 1.3.1, you need to reformat the indexes using the
[[riak-admin reformat-indexes|riak-admin Command
Line#reformat-indexes]] command. More details about reformatting
indexes are available in the [release
notes](https://github.com/basho/riak/blob/master/RELEASE-NOTES.md).




Solaris/OpenSolaris


The following example demonstrates upgrading a Riak node that has been
installed with the Solaris/OpenSolaris packages provided by Basho.


1. Stop Riak


riak stop




If you are using the service management facility (SMF) to manage Riak,
you will have to stop Riak via svcadm instead of using riak
stop:sudo svcadm disable riak



2. Back up Riak’s /etc and /data directories


sudo gtar -czf riak_backup.tar.gz /opt/riak/data /opt/riak/etc



3. Uninstall Riak


sudo pkgrm BASHOriak



4. Install the new version of Riak


sudo pkgadd -d <riak_package_name>.pkg



4. Restart Riak


riak start




If you are using the SMF you should start Riak via svcadm:sudo svcadm enable riak



5. Verify that Riak is running the new version


riak-admin status



6. Wait for the riak_kv service to start


riak-admin wait-for-service riak_kv <target_node>



<target_node> is the node which you have just upgraded (e.g.
riak@192.168.1.11)


7. Wait for any hinted handoff transfers to complete


riak-admin transfers



While the node was offline, other nodes may have accepted writes on its
behalf. This data is transferred to the node when it becomes available.


8. Repeat the process for the remaining nodes in the cluster



Note for secondary index (2i) users

If you use Riak's Secondary Indexes and are upgrading from a version
prior to Riak version 1.3.1, you need to reformat the indexes using the
[[riak-admin reformat-indexes|riak-admin Command
Line#reformat-indexes]] command. More details about reformatting
indexes are available in the [release
notes](https://github.com/basho/riak/blob/master/RELEASE-NOTES.md).




Rolling Upgrade to Enterprise


If you would like to upgrade an existing Riak cluster to a commercially
supported Riak Enterprise [http://basho.com/riak-enterprise/] cluster
with [[Multi-Datacenter Replication|Multi Data Center Replication v3
Architecture]], undertake the following steps:



		Back up your etc (app.config and vm.args) and data
directories.


		Shut down the node you are going to upgrade.


		Uninstall your Riak package.


		Install the riak_ee package.


		A standard package uninstall should not have removed your data
directories. If it did, move your backup to where the data directory
should be.


		Copy any customizations from your backed-up vm.args to the
riak_ee installed vm.args file, these files may be identical.


		The app.config file from riak_ee will be significantly different from your backed-up file. While it will contain all of the same sections as your original, it will have many new ones. Copy the customizations from your original app.config file into the appropriate sections in the new one. Ensure that the following sections are present in app.config:






		riak_core — the cluster_mgr setting must be present. See [[MDC v3 Configuration|Multi Data Center Replication v3 Configuration]] for more information.


		riak_repl — See [[MDC v3 Configuration|Multi Data Center Replication v3 Configuration]] for more information.


		riak_jmx — See [[JMX Monitoring]] for more information.


		snmp — See [[SNMP]] for more information.






		Start Riak on the upgraded node.








Basho Patches


After upgrading, you should ensure that any custom patches contained in
the basho-patches directory are examined to determine their
application to the upgraded version. If you find that patches no longer
apply to the upgraded version, you should remove them from the
basho-patches directory prior to operating the node in production.


The following table lists locations of the basho-patches directory for
each supported operating system:





		CentOS & RHEL Linux
		
/usr/lib64/riak/lib/basho-patches







		Debian & Ubuntu Linux
		
/usr/lib/riak/lib/basho-patches







		FreeBSD
		
/usr/local/lib/riak/lib/basho-patches







		SmartOS
		
/opt/local/lib/riak/lib/basho-patches







		Solaris 10
		
/opt/riak/lib/basho-patches












Riaknostic


It is a good idea to also verify some basic configuration and general
health of the Riak node after upgrading by using Riak’s built-in
diagnostic utility Riaknostic.


Ensure that Riak is running on the node, and issue the following
command:


riak-admin diag



Make the recommended changes from the command output to ensure optimal
node operation.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/protocol-buffers/dt-fetch.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: PBC Data Type Fetch
project: riak
version: 2.0.0+
document: api
toc: true
audience: advanced
keywords: [api, protocol-buffer, datatypes]
group_by: “Object/Key Operations”




The equivalent of [[RpbGetReq|PBC Fetch Object]] for [[Riak Data
Types|Using Data Types]]. This request results in a DtFetchResp
message (explained in the Response section below).



Request


message DtFetchReq {
    required bytes bucket = 1;
    required bytes key    = 2;
    required bytes type  = 3;
    optional uint32 r             =  4;
    optional uint32 pr            =  5;
    optional bool   basic_quorum  =  6;
    optional bool   notfound_ok   =  7;
    optional uint32 timeout       =  8;
    optional bool   sloppy_quorum =  9;
    optional uint32 n_val         = 10;
    optional bool include_context = 11 [default=true];
}




Required Parameters


Parameter | Description
:———|:———–
bucket | The name of the bucket in which the Data Type is stored
key | The key where the Data Type is stored
type | The [[Using Bucket Types]] of the bucket in which the Data Type is stored, not the type of Data Type (i.e. counter, set, or map)





Optional Parameters



Note on defaults and special values

All of the optional parameters below have default values determined on a
per-bucket basis. Please refer to the documentation on setting bucket
properties for more information.Furthermore, you can assign an integer value to the r and
pr, provided that that integer value is less than or equal
to N, or a special value denoting one
(4294967295-1), quorum
(4294967295-2), all
(4294967295-3), or default
(4294967295-4).



Parameter | Description
:———|:———–
r | Read quorum, i.e. how many replicas need to agree when retrieving the object
pr | Primary read quorum, i.e. how many primary replicas need to be available when retrieving the object
basic_quorum | Whether to return early in some failure cases, e.g. when r=1 and you get 2 errors and a success basic_quorum=true would return an error
notfound_ok | Whether to treat not found responses as successful reads for the purposes of R
timeout | The timeout duration, in milliseconds, after which Riak will return an error message
sloppy_quorum | If this parameter is set to true, the next available node in the ring will accept requests if any primary node is unavailable
n_val | The number of nodes to which the delete request will be sent
include_context | If return_body is set to true, the Data Type’s opaque “context” will be returned to the client when the DtUpdateResp is sent to the client.







Response


The response to a fetch request ([[DtFetchReq|PBC Data Type Fetch]])
is a DtFetchResp message.


message DtFetchResp {
    enum DataType {
        COUNTER = 1;
        SET     = 2;
        MAP     = 3;
    }

    optional bytes    context = 1;
    required DataType type    = 2;
    optional DtValue  value   = 3;
}



If the include_context option is specified, an opaque “context” value
will be returned along with the user-readable data. When sending an
update request, the client should send this context as well, just as one
would send a [[vclock|Vector Clocks]] for standard KV updates.


The type of the Data Type is specified in the type field, and must be
one of the three possible values of the DataType enum (COUNTER,
SET, or MAP).


The current value of the Data Type is contained in the value field,
which itself contains a DtValue message. This message will have the
following structure:


message DtValue {
    optional sint64   counter_value = 1;
    repeated bytes    set_value     = 2;
    repeated MapEntry map_value     = 3;
}



If the Data Type queried is a counter, it will return an integer value
for the counter; it a set, it will return the sets current value, in
bytes, if a map it will return a MapEntry message. MapEntry messages
are structured as follows:


message MapEntry {
    required MapField field = 1;
    optional sint64   counter_value  = 2;
    repeated bytes    set_value      = 3;
    optional bytes    register_value = 4;
    optional bool     flag_value     = 5;
    repeated MapEntry map_value      = 6;
}







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/upgrading/rolling-downgrades.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Rolling Downgrades
project: riak
version: 1.4.8+
document: cookbook
toc: true
audience: advanced
keywords: [upgrading, downgrading]




Downgrades of Riak are tested and supported for two feature release
versions, with the general procedure being similar to that of a
[[rolling upgrade|Rolling Upgrades]].


You should perform the following actions on each node:



		Stop Riak


		Back up Riak’s etc and data directories.


		Downgrade Riak


		Start Riak


		Verify Riak is running the downgraded version.


		Wait for the riak_kv service to start.





Depending on the versions involved in the downgrade, there are
additional steps to be performed before, during, and after the upgrade
on on each node.  These steps are related to changes or new features
that are not present in the downgraded version.



A Note About the Following Instructions

The below instructions describe the procedures required for a single
feature release version downgrade. In a downgrade between two feature
release versions, the steps for the in-between version must also be
performed. For example, a downgrade from 1.4 to 1.2 requires that the
downgrade steps for both 1.4 and 1.3 are performed.  

General Guidelines



		Riak Control should be disabled throughout the rolling downgrade
process


		[[Configuration files]] must be replaced with those of the version
being downgraded to


		[[Active anti-entropy]] should be disabled if downgrading to a version
below 1.3.








Before Stopping a Node



Object Format


If the new, more compact object format introduced in Riak 1.4 is in use,
the objects will need to be downgraded on each node prior to starting
the rolling downgrade. You can determine which object format is in use
by checking the object_format parameter under the riak_kv section of
the app.config. If not specified, this defaults to v0 which is the
old format.


To downgrade the objects, run the below riak-admin command. This
command must be run on each node.


riak-admin downgrade-objects <kill-handoffs> [<concurrency>]



The <kill-handoffs> parameter is required and is set to either true
or false. If false, any ongoing handoff will be waited on before
performing the reformat. Otherwise, all in-flight handoff, inbound to
the node or outbound from it, will be killed. During and after the
reformat the transfer-limit will be set to 0.


The optional <concurrency> argument must be an integer greater than
zero. It determines how many partitions are reformatted on the node
concurrently. By default the concurrency is two. Additionally, in
anticipation that the entire cluster will be downgraded
downgrade-objects sets the preferred format to v0. downgrade-objects can
be run multiple times in the case of error or if the node crashes.





Secondary Indexes


If you are using Secondary Indexes and have reformatted them with the
riak-admin reformat-indexes command introduced in 1.3, these indexes
will need to be downgraded before the rolling downgrade begins.


This can be done using the –downgrade flag with riak-admin reformat-indexes More information on the riak-admin reformat-indexes
command, and downgrading indexes can be found in the
[[riak-admin|riak-admin Command Line#reformat-indexes]] documentation.







Before Starting a Node


If LevelDB is in use and you are downgrading from 1.3, a change made to
the LevelDB folder structure will need to be reverted. Prior to 1.3,
each partition directory inside /var/lib/riak/leveldb contained the full
set of .sst files that make up the LevelDB for that partition. Since
1.3, the levels have been separated into folders titled sst_\* like
below:


cd 1004782375664995756265033322492444576013453623296/
ls -l
-rw-r--r-- 1 riak riak        0 Jan  7 17:40 000014.log
-rw-r--r-- 1 riak riak       16 Jan  7 17:40 CURRENT
-rw-r--r-- 1 riak riak        0 Jan  7 13:59 LOCK
-rw-r--r-- 1 riak riak     1241 Jan  7 17:40 LOG
-rw-r--r-- 1 riak riak     1240 Jan  7 16:48 LOG.old
-rw-r--r-- 1 riak riak 20971520 Jan  7 17:40 MANIFEST-000013
drwxr-xr-x 2 riak riak     4096 Jan  7 14:25 sst_0
drwxr-xr-x 2 riak riak     4096 Jan  7 13:59 sst_1
drwxr-xr-x 2 riak riak     4096 Jan  7 13:59 sst_2
drwxr-xr-x 2 riak riak     4096 Jan  7 13:59 sst_3
drwxr-xr-x 2 riak riak     4096 Jan  7 13:59 sst_4
drwxr-xr-x 2 riak riak     4096 Jan  7 13:59 sst_5
drwxr-xr-x 2 riak riak     4096 Jan  7 13:59 sst_6



In a downgrade from 1.3, all .sst files in these folders will need to be
moved from the sst_\* folders into the top level <PARTITION_ID>
folder. A LevelDB repair will need to be run on each partition before
starting the node. In the event a rolling downgrade needs to take place,
the below escript, repair.erl can be used:


-module(repair).
-compile(export_all).

main([Dir]) ->
  Opts = [{max_open_files, 2000},
            {use_bloomfilter, true},
            {write_buffer_size, 45 * 1024 * 1024},
            {compression,false}],

  {Time,_} = timer:tc(eleveldb,repair,[Dir, Opts]),
  io:format("Done took ~p seconds~n", [Time / 1000000]);

main(_) ->
  usage().

usage() ->
  io:format("usage: repair PATH_TO_PARTITION \n"),
  halt(1).



This script, saved as repair.erl, can be called with:


for partition in $(ls /var/lib/riak/leveldb); do sudo riak escript /tmp/repair.erl /var/lib/riak/leveldb/$partition; done






During the Rolling Downgrade


There is a known handoff issue that may occur when performing a rolling
downgrade from 1.4. This is a result of the handoff data encoding
cababilities not being negotiated correctly between nodes of mixed
versions during a rolling downgrade.


If transfers are not progressing in the riak-admin transfers output,
killing the Capability manager with the steps below on each node via
riak attach may solve this issue if it occurs.


Check the currently used encoding (returns either encode_raw or
encode_zlib):


riak_core_capability:get({riak_kv, handoff_data_encoding}).



Kill the capability manager:


exit(whereis(riak_core_capability), kill).



Check the encoding used after the capability manager restarts:


riak_core_capability:get({riak_kv, handoff_data_encoding}).




After the Rolling Downgrade


If Active Anti-Entropy was enabled, and the downgraded version is below
1.3, the anti-entropy directory on each node can be deleted after the
rolling downgrade is complete.








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/protocol-buffers/list-keys.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: PBC List Keys
project: riak
version: 0.14.0+
document: api
toc: true
audience: advanced
keywords: [api, protocol-buffer]
group_by: “Bucket Operations”
moved: {
‘1.4.0-‘: ‘/references/apis/protocol-buffers/PBC-List-Keys’
}




List all of the keys in a bucket. This is a streaming call, with
multiple response messages sent for each request.



Not for production use

This operation requires traversing all keys stored in the cluster and
should not be used in production.


Request


message RpbListKeysReq {
    required bytes bucket = 1;
}



Optional Parameters



		bucket — bucket to get keys from








Response


message RpbListKeysResp {
    repeated bytes keys = 1;
    optional bool done = 2;
}




Values



		keys - batch of keys in the bucket.


		done - set true on the last response packet










Example



Request


Hex      00 00 00 0B 11 0A 08 6C 69 73 74 6B 65 79 73
Erlang <<0,0,0,11,17,10,8,108,105,115,116,107,101,121,115>>

RpbListKeysReq protoc decode:
bucket: "listkeys"







Response Packet 1


Hex      00 00 00 04 12 0A 01 34
Erlang <<0,0,0,4,18,10,1,52>>

RpbListKeysResp protoc decode:
keys: "4"







Response Packet 2


Hex      00 00 00 08 12 0A 02 31 30 0A 01 33
Erlang <<0,0,0,8,18,10,2,49,48,10,1,51>>

RpbListKeysResp protoc decode:
keys: "10"
keys: "3"






Response Packet 3


Hex      00 00 00 03 12 10 01
Erlang <<0,0,0,3,18,16,1>>

RpbListKeysResp protoc decode:
done: true










          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/mdc/upgrade-v2-to-v3.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Multi Data Center Replication: Upgrading from V2 to V3”
project: riak
header: riakee
version: 1.3.2+
document: cookbook
toc: true
audience: intermediate
keywords: [mdc, repl]
moved: {
‘2.0.0-‘: ‘riakee:/cookbooks/Multi-Data-Center-Replication-UpgradeV2toV3’
}




This guide walks you through the process of upgrading Riak Enterprise
Multi-Datacenter Replication from version 2 to version 3. Please read
the [[comparison guide|Multi Data Center Replication: Comparison]] for
terminology differences between versions.



Upgrade Process


In all of the following examples, the source cluster is named newyork
while the sink cluster is named boston.



		Ensure that all system backups have completed, are accurate, and are
readily available.





		If fullsync replication is periodically started via cron,
disable it.





		Stop fullsync replication on every cluster participating in MDC:


riak-repl cancel-fullsync






		If custom replication hooks are being used, make a note of each
before upgrading. Version 2 hooks are compatible with version 3
hooks but they may be useful to Basho Support in the event of an
upgrade issue. See the documentation on [[hooks|Multi Data Center
Replication: Hooks]] for more information.





		If NAT was configured with version 2 replication, please review the
documentation on [[NAT in version 3|Multi Data Center Replication v3
With NAT]] before proceeding. A mapping from external host/IP to the
internal IP address can be created using the riak-repl nat-map
command:


riak-repl nat-map add 50.16.238.120:5555 192.168.2.40






		If SSL was configured for version 2 replication, please review the
documentation for [[version 3 SSL|Multi Data Center Replication v3
SSL]] before proceeding. While all SSL configuration parameters can
retain the same values from version 2, they will need to be moved
from the riak-repl section of app.config to the riak-core
section:


{ssl_enabled, true},
{certfile, "/full/path/to/site1-cert.pem"},
{keyfile, "/full/path/to/site1-key.pem"},
{cacertdir, "/full/path/to/cacertsdir"}






		Name the source and sink clusters that will be participating in
replication. Remember that the source cluster is newyork while the
sink cluster is boston.


On the source cluster:


riak-repl clustername newyork



On the sink cluster:


riak-repl clustername boston



You can verify that the cluster names have been established on each
cluster by issuing the riak-repl clustername command without
parameters.





		Connect the source cluster to the sink cluster (assuming the sink
cluster is named boston and the cluster_mgr is running on port
9080):


riak-repl connect boston:9080






		Ensure that cluster connections have been established:


riak-repl connections






		Enable bidirectional replication, which can be established between
two clusters by connecting from the sink (boston) to the source
(newyork). On any node in the sink cluster, connect to the
source:


riak-repl connect newyork:9080






		Enable realtime replication. To begin queueing—but not yet
replicating—objects on the source cluster for realtime
replication:


riak-repl realtime enable boston



Running riak-repl status on any node of the source will show which
sinks are currently enabled for realtime.





		Start realtime replication from source to sink:


riak-repl realtime start boston



This will process any objects in the replication queue as well as
any updated objects in the source cluster.


Running riak-repl status on any node of the source will show which
sinks are currently enabled and running for realtime via the
realtime_enabled and realtime_started statistics. See our
documentation on [[replication statistics|Multi Data Center
Replication: Statistics]] for a full list of available statistics.





		Enable fullsync replication by preparing a source cluster for
fullsync replication:


riak-repl fullsync enable boston



Running riak-repl status on any node of the source will show which
sinks are currently enabled for realtime.





		Start fullsync replication from source to sink:


riak-repl fullsync start boston



Running riak-repl status on any node of the source will show which
sinks are currently enabled and running for fullsync via the
fullsync_enabled and fullsync_started statistics. See our
documentation on [[replication statistics|Multi Data Center
Replication: Statistics]] for a full list of available statistics.





		If you are using Riak CS Enterprise proxy_get, you can enable
connections for version 3 replication are enabled at runtime using
the following command:


riak-repl proxy_get enable boston



See our guides to version 3 [[operations|Multi Data Center
Replication v3 Operations]] and [[configuration|Multi Data Center
Replication v3 Configuration]] for more information.





		Remove existing listeners/sites from both source and sink clusters
using the del-listener and del-site commands, as in the
following examples:


riak-repl del-site newyork
riak-repl del-listener riak@10.0.1.156 10.0.1.156 9010



Currently configured listeners and sites can be seen using
riak-repl status on each node in the source and sink clusters.


See the [[operations guide|Multi Data Center Replication:
Operations]] guide for more information on the del-listener and
del-site commands.





		If you are using cron to schedule replication fullsyncs, update the
crontab to use the version 3 fullsync syntax. For example, version
2 replication is started with:


riak-repl start-fullsync



Version 3 replication is started with the following (using boston
as an example sink cluster name):


riak-repl fullsync start boston



See the guide to [[scheduling version 3 fullsync|Multi Data Center
Replication: v3 Scheduling Fullsync]] for information on configuring
scheduled replication fullsyncs.





		Disable version 2 replication bucket hooks. By default,
Riak 1.3.+ has replication bucket hooks enabled for both version 2
and version 3. The version 2 replication bucket hook can be
disabled. This step is not required, but leaving the version 2
replication bucket hook enabled can cause inaccurate
objects_dropped_no_leader and objects_dropped_no_clients
statistics.


To disable the version 2 replication bucket hook:


riak-repl modes mode_repl13



Example:


riak-repl modes



Output:


Current replication modes: [mode_repl12,mode_repl13]



Another example:


riak-repl modes mode_repl13



Output:


Current replication modes: [mode_repl13]













          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/advanced/replication-properties.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Replication Properties
project: riak
version: 0.10.0+
document: tutorial
audience: beginner
keywords: [cap, replication]
interest: [
“[[Installing and Upgrading]]”,
“[[Planning for a Riak System]]”,
“[[Cluster Capacity Planning]]”,
“[[Use Cases]]“
]
moved: {
‘1.0.0-1.3.99’: ‘/tutorials/fast-track/Tunable-CAP-Controls-in-Riak’,
‘1.4.0-1.4.99’: ‘/dev/advanced/cap-controls’
}




Riak was built to act as a multi-node [[cluster|Clusters]].  It
distributes data across multiple physical servers, which enables it to
provide strong availability guarantees and fault tolerance.


The CAP theorem [http://en.wikipedia.org/wiki/CAP_theorem], which
undergirds many of the design decisions behind Riak’s architecture,
defines distributed systems in terms of three desired properties:
consistency, availability, and partition (i.e. failure) tolerance. Riak
can be used either as an AP, i.e. available/partition-tolerant, system
or as a CP, i.e. consistent/partition-tolerant, system. The former
relies on an [[eventual consistency]] model, while the latter relies on
a special [[strong consistency]] subsystem.


Although the CAP theorem [http://en.wikipedia.org/wiki/CAP_theorem]
dictates that there is a necessary trade-off between data consistency
and availability, if you are using Riak in an eventually consistent
manner, you can fine-tune that trade-off. The ability to make these
kinds of fundamental choices has immense value for your applications and
is one of the features that differentiates Riak from other databases.


At the bottom of the page, you’ll find a [[screencast|Replication
Properties#screencast]] that briefly explains how to adjust your
replication levels to match your application and business needs.



Note on strong consistency

An option introduced in Riak version 2.0 is to use Riak as a
strongly consistent
system for data in specified buckets. Using Riak in this way is
fundamentally different from adjusting replication properties and
fine-tuning the availability/consistency trade-off, as it sacrifices
all availability guarantees when necessary. Therefore, you
should consult the Using
Strong Consistency documentation, as this option will not be covered
in this tutorial.


How Replication Properties Work


When using Riak, there are two ways of choosing replication properties:



		On a per-request basis


		In a more programmatic fashion, [[using bucket types]]






Per-request Replication Properties


The simplest way to apply replication properties to objects stored in
Riak is to specify those properties





Replication Properties Through Bucket Types


Let’s say, for example, that you want to apply an n_val of 5, an r
of 3, and a w of 3 to all of the data in some of the [[buckets]] that
you’re using. In order to set those replication properties, you should
create a bucket type that sets those properties. Below is an example:


riak-admin bucket-type create custom_props '{"props":{"n_val":5,"r":3,"w":3}}'
riak-admin bucket-type activate custom_props



Now, any time you store an object in a bucket with the type
custom_props those properties will apply to it.







Available Parameters


The table below lists the most frequently used replication parameters
that are available in Riak. Symbolic values like quorum are discussed
[[below|Replication Properties#symbolic-consistency-names]]. Each
parameter will be explained in more detail in later sections:


Parameter | Common name | Default value | Description
:———|:————|:————–|:———–
n_val | N | 3 | Replication factor, i.e. the number of nodes in the cluster on which an object is to be stored
r | R | quorum | The number of servers that must respond to a read request
w | W | quorum | Number of servers that must respond to a write request
pr | PR | 0 | The number of primary vnodes that must respond to a read request
pw | PW | 0 | The number of primary vnodes that must respond to a write request
dw | DW | quorum | The number of servers that must report that a write has been successfully written to disk
rw | RW | quorum | If R and W are undefined, this parameter will substitute for both R and W during object deletes. It is extremely unlikely that you will need to adjust this parameter.
notfound_ok | | true | This parameter determines how Riak responds if a read fails on a node. Setting to true (the default) is the equivalent to setting R to 1: if the first node to respond doesn’t have a copy of the object, Riak will immediately return a not found error. If set to false, Riak will continue to look for the object on the number of nodes specified by N (aka n_val).
basic_quorum | | false | If notfound_ok is set to false, Riak will be more thorough in looking for an object on multiple nodes. Setting basic_quorum to true in this case will instruct Riak to wait for only a quorum of responses to return a notfound error instead of N responses.





A Primer on N, R, and W


The most important thing to note about Riak’s replication controls is
that they can be at the bucket level. You can use [[bucket types|Using Bucket Types]]
to set up bucket A to use a particular set of replication properties
and bucket B to use entirely different properties.


At the bucket level, you can choose how many copies of data you want to
store in your cluster (N, or n_val), how many copies you wish to read
from at one time (R, or r), and how many copies must be written to be
considered a success (W, or w).


In addition to the bucket level, you can also specify replication
properties on the client side for any given read or write. The examples
immediately below will deal with bucket-level replication settings, but
check out the [[section below|Replication Properties#client-level-replication-settings]]
for more information on setting properties on a per-operation basis.


The most general trade-off to be aware of when setting these values is
the trade-off between data accuracy and client responsiveness.
Choosing higher values for N, R, and W will mean higher accuracy because
more nodes are checked for the correct value on read and data is written
to more nodes upon write; but higher values will also entail degraded
responsiveness, especially if one or more nodes is failing, because Riak
has to wait for responses from more nodes.





N Value and Replication


All data stored in Riak will be replicated to the number of nodes in the
cluster specified by a bucket’s N value (n_val). The default n_val
in Riak is 3, which means that data stored in a bucket with the default
N will be replicated to three different nodes, thus storing three
replicas of the object.


In order for this to be effective, you need at least three nodes in your
cluster. The merits of this system, however, can be demonstrated using
your local environment.


Let’s create a bucket type that sets the n_val for any bucket with
that type to 2. To do so, you must create and activate a bucket type
that sets this property:


riak-admin bucket-type create n_val_equals_2 '{"props":{"n_val":2}}'
riak-admin bucket-type activate n_val_equals_2



Now, all buckets that bear the type n_val_equals_2 will have n_val
set to 2. Here’s an example write:


curl -XPUT http://localhost:8098/types/n_val_equals_2/buckets/test_bucket/keys/test_key \
  -H "Content-Type: text/plain" \
  -d "the n_val on this write is 2"



Now, whenever we write to a bucket of this type, Riak will write a
replica of the object to two different nodes.



A Word on Setting the N Value

n_val must be greater than 0 and less than or equal to the
number of actual nodes in your cluster to get all the benefits of
replication. We advise against modifying the n_val of a
bucket after its initial creation as this may result in failed reads
because the new value may not be replicated to all the appropriate
partitions.




R Value and Read Failure Tolerance


Read requests to Riak are sent to all N nodes that are known to be
currently responsible for the data. The R value (r) enables you to
specify how many of those nodes have to return a result on a given read
for the read to be considered successful. This allows Riak to provide
read availability even when nodes are down or laggy.


You can set R anywhere from 1 to N; lower values mean faster response
time but a higher likelihood of Riak not finding the object you’re
looking for, while higher values mean that Riak is more likely to find
the object but takes longer to look.


As an example, let’s create and activate a bucket type with r set to
1. All reads performed on data in buckets with this type require a
result from only one node.


riak-admin bucket-type create r_equals_1 '{"props":{"r":1}}'
riak-admin bucket-type activate r_equals_1



Here’s an example read request using the r_equals_1 bucket type:


bucket = client.bucket_type('r_equals_1').bucket('animal_facts')
obj = bucket.get('chimpanzee')



Location chimpanzeeFact =
  new Location(new Namespace("r_equals_1", "animal_facts"), "chimpanzee");
FetchValue fetch = new FetchValue.Builder(chimpanzeeFact).build();
FetchValue.Response response = client.execute(fetch);
RiakObject obj = response.getValue(RiakObject.class);
System.out.println(obj.getValue().toString());



$response = (new \Basho\Riak\Command\Builder\FetchObject($riak))
  ->buildLocation('chimpanzee', 'animal_facts', 'r_equals_1')
  ->build()
  ->execute();

echo $response->getObject()->getData();



bucket = client.bucket_type('r_equals_1').bucket('animal_facts')
bucket.get('chimpanzee')



{ok, Obj} = riakc_pb_socket:get(Pid,
                                {<<"r_equals_1">>, <<"animal_facts">>},
                                <<"chimpanzee">>).



curl http://localhost:8098/types/r_equals_1/buckets/animal_facts/keys/chimpanzee



As explained above, reads to buckets with the r_equals_1 type will
typically be completed more quickly, but if the first node to respond
to a read request has yet to receive a replica of the object, Riak will
return a not found response (which may happen even if the object lives
on one or more other nodes). Setting r to a higher value will mitigate
this risk.





W Value and Write Fault Tolerance


As with read requests, writes to Riak are sent to all N nodes that are
know to be currently responsible for the data. The W value (w) enables
you to specify how many nodes must complete a write to be considered
successful—a direct analogy to R. This allows Riak to provide write
availability even when nodes are down or laggy.


As with R, you can set W to any value between 1 and N. The same
performance vs. fault tolerance trade-offs that apply to R apply to W.


As an example, let’s create and activate a bucket type with w set to
3:


riak-admin bucket-type create w_equals_3 '{"props":{"w":3}}'
riak-admin activate w_equals_3



Now, we can attempt a write to a bucket bearing the type w_equals_3:


bucket = client.bucket_type('w_equals_3').bucket('animal_facts')
obj = Riak::RObject.new(bucket, 'giraffe')
obj.raw_data = 'The species name of the giraffe is Giraffa camelopardalis'
obj.content_type = 'text/plain'
obj.store



Location storyKey =
  new Location(new Namespace("w_equals_3", "animal_facts"), "giraffe");
RiakObject obj = new RiakObject()
        .setContentType("text/plain")
        .setValue(BinaryValue.create("The species name of the giraffe is Giraffa camelopardalis"));
StoreValue store = new StoreValue.Builder(obj)
        .withLocation("giraffe")
        .build();
client.execute(store);



(new \Basho\Riak\Command\Builder\StoreObject($riak))
  ->buildLocation('giraffe', 'animal_facts', 'w_equals_3')
  ->build()
  ->execute();



bucket = client.bucket_type('w_equals_3').bucket('animal_facts')
obj = RiakObject(client, bucket, 'giraffe')
obj.content_type = 'text/plain'
obj.data = 'The species name of the giraffe is Giraffa camelopardalis'
obj.store()



Obj = riakc_object:new({<<"w_equals_3">>, <<"animal_facts">>},
                       <<"giraffe">>,
                       <<"The species name of the giraffe is Giraffa camelopardalis">>,
                       <<"text/plain">>),
riakc_pb_socket:put(Pid, Obj).



curl -XPUT \
  -H "Content-type: text/plain" \
  -d "The species name of the giraffe is Giraffa camelopardalis" \
  http://localhost:8098/types/w_equals_3/buckets/animal_facts/keys/giraffe



Writing our story.txt will return a success response from Riak only if
3 nodes respond that the write was successful. Setting w to 1, for
example, would mean that Riak would return a response more quickly, but
with a higher risk that the write will fail because the first node it
seeks to write the object to is unavailable.





Primary Reads and Writes with PR and PW


In Riak’s replication model, there are N [[vnodes|Riak Glossary#vnodes]],
called primary vnodes, that hold primary responsibility for any given
key. Riak will attempt reads and writes to primary vnodes first, but in
case of failure, those operations will go to failover nodes in order to
comply with the R and W values that you have set. This failover option
is called sloppy quorum.


In addition to R and W, you can also set integer values for the primary
read (PR) and primary write (PW) parameters that specify how many
primary nodes must respond to a request in order to report success to
the client. The default for both values is zero.


Setting PR and/or PW to non-zero values produces a mode of operation
called strict quorum. This mode has the advantage that the client is
more likely to receive the most up-to-date values, but at the cost of a
higher probability that reads or writes will fail because primary vnodes
are unavailable.



Note on PW

If PW is set to a non-zero value, there is a higher risk (usually very
small) that failure will be reported to the client upon write. But this
does not necessarily mean that the write has failed completely. If there
are reachable primary vnodes, those vnodes will still write the new data
to Riak. When the failed vnode returns to service, it will receive the
new copy of the data via either read repair or active anti-entropy.




Durable Writes with DW


The W and PW parameters specify how many vnodes must respond to a
write in order for it to be deemed successful. What they do not specify
is whether data has actually been written to disk in the storage backend.
The DW parameters enables you to specify a number of vnodes between 1
and N that must write the data to disk before the request is deemed
successful. The default value is quorum (more on symbolic names below).


How quickly and robustly data is written to disk depends on the
configuration of your backend or backends. For more details, see the
documentation on [[Bitcask]], [[LevelDB]], and [[multiple backends|Multi]].





Delete Quorum with RW



Deprecation notice

It is no longer necessary to specify an RW value when making delete
requests. We explain its meaning here, however, because RW still shows
up as a property of Riak buckets (as rw) for the sake of
backwards compatibility. Feel free to skip this explanation unless you
are curious about the meaning of RW.

Deleting an object requires successfully reading an object and then
writing a tombstone to the object’s key that specifies that an object
once resided there. In the course of their operation, all deletes must
comply with any R, W, PR, and PW values that apply along the way.


If R and W are undefined, however, the RW (rw) value will substitute
for both R and W during object deletes. In recent versions of Riak, it
is nearly impossible to make reads or writes that do not somehow specify
oth R and W, and so you will never need to worry about RW.





The Implications of notfound_ok


The notfound_ok parameter is a bucket property that determines how
Riak responds if a read fails on a node. If notfound_ok is set to
true (the default value) and the first vnode to respond doesn’t have a
copy of the object, Riak will assume that the missing value is
authoritative and immediately return a not found result to the client.
This will generally lead to faster response times.


On the other hand, setting notfound_ok to false means that the
responding vnode will wait for something other than a not found error
before reporting a value to the client. If an object doesn’t exist under
a key, the coordinating vnode will wait for N vnodes to respond with
not found before it reports not found to the client. This setting
makes Riak search more thoroughly for objects but at the cost of slower
response times, a problem can be mitigated by setting basic_quorum to
true, which is discussed in the next section.





Early Failure Return with basic_quorum


Setting notfound_ok to false on a request (or as a bucket property)
is likely to introduce additional latency. If you read a non-existent
key, Riak will check all 3 responsible vnodes for the value before
returning not found instead of checking just one.


This latency problem can be mitigated by setting basic_quorum to
true, which will instruct Riak to query a quorum of nodes instead of N
nodes. A quorum of nodes is calculated as floor(N/2) + 1, meaning that 5
nodes will produce a quorum of 3, 6 nodes a quorum of 4, 7 nodes a
quorum of 4, 8 nodes a quorum of 5, etc.


The default for basic_quorum is false, so you will need to
explicitly set it to true on reads or in a bucket’s properties. While
the scope of this setting is fairly narrow, it can reduce latency in
read-heavy use cases.





Symbolic Consistency Names


Riak provides a number of “symbolic” consistency options for R, W, PR,
RW, and DW that are often easier to use and understand than specifying
integer values. The following symbolic names are available:



		all — All replicas must reply. This is the same as setting R, W, PR, RW, or DW equal to N.


		one — This is the same as setting 1 as the value for R, W, PR, RW, or DW.


		quorum — A majority of the replicas must respond, that is, half plus one. For the default N value of 3, this calculates to 2, an N value of 5 calculates to 3, and so on.


		default — Uses whatever the per-bucket consistency property is for R, W, PR, RW, or DW, which may be any of the above symbolic values or an integer.





Not submitting a value for R, W, PR, RW, or DW is the same as using
default.





Client-level Replication Settings


Adjusting replication properties at the bucket level by [[using bucket types]]
is how you set default properties for all of a bucket’s reads and
writes. But you can also set replication properties for specific reads
and writes without setting those properties at the bucket level, instead
specifying them on a per-operation basis.


Let’s say that you want to set r to 2 and notfound_ok to true for
just one read. We’ll fetch John Stockton [http://en.wikipedia.org/wiki/John_Stockton]‘s
statistics from the nba_stats bucket.


bucket = client.bucket('nba_stats')
obj = bucket.get('john_stockton', r: 2, notfound_ok: true)



Location johnStocktonStats =
  new Namespace(new Namespace("nba_stats"), "john_stockton");
FetchValue fetch = new FetchValue.Builder(johnStocktonStats)
        .withOption(FetchOption.R, new Quorum(2))
        .withOption(FetchOption.NOTFOUND_OK, true)
        .build();
client.execute(fetch);



(new \Basho\Riak\Command\Builder\FetchObject($riak))
  ->buildLocation('john_stockton', 'nba_stats')
  ->withParameter('r', 2)
  ->withParameter('notfound_ok', true)
  ->build()
  ->execute();



bucket = client.bucket('nba_stats')
obj = bucket.get('john_stockton', r=2, notfound_ok=True)



{ok, Obj} = riakc_pb_socket:get(Pid,
                                <<"nba_stats">>,
                                <<"john_stockton">>,
                                [{r, 2}, {notfound_ok, true}]).



curl http://localhost:8098/buckets/nba_stats/keys/john_stockton?r=2&notfound_ok=true



Now, let’s say that you want to attempt a write with w set to 3 and
dw set to 2. As in the previous example, we’ll be using the default
bucket type, which enables us to not specify a bucket type upon write.
Here’s what that would look like:


bucket = client.bucket('nba_stats')
obj = Riak::RObject.new(bucket, 'michael_jordan')
obj.content_type = 'application/json'
obj.data = '{"stats":{ ... large stats object ... }}'
obj.store(w: 3, dw: 2)



Location michaelJordanKey =
  new Location(new Namespace("nba_stats"), "michael_jordan");
RiakObject obj = new RiakObject()
        .setContentType("application/json")
        .setValue(BinaryValue.create("{'stats':{ ... large stats object ... }}"));
StoreValue store = new StoreValue.Builder(obj)
        .withLocation(michaelJordanKey)
        .withOption(StoreOption.W, new Quorum(3))
        .withOption(StoreOption.DW, new Quorum(2))
        .build();
client.execute(store);



(new \Basho\Riak\Command\Builder\StoreObject($riak))
  ->buildJsonObject('{'stats':{ ... large stats object ... }}')
  ->buildLocation('john_stockton', 'nba_stats')
  ->withParameter('w', 3)
  ->withParameter('dw', 2)
  ->build()
  ->execute();



Obj = riakc_obj:new(<<"nba_stats">>,
                    <<"michael_jordan">>,
                    <<"{'stats':{ ... large stats object ... }}">>,
                    <<"application/json">>),
riakc_pb_socket:put(Pid, Obj).



curl -XPUT \
  -H "Content-Type: application/json" \
  -d '{"stats":{ ... large stats object ... }}' \
  http://localhost:8098/buckets/nba_stats/keys/michael_jordan?w=3&dw=2



All of Basho’s [[official Riak clients|Client Libraries]] enable you to
set replication properties this way. For more detailed information,
refer to the tutorial on [[basic key/value operations in Riak|The Basics]]
or to client-specific documentation:



		Ruby [https://github.com/basho/riak-ruby-client/blob/master/README.markdown]


		Java [http://basho.github.io/riak-java-client/2.0.0-SNAPSHOT/]


		Python [http://basho.github.io/riak-python-client/]


		Erlang [http://basho.github.io/riak-erlang-client/]








Illustrative Scenarios


In case the above explanations were a bit too abstract for your tastes,
the following table lays out a number of possible scenarios for reads
and writes in Riak and how Riak is likely to respond. Some of these
scenarios involve issues surrounding conflict resolution, vector clocks,
and siblings, so we recommend reading the [[Vector Clocks|Causal
Context#Vector-Clocks]] documentation for more information.



Read Scenarios


These scenarios assume that a read request is sent to all 3 primary
vnodes responsible for an object.


Scenario | What happens in Riak
:——–|:——————–
All 3 vnodes agree on the value | Once the first 2 vnodes return the value, that value is returned to the client
2 of 3 vnodes agree on the value, and those 2 are the first to reach the coordinating node | The value is returned returned to the client. Read repair will deal with the conflict per the later scenarios, which means that a future read may return a different value or siblings
2 conflicting values reach the coordinating node and vector clocks allow for resolution | The vector clocks are used to resolve the conflict and return a single value, which is propagated via read repair to the relevant vnodes
2 conflicting values reach the coordinating node, vector clocks indicate a fork in the object history, and allow_mult is set to false | The object with the most recent timestamp is returned and propagated via read repair to the relevant vnodes
2 siblings or conflicting values reach the coordinating node, vector clocks indicate a fork in the object history, and allow_mult is set to true | All keys are returned as siblings, optionally with associated values (depending on how the request is made)





Write Scenarios


These scenarios assume that a write request is sent to all 3 primary
vnodes responsible for an object.


Scenario | What happens in Riak
:——–|:——————–
A vector clock is included with the write request, and is newer than the vclock attached to the existing object | The new value is written and success is indicated as soon as 2 vnodes acknowledge the write
A vector clock is included with the write request but conflicts with the vclock attached to the existing object, with allow_mult set to true | The new value is created as a sibling for future reads
A vector clock is included with the write request but conflicts with (or is older than) the vclock attached to the existing object, with allow_mult set to false | Riak will decide which object “wins” on the basis of timestamps; no sibling will be created
A vector clock is not included with the write request and an object already exists, with allow_mult set to true | The new value is created as a sibling for future reads
A vector clock is not included with the write request and an object already exists, with allow_mult set to false | The new value overwrites the existing value







Screencast


Here is a brief screencast that shows just how the N, R, and W values
function in our running three-node Riak cluster:



Tuning CAP Controls in Riak from
Basho Technologies on Vimeo.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/mdc/monitoring.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Multi Data Center Replication: Monitoring”
project: riak
header: riakee
version: 1.3.0+
document: cookbook
toc: true
audience: intermediate
keywords: [mdc, repl, operator, bnw, monitoring]
moved: {
‘2.0.0-‘: ‘riakee:/cookbooks/Multi-Data-Center-Replication-Monitoring’
}




Monitoring Riak’s realtime replication allows you to identify trends and
to receive alerts during times when replication is halted or delayed.
Issues or delays in replication can be caused by:



		Sudden increases or spikes in write traffic


		Network connectivity issues or outages


		Errors experienced in Riak





Identification and trending of issues or delays in realtime replication
is important for identifying a root cause, while alerting is important
for addressing any SLA-impacting issues or delays. We recommend
combining the two approaches below when monitoring Riak’s realtime
replication:



		Monitor Riak’s replication status output, from either riak-repl status or the HTTP /riak-repl/stats endpoint


		Use canary (test) objects to test replication and establish trip times
from source to sink clusters






Note on querying and time windows

Riak's statistics are calculated over a sliding 60-second window. Each
time you query the stats interface, each sliding statistic shown is a
sum or histogram value calculated from the previous 60 seconds of data.
Because of this, the stats interface should not be queried more than
once per minute.


Statistics


The following questions can be answered through the monitoring and
graphing of realtime replication statistics:



		Is the realtime replication queue backed up?


		Have any errors occurred on either the source or sink cluster?


		Have any objects been dropped from the realtime queue?








Is the realtime replication queue backed up?


Identifying times when the realtime replication queue experiences
increases in the number of pending objects can help identify problems
with realtime replication or identify times when replication becomes
overloaded due to increases in traffic. The pending statistic, found
under the realtime_queue_stats section of the replication status
output, should be monitored and graphed. Graphing this statistic allows
you to identify trends in the number of pending objects. Any repeating
or predictable trend in this statistic can be used to help identify a
need for tuning and capacity changes, while unexpected variation in this
statistic may indicate either sudden changes in load or errors at the
network, system, or Riak level.





Have any errors occurred on either the source or sink cluster?


Errors experienced on either the source or sink cluster can result in
failure to replicate object(s) via realtime replication. The top-level
rt_dirty statistic in riak-repl status indicates whether such an
error has occurred and how many times. This statistic only tracks
errors and does not definitively indicate that an object was not
successfully replicated. For this reason, a fullsync should be performed
any time rt_dirty is non-zero. rt_dirty is then reset to zero once a
fullsync successfully completes.


The size of rt_dirty can quantify the number of errors that have
occurred and should be graphed. Since any non-zero value indicates an
error, an alert should be set so that a fullsync can be performed (if
not regularly scheduled). Like realtime queue back ups, trends in
rt_dirty can reveal problems with the network, system, or Riak.





Have any objects been dropped from the realtime queue?


The realtime replication queue will drop objects when the queue is full,
with the dropped object(s) being the last (oldest) in the queue. Each
time an object is dropped, the drops statistic, which can be found
under the realtime_queue_stats section of the replication status
output, is incremented. An object dropped from the queue has not been
replicated successfully, and a fullsync should be performed when a drop
occurs. A dropped object can indicate a halt or delay in replication or
indicate that the realtime queue is overloaded. In cases of high load,
increases to the maximum size of the queue (displayed in the
realtime_queue_stats section of the replication status output as
max_bytes) can be made to accommodate a usage pattern of expected high
load.




Although the above statistics have been highlighted to answer specific
questions, other statistics can also be helpful in diagnosing issues
with realtime replication. We recommend graphing any statistic that is
reported as a number. While their values and trends may not answer
common questions or those we’ve highlighted here, they may nonetheless
be important when investigating issues in the future. Other questions
that cannot be answered through statistics alone may be addressed
through the use of canary objects.





Canary Objects


Canary object testing is a technique that uses a test object stored in
your environment with your production data but not used or modified by
your application. This allows the test object to have predictable states
and to be used to answer questions about the functionality and duration
of realtime replication.


The general process for using canary objects to test realtime replication is:



		Perform a GET for your canary object on both your source and sink
clusters, noting their states. The state of the object in each cluster
can be referred to as state S0, or the object’s initial state.


		PUT an update for your canary object to the source cluster, updating
the state of the object to the next state, S1.


		Perform a GET for your canary on the sink cluster, comparing the state
of the object on the source cluster to the state of the object on the
sink cluster.





By expanding upon the general process above, the following questions can
be answered:



		Is a backed-up realtime replication queue still replicating objects
within a defined SLA?


		How long is it taking for objects to be replicated from the source
cluster to the sink cluster?








Is a backed-up realtime replication queue still replicating objects within a defined SLA?


Building on the final step of the general process, we can determine if
our objects are being replicated from the source cluster to the sink
cluster within a certain SLA time period by adding the following steps:



		If the state of the object on the source cluster is not equal to the
state of the object on the sink cluster, repeat step 3 until an SLA
time threshold is exceeded.


		If the SLA time threshold is exceeded, alert that replication is not
meeting the necessary SLA.








How long is it taking for objects to be replicated from the source cluster to the sink cluster?


Getting a rough estimate of how long it takes an object PUT to a source
cluster to be replicated to a sink cluster get be done by either:



		Comparing the time the object was PUT to the source with the time the
states of the object in the source and sink were equivalent


		Comparing the timestamps of the object on the source and sink when the
states are equivalent





These are rough estimates, as neither method is 100% accurate. The first
method relies on a timestamp for a GET and subsequent successful
comparison, which means that the object was replicated prior to that
timestamp; the second method relies on the system clocks of two
different machines, which may not be in sync.




It’s important to note that each node in a cluster has its own realtime
replication queue. The general process needs to be applied to every
node in the source cluster, with a variety of canary objects and states,
to get a complete picture of realtime replication between two clusters.










          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/protocol-buffers/yz-schema-put.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: PBC Yokozuna Schema Put
project: riak
version: 2.0.0+
document: api
toc: true
audience: advanced
keywords: [api, protocol-buffer, yokozuna, search]
group_by: “Object/Key Operations”




Create a new Solr [[search schema]].



Request


message RpbYokozunaSchemaPutReq {
    required RpbYokozunaSchema schema =  1;
}



Each message must contain a RpbYokozunaSchema object structure.


message RpbYokozunaSchema {
    required bytes name    =  1;
    optional bytes content =  2;
}



This message must include both the schema name and its Solr [[search
schema]] content as XML.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/running/tools/riak.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: riak Command Line
project: riak
version: 0.10.0+
document: reference
toc: true
audience: beginner
keywords: [command-line, riak]
moved: {
‘1.4.0-‘: ‘/references/Command-Line-Tools—riak’
}





riak


This is the primary script for controlling the processes associated with a Riak node. Running the riak command by itself will output a listing of available commands:


Usage: riak «command»
where «command» is one of the following:
    { help | start | stop | restart | ping | console | attach
      attach-direct | ertspath | chkconfig | escript | version | getpid
      top [-interval N] [-sort { reductions | memory | msg_q }] [-lines N] } |
      config { effective | describe VARIABLE }




help


Provides a brief description of all available commands.





start


Starts the Riak node in the background. If the node is already started, you will receive the message Node is already running! If the node is not already running, no output will be given.


riak start






stop


Stops the running Riak node. Prints ok when successful or Node <nodename> not responding to pings. when the node is already stopped or not responding.


riak stop






restart


Stops and then starts the running Riak node without exiting the Erlang VM.
Prints ok when successful, Node <nodename> not responding to pings. when the node is already stopped or not responding.


riak restart






ping


Checks that the Riak node is running. Prints pong when successful or Node <nodename> not responding to pings. when the node is stopped or not responding.


riak ping






console


Starts the Riak node in the foreground, giving access to the Erlang shell and
runtime messages. Prints Node is already running - use 'riak attach' instead
when the node is running in the background. You can exit the shell by pressing Ctrl-C twice.


riak console






attach


Attaches to the console of a Riak node running in the background, giving access to the Erlang shell and runtime messages. Prints Node is not running! when the node cannot be reached.


riak attach






attach-direct


Attaches to the console of a Riak running in the background using a directly-connected first-in-first-out (FIFO), providing access to the Erlang shell and runtime messages. Prints Node is not running! when the node cannot be reached. You can exit the shell by pressing Ctrl-D.


riak attach-direct






ertspath


Outputs the path of the Riak Erlang runtime environment:


riak ertspath






chkconfig


Checks whether the [[configuration file|Configuration Files]] is valid. If so, config is OK will be included in the output.


riak chkconfig






escript


Provides a means of calling escript [http://www.erlang.org/doc/man/escript.html] scripts using the Riak Erlang runtime environment:


riak escript <filename>






version


Outputs the Riak version identifier:


riak version






getpid


Outputs the process identifier for the currently-running instance of Riak:


riak getpid






top


The riak top command is the direct equivalent of riak-admin top:


riak top [-interval N] [-sort { reductions | memory | msg_q }] [-lines N] }



More detailed information can be found in the [[riak-admin|riak-admin Command Line#top]] documentation.





config


Provides information about the current [[configuration|Configuration Files]] of a Riak node, i.e. the parameters and values in the node’s riak.conf or app.config (depending on which configuration system is being used).


riak config { effective | describe VARIABLE }




		effective prints the effective configuration in the following syntax:


parameter1 = value1
parameter2 = value2






		describe VARIABLE prints the setting specified by VARIABLE, along with documentation and other useful information, such as the affected location in the configuration file, the data type of the value, the default value, and the effective value. For example, running riak config describe storage_backend will return the following:


Documentation for storage_backend
Specifies the storage engine used for Riak's key-value data
and secondary indexes (if supported).

Datatype     : [{enum,[bitcask,leveldb,memory,multi]}]
Default Value: bitcask
Set Value    : leveldb
app.config   : riak_kv.storage_backend















          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/running/tools/riak-admin.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: riak-admin Command Line
project: riak
version: 1.2.0+
document: reference
toc: true
audience: beginner
keywords: [command-line, riak-admin]
moved: {
‘1.4.0-‘: ‘/references/Command-Line-Tools—riak-admin’
}





riak-admin


This script performs operations unrelated to node liveness, including
node membership, backup, and basic status reporting. The node must be
running for most of these commands to work. Running the riak-admin
command by itself will output a list of available commands:


Usage: riak-admin { cluster | join | leave | backup | restore | test |
                    reip | js-reload | erl-reload | wait-for-service |
                    ringready | transfers | force-remove | down |
                    cluster-info | member-status | ring-status | vnode-status |
                    aae-status | diag | stat | status | transfer-limit | reformat-indexes |
                    top [-interval N] [-sort reductions|memory|msg_q] [-lines N] |
                    downgrade-objects | security | bucket-type | repair-2i |
                    search | services | ensemble-status | handoff | set |
                    show | describe }




Node Naming


An important thing to bear in mind is that all Riak nodes have unique
names within the cluster that are used for a wide variety of operations.
The name for each node can be set and changed in each node’s
[[configuration files]]. The examples below set the name of a node to
riak_node_1@199.99.99.01 in the riak.conf file if you are using the
newer configuration system and in vm.args if you are using the older
system:


nodename = riak_node_1@199.99.99.01



-name riak_node_1@199.99.99.01



The name prior to the @ symbol can be whatever you’d like, e.g.
riak1, dev, cluster1_node1, or spaghetti. After the @ you must
use a resolvable IP address or hostname. In general, we recommend using
hostnames over IP addresses when possible because this enables the node
to potentially live on different machines over the course of its
existence.





cluster


Documentation for the riak-admin cluster command interface can be
found in [[Cluster Administration]].





join


Deprecation Notice

As of Riak version 1.2, the riak-admin join command has
been deprecated in favor of the [[riak-admin cluster join|Cluster
Administration#join]] command. However, this command can still be
used by providing a -f option (which forces the command).

Joins the running node to another running node so that they participate
in the same cluster. <node> is the other node to connect to.


riak-admin join -f <node>






leave


Deprecation Notice

As of Riak version 1.2, the riak-admin leave command has
been deprecated in favor of the new [[riak-admin cluster
leave|Cluster Administration#leave]] command. However, this
command can still be used by providing a -f option (which
forces the command).

Causes the node to leave the cluster in which it participates. After
this is run, the node in question will hand-off all its replicas to
other nodes in the cluster before it completely exits.


riak-admin leave -f






backup



Deprecation notice

The `riak-admin backup` command has been deprecated. We recommend using
backend-specific backup procedures instead. Documentation can be found
in [[Backing up Riak]].

Backs up the data from the node or entire cluster into a file.


riak-admin backup <node> <cookie> <filename> [node|all]




		<node> is the node from which to perform the backup.


		<cookie> is the Erlang cookie/shared secret used to connect to the
node. This is riak in the [[default configuration|Configuration
Files#Node-Metadata]].


		<filename> is the file where the backup will be stored. This should
be the full path to the file.


		[node|all] specifies whether the data on this node or the entire








restore



Deprecation notice

The `riak-admin restore` command has been deprecated. It was originally
intended to be used in conjunction with backups performed using the
`riak-admin backup` command, which is also deprecated. We recommend
using the backup and restore methods described in [[Backing up Riak]].

Restores data to the node or cluster from a previous backup.


riak-admin restore <node> <cookie> <filename>




		<node> is the node which will perform the restore.


		<cookie> is the Erlang cookie/shared secret used to connect to the
node. This is riak in the [[default configuration|Configuration
Files#Node-Metadata]].


		<filename> is the file where the backup is stored. This should be
the full path to the file.








test


Runs a test of a few standard Riak operations against the running node.


riak-admin test



If the test is successful, you should see output like the following:


Successfully completed 1 read/write cycle to 'dev1@127.0.0.1'






reip


Renames a node. This process backs up and edits the Riak ring, and
must be run while the node is stopped. Reip should only be run in
cases where riak-admin cluster force-replace cannot be used to
rename the nodes of a cluster. For more information, visit the
[[Renaming Nodes]] document.


riak-admin reip <old nodename> <new nodename>




Note about reip prior to Riak 2.0

Several bugs have been fixed related to reip in Riak 2.0. We recommend
against using reip prior to 2.0, if possible.




js-reload


Forces the embedded Javascript virtual machines to be restarted. This is
useful when deploying custom built-in [[MapReduce|Using MapReduce]]
functions.


Note: This needs to be run on all nodes in the cluster.


riak-admin js-reload






erl-reload


Reloads the Erlang .beam files used for [[MapReduce|Using MapReduce]]
jobs, [[pre- and post-commit hooks|Advanced Commit Hooks]], and other
purposes. More information on custom Erlang code can be found in the
[[Installing Custom Code]] guide.


Note: This needs to be run on all nodes in the cluster.


riak-admin erl-reload






wait-for-service


Waits on a specific watchable service to be available (typically
riak_kv). This is useful when (re-)starting a node while the cluster
is under load. Use riak-admin services to see which services are
available on a running node.


riak-admin wait-for-service <service> <nodename>






ringready


Checks whether all nodes in the cluster agree on the ring state.
Prints FALSE if the nodes do not agree. This is useful after changing
cluster membership to make sure that the ring state has settled.


riak-admin ringready






transfers


Identifies nodes that are awaiting transfer of one or more partitions.
This usually occurs when partition ownership has changed (after adding
or removing a node) or after node recovery.


riak-admin transfers






transfer-limit


Change the handoff_concurrency limit. The value set by running this
command will only persist while the node is running. If the node is
restarted, the transfer-limit will return to the default of 2 or the
value specified in the [[transfer_limit|Configuration Files#Ring]]
setting in the riak.conf configuration file.


Running this command with no arguments will display the current
transfer-limit for each node in the cluster.


riak-admin transfer-limit <node> <limit>






down


Marks a node as down so that ring transitions can be performed before
the node is brought back online.


riak-admin down <node>






cluster-info


Output system information from a Riak cluster. This command will collect
information from all nodes or a subset of nodes and output the data to a
single text file.


riak-admin cluster-info <output file> [<node list>]



The following information is collected:



		Current time and date


		VM statistics


		erlang:memory() summary


		Top 50 process memory hogs


		Registered process names


		Registered process name via regs()


		Non-zero mailbox sizes


		Ports


		Applications


		Timer status


		ETS summary


		Nodes summary


		net_kernel summary


		inet_db summary


		Alarm summary


		Global summary


		erlang:system_info() summary


		Loaded modules


		Riak Core config files


		Riak Core vnode modules


		Riak Core ring


		Riak Core latest ring file


		Riak Core active partitions


		Riak KV status


		Riak KV ringready


		Riak KV transfers






Examples


Output information from all nodes to /tmp/cluster_info.txt:


riak-admin cluster_info /tmp/cluster_info.txt



Output information from the current nodeL


riak-admin cluster_info /tmp/cluster_info.txt local



Output information from a subset of nodes:


riak-admin cluster_info /tmp/cluster_info.txt riak@192.168.1.10
riak@192.168.1.11








member-status


Prints the current status of all cluster members.


riak-admin member-status






ring-status


Outputs the current claimant, its status, ringready, pending ownership
handoffs, and a list of unreachable nodes.


riak-admin ring-status






vnode-status


Outputs the status of all vnodes the are running on the local node.


riak-admin vnode-status






aae-status


This command provides insight into operation of Riak’s Active
Anti-Entropy (AAE) feature.


riak-admin aae-status



The output contains information on AAE key/value partition exchanges,
entropy tree building, and key repairs which were triggered by AAE.



		Exchanges


		The Last column lists when the most recent exchange between a
partition and one of its sibling replicas was performed.


		The All column shows how long it has been since a partition
exchanged with all of its sibling replicas.


		Entropy Trees


		The Built column shows when the hash trees for a given partition
were created.


		Keys Repaired


		The Last column shows the number of keys repaired during the most
recent key exchange.


		The Mean column shows the mean number of keys repaired during all
key exchanges since the last node restart.


		The Max column shows the maximum number of keys repaired during all
key exchanges since the last node restart.






Note in AAE status information

All AAE status information is in-memory and is reset across a node
restart. Only tree build times are persistent (since trees themselves
are persistent)

More details on the aae-status command are available in the Riak
version 1.3 release notes [https://github.com/basho/riak/blob/1.3/RELEASE-NOTES.md#active-anti-entropy].





diag


The diag command invokes the Riaknostic [http://riaknostic.basho.com/]
diagnostic system.


riak-admin diag



This command allows you to specify which diagnostic checks you would
like to run, which types of diagnostic messages you wish to see, and so
on. More comprehensive information can be found in the documentation on
[[inspecting a node]].





stat


Provides an interface for interacting with a variety of cluster-level
metrics and information.


riak-admin stat



Full documentation of this command can be found in [[Statistics and
Monitoring]].





status


Prints status information, including performance statistics, system
health information, and version numbers. Further information about the
output is available in the documentation on [[inspecting a node]].


riak-admin status






reformat-indexes


This command reformats integer indexes in Secondary Index data for
versions of Riak prior to 1.3.1 so that range queries over the indexes
will return correct results.


riak-admin reformat-indexes [<concurrency>] [<batch size>] --downgrade



The concurrency option defaults to 2 and controls how many
partitions are concurrently reformatted.


The batch size option controls the number of simultaneous key
operations and defaults to 100.


This command can be executed while the node is serving requests, and
default values are recommended for most cases. You should only change
the default values after testing impact on cluster performance.


Information is written to console.log upon completion of the process.


A --downgrade switch can be specified when downgrading a node to a version
of Riak prior to version 1.3.1.


Additional details are available in the Riak 1.3.1 release
notes [https://github.com/basho/riak/blob/1.3/RELEASE-NOTES.md].





top


Top uses Erlang’s etop to provide information about what the Erlang
processes inside of Riak are doing. Top reports process reductions (an
indicator of CPU utilization), memory used, and message queue sizes.


riak-admin top [-interval N] [-sort reductions|memory|msg_q] [-lines N]



Options:



		interval specifies the number of seconds between each update of the
top output and defaults to 5


		sort determines on which category riak-admin top sorts and
defaults to reductions


		lines specifies the number of processes to display in the top output
and defaults to 10





More information about Erlang’s etop can be found in the etop
documentation [http://www.erlang.org/doc/man/etop.html].





downgrade-objects


This command is used when changing the format of Riak objects, usually
as part of a version downgrade.


riak-admin downgrade-objects <kill-handoffs> [<concurrency>]



More detailed information can be found in [[Rolling Downgrades]].





security


This command enables you to manage to manage Riak users, choose sources
of authentication, assign and revoke permissions to/from users and
groups, enable and disable Riak Security, and more.


riak-admin security <command>



More comprehensive information on user management and can be found in
the [[Authentication and Authorization]] guide. Detailed information on
authentication sources can be found in [[Managing Security Sources]].





bucket-type


Bucket types are a means of managing bucket properties introduced in
Riak 2.0, as well as an additional namespace in Riak in addition to
buckets and keys. This command enables you to create and modify bucket
types, provide the status of currently available bucket types, and
activate created bucket types.


riak-admin bucket-type <command>



More on bucket types can be found in [[Using Bucket Types|Using Bucket
Types#Setting-Up-Buckets-to-Use-Riak-Data-Types]].





repair-2i


This command repairs [[secondary indexes|Using Secondary Indexes]] in a
specific partition or on a cluster-wide basis. Implementation details
can be found in [[Repairing Indexes]].


To repair secondary indexes throughout the entire cluster, run the
repair-2icommand by itself, without a subcommand:


riak-admin repair-2i



This will initiate the repair process. When you run this command, you
should see something like the following (where <ring_size> is the
number of partitions in your Riak cluster):


Will repair 2i data on <ring_size> partitions
Watch the logs for 2i repair progress reports



To repair secondary indexes in a specific partition, provide the ID of
the partition along with the repair-2i command:


riak-admin repair-2i 593735040165679310520246963290989976735222595584



You can check on the status of the repair process at any time:


riak-admin repair-2i status



If the repair is already finished, the console will return 2i repair is not running. If the repair is still in progress, the console will
return a series of statistics like this:


2i repair status is running:
        Total partitions: 64
        Finished partitions: 44
        Speed: 100
        Total 2i items scanned: 0
        Total tree objects: 0
        Total objects fixed: 0



If you’re concerned about the computational resources required to repair
secondary indexes, you can set the speed of the process to an integer
between 1 and 100 (with 100 being the fastest). This command would set
the speed to 90:


riak-admin repair-2i --speed 90



The repair process can be stopped at any moment using the kill
command:


riak-admin repair-2i kill






search


The search command provides sub-commands for various administrative
work related to the new Riak Search.


riak-admin search <command>




aae-status


riak-admin search aae-status



Output active anti-entropy (AAE) statistics for search. There are
three sections. Each section contains statistics for a specific aspect
of AAE for every partition owned by the local node.


The first section provides information on exchanges. Exchange is the
process of comparing hash trees to determine divergences between KV
data and search indexes. The Index column contains the partition
number. The Last (ago) column is the amount of time that has passed
since the last exchange. The All (ago) column is the amount of time
that has passed since all preflists for that partition have been
exchanged.


The second section lists how much time has passed since the hashtree
for that partition has been built from scratch. By default trees
expire after 1 week and are rebuilt from scratch.


The third section presents statistics on repair operations that have
occurred. Repair is performed when AAE notices that the KV and search
hashtree don’t match for a particular key. The Last column is the
number of keys repaired during the last exchange. The Mean column is
the average number of keys repaired for all exchange rounds since the
node has started. The Max column is the maximum number of keys
repaired for a given exchange round since the node has started.





switch-to-new-search



Only For Legacy Migration

This is only needed when migrating from legacy riak search to the new
Search (Yokozuna).

riak-admin search switch-to-new-search



Switch handling of the HTTP /solr/<index>/select resource and
protocol buffer query messages from legacy Riak Search to new Search
(Yokozuna).







services


Lists available services on the node (e.g. riak_kv).


riak-admin services






ensemble-status


This command is used to provide insight into the current status of the
consensus subsystem undergirding Riak’s [[strong consistency]] feature.


riak-admin ensemble-status



This command can also be used to check on the status of a specific
consensus group in your cluster:


riak-admin ensemble-status <group id>



Complete documentation of this command can be found in [[Managing Strong
Consistency|Managing Strong Consistency#ensemble-status]].


{{#2.0.4+}}





handoff


Documentation for the handoff command can be found in [[Handoff]].





set


Enables you to change the value of one of Riak’s configuration
parameters on the fly, without needing to stop and restart the node.


riak-admin set <variable>=<value>



At the moment, the set command can only be used for the following
parameters, all three of which are related to Riak’s [[handoff]]
subsystem:



		transfer_limit


		handoff.outbound


		handoff.inbound








show


Whereas the [[riak-admin status|riak-admin Command Line#stats]]
command will display all currently available statistics for your Riak
cluster, the show command enables you to view only some of those
statistics.


riak-admin show <variable>






describe


Provides a brief description of one of Riak’s [[configurable
parameters|Configuration Files]].


riak-admin describe <variable>



If you want to know the meaning of the nodename parameter:


riak-admin describe nodename



That will produce the following output:


Number of partitions in the cluster (only valid when first
creating the cluster). Must be a power of 2, minimum 8 and maximum
1024.



{{/2.0.4+}}








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/protocol-buffers/get-bucket-props.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: PBC Get Bucket Properties
project: riak
version: 0.14.0+
document: api
toc: true
audience: advanced
keywords: [api, protocol-buffer]
group_by: “Bucket Operations”
moved: {
‘1.4.0-‘: ‘/references/apis/protocol-buffers/PBC-Get-Bucket-Properties’
}




Fetch a bucket’s properties.



Request


message RpbGetBucketReq {
    required bytes bucket = 1;
    optional bytes type = 2;
}



The bucket’s name (bucket) must be specified. The [[bucket type|Using
Bucket Types]] parameter (type) is optional. If it is not specified,
the default bucket type will be used.





Response


When an RpbGetBucketReq message is sent to Riak, it will respond with
an RpbGetBucketResp message, which returns the bucket’s properties:


message RpbGetBucketResp {
    required RpbBucketProps props = 1;
}



The RpbBucketProps value itself is structured as follows:


message RpbBucketProps {
    optional uint32 n_val = 1;
    optional bool allow_mult = 2;
    optional bool last_write_wins = 3;
    repeated RpbCommitHook precommit = 4;
    optional bool has_precommit = 5 [default = false];
    repeated RpbCommitHook postcommit = 6;
    optional bool has_postcommit = 7 [default = false];
    optional RpbModFun chash_keyfun = 8;
    optional RpbModFun linkfun = 9;
    optional uint32 old_vclock = 10;
    optional uint32 young_vclock = 11;
    optional uint32 big_vclock = 12;
    optional uint32 small_vclock = 13;
    optional uint32 pr = 14;
    optional uint32 r = 15;
    optional uint32 w = 16;
    optional uint32 pw = 17;
    optional uint32 dw = 18;
    optional uint32 rw = 19;
    optional bool basic_quorum = 20;
    optional bool notfound_ok = 21;
    optional bytes backend = 22;
    optional bool search = 23;
    enum RpbReplMode {
        FALSE = 0;
        REALTIME = 1;
        FULLSYNC = 2;
        TRUE = 3;
    }
    optional RpbReplMode repl = 24;
    optional bytes search_index = 25;
    optional bytes datatype = 26;
    optional bool consistent = 27;
}




Optional Response Values


Each RpbBucketProps message returns all of the properties associated
with a particular bucket. Default values for bucket properties, as well
as descriptions of all of the above properties, can be found in the
[[configuration file|Configuration Files#Default-Bucket-Properties]]
documentation.


It should be noted that the value of an RpbBucketProps message may
include other message types, such as RpbModFun (specifying
module-function pairs for bucket properties that require them) and
RpbCommitHook (specifying the module-function pair and name of a
commit hook). Those message types are structured like this:


message RpbModFun {
    required bytes module = 1;
    required bytes function = 2;
}

message RpbCommitHook {
    optional RpbModFun modfun = 1;
    optional bytes name = 2;
}




Note on RpbReplMode

The RpbReplMode is of use only to users of Riak CS's Multi-Datacenter
Replication capabilities.







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/cookbooks/installing/Installing-Riak-CS.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Installing Riak CS
project: riakcs
version: 0.10.0+
document: tutorial
toc: true
index: true
audience: beginner
keywords: [installing]




Riak CS is supported on a variety of operating systems, including
Ubuntu, CentOS, Fedora, Solaris, SmartOS, FreeBSD, and OS X. Riak CS is
not supported on Microsoft Windows.


You can install Riak CS on a single node (for development purposes) or
using an automated deployment tool. Any Riak CS installation involves
three components, all of which must be installed separately:



		Riak [http://docs.basho.com/riak/2.0.5/] — The distributed
database on top of which Riak CS is built


		Riak CS itself


		[[Stanchion]] — An application used to manage [[globally unique
entities|Stanchion#Globally-Unique-Entities]] such as users and
buckets





[[Riak|Installing Riak CS#Installing-Riak]] and [[Riak CS|Installing
Riak CS#Installing-Riak-CS-on-a-Node]] must be installed on each node in
your cluster. [[Stanchion|Installing Riak
CS#Installing-Stanchion-on-a-Node]], however, needs to be installed on
only one node.



Version Compatibility


The following combinations of Riak CS, Riak, and Stanchion are known to
function well in production environments. Riak CS 2.0.0 requires
Riak 2.0.5 or above


Riak CS | Riak  | Stanchion
:——-|:——|:———
1.2.2   | 1.2.1 | 1.2.2
1.2.2   | 1.3.0 | 1.2.2
1.3.0   | 1.2.1 | 1.2.2
1.3.0   | 1.3.0 | 1.3.0
1.4.0   | 1.4.0 | 1.4.0
1.4.0   | 1.4.1 | 1.4.0
1.4.5   | 1.4.8 | 1.4.3
1.5.0   | 1.4.10 | 1.5.0
1.5.1   | 1.4.10 | 1.5.0
1.5.2   | 1.4.10 | 1.5.0
1.5.3   | 1.4.12 | 1.5.0
1.5.4   | 1.4.12 | 1.5.0
2.0.0   | 2.0.5  | 2.0.0


We strongly recommend using one of the version combinations listed above
when installing and running Riak CS.





Installing Riak


Before installing Riak CS, Riak itself must be installed on each node in
your cluster. The first step in installing Riak is to make sure that you
have Erlang installed. Instructions for all supported operating systems
can be found in [[Installing Erlang]].


Once Erlang has been installed on a node, you can install Riak either as
part of an OS-specific package or from source.



		[[Debian and Ubuntu|Installing on Debian and Ubuntu]]


		[[RHEL and CentOS|Installing on RHEL and CentOS]]


		[[Mac OS X|Installing on Mac OS X]]


		[[FreeBSD|Installing on FreeBSD]]


		[[SmartOS|Installing on SmartOS]]


		[[Solaris|Installing on Solaris]]


		[[SUSE|Installing on SUSE]]


		[[From Source|Installing Riak From Source]]





Riak is also officially supported on the following public cloud
infrastructures:



		[[Amazon Web Services|Installing on AWS Marketplace]]


		[[Microsoft Azure|Installing on Windows Azure]]





Remember that you must repeat this installation process on each node in
your cluster. For future reference, you should make note of the
installation directory that you have used. On Debian, Ubuntu, RHEL, and
CentOS, for example, Riak is installed in rel/riak by default, whereas
Mac OS X does not have a default install directory.


If you want to fully configure Riak prior to installing Riak CS, see our
documentation on [[configuring Riak for CS]].



Note on the Riak Five-Minute Install

While the [[Five-Minute Install]] for Riak can be helpful for setting up
a development environment for Riak (and only Riak), we do not recommend
following this guide for installing Riak for Riak CS.




Installing Riak CS on a Node


Riak CS and Stanchion packages are available on the [[Download Riak CS]]
page. Similarly, Riak packages are available on the Download
Riak [http://docs.basho.com/riak/2.0.5/downloads/] page.


After downloading Riak CS, Stanchion, and Riak, install them using your
operating system’s package management commands.



Note on Riak CS and public ports

Riak CS is not designed to function directly on TCP port 80, and
it should not be operated in a manner that exposes it directly to the
public internet. Instead, consider a load-balancing solution
such as a dedicated device HAProxy
or Nginx between Riak CS and
the outside world.


Installing Riak CS on Mac OS X


To install Riak CS on OS X, first download the appropriate package from
the [[downloads|Download Riak CS]] page:


curl -O http://s3.amazonaws.com/downloads.basho.com/riak-cs/1.5/{{VERSION}}/osx/10.8/riak-cs-{{VERSION}}-OSX-x86_64.tar.gz



Then, unpack the downloaded tarball:


tar -xvzf riak-cs-{{VERSION}}-OSX-x86_64.tar.gz



At this point, you can move on to [[configuring Riak CS]].





Installing Riak CS on Debian or Ubuntu


On Debian and Ubuntu, Riak CS packages are hosted on
packagecloud.io [https://packagecloud.io/basho/riak-cs]. Instructions
for installing via shell scripts, manual installation, Chef, and Puppet
can be found in packagecloud’s installation
docs [https://packagecloud.io/basho/riak/install].


Platform-specific pages are linked below:



		Lucid [https://packagecloud.io/basho/riak-cs/riak-cs_{{VERSION}}-1_amd64.deb?distro=lucid]


		Precise [https://packagecloud.io/basho/riak-cs/riak-cs_{{VERSION}}-1_amd64.deb?distro=precise]


		Squeeze [https://packagecloud.io/basho/riak-cs/riak-cs_{{VERSION}}-1_amd64.deb?distro=squeeze]


		Trusty [https://packagecloud.io/basho/riak-cs/riak-cs_{{VERSION}}-1_amd64.deb?distro=trusty]


		Wheezy [https://packagecloud.io/basho/riak-cs/riak-cs_{{VERSION}}-1_amd64.deb?distro=wheezy]






Advanced apt Installation


For the simplest installation process on LTS (Long-Term Support)
releases, use apt-get. First, you must retrieve the signing key:


curl https://packagecloud.io/gpg.key | sudo apt-key add -



Second, you must install the apt-transport-https package in order to
be able to fetch packages over HTTPS:


sudo apt-get install -y apt-transport-https



With HTTPS enabled, we recommend adding the desired Riak CS package to
your .list file. packagecloud can autogenerate such a file on the
basis of a name that you specify, e.g. a hostname, and the desired
operating system and distribution. The following example script would
store your hostname in the variable HOSTNAME, send that information to
packagecloud to autogenerate a .list file, and then store the return
value in a file called basho.list, which is stored in the
/etc/apt/sources.list.d directory. This example script is specific to
the Precise Ubuntu distribution:


#!/bin/bash

HOSTNAME=`hostname -f`
FILENAME=/etc/apt/sources.list.d/basho.list
OS=ubuntu
DIST=precise
PACKAGE_CLOUD_RIAK_CS_DIR=https://packagecloud.io/install/repositories/basho/riak-cs
curl "${PACKAGE_CLOUD_RIAK_CS_DIR}/config_file.list?os=${OS}&dist=${DIST}&name=${HOSTNAME}" > $FILENAME



The name that you submit to packagecloud can be anything you like. The
HOSTNAME used above was for example purposes. The resulting file
should hold contents like the following:


# this file was generated by packagecloud.io for
# the repository at https://packagecloud.io/basho/riak

deb https://packagecloud.io/basho/riak_cs/ubuntu/ precise main
deb-src https://packagecloud.io/basho/riak_cs/ubuntu/ precise main



With your basho.list file populated, you can update your apt sources
list:


sudo apt-get update



Now install the riak-cs package:


sudo apt-get install riak-cs








Installing Riak CS on RHEL or CentOS


On RHEL or CentOS, Riak CS packages are hosted on
packagecloud.io [https://packagecloud.io/basho/riak-cs]. Instructions
for installing via shell scripts, manual installation, Chef, and Puppet
can be found in packagecloud’s installation
docs [https://packagecloud.io/basho/riak-cs/install].


Platform-specific pages are linked below:



		el5 [https://packagecloud.io/basho/riak-cs/riak-cs-{{VERSION}}-1.x86_64.rpm?distro=5]


		el6 [https://packagecloud.io/basho/riak-cs/packages/el/6/riak-cs-{{VERSION}}-1.el6.x86_64.rpm]






* [Fedora 19](https://packagecloud.io/basho/riak-cs/riak-cs-{{VERSION}}-1.fc19.x86_64.rpm?distro=19)
Advanced rpm Installation


For the simplest installation process on LTS (Long-Term Support)
releases, use yum. First, you must install the pygpgme package, which
enables yum to handle GPG [https://www.gnupg.org/] signatures:


sudo yum install pygpgme



If you wish to install using a .repo file, packagecloud can generate
one for you on the basis of a name that you specify, e.g. a hostname,
and the desired operating system and distribution. The following example
script would store your hostname in the variable HOSTNAME, send that
information to packagecloud to generate a .repo file, and then store
the return value in a file called basho.repo, which is stored in the
/etc/yum.repos.d directory:


#!/bin/bash

HOSTNAME=`hostname -f`
FILENAME=/etc/yum.repos.d/basho.repo
OS=el
DIST=5
PACKAGE_CLOUD_RIAK_CS_DIR=https://packagecloud.io/install/repositories/basho/riak-cs
curl "${PACKAGE_CLOUD_RIAK_CS_DIR}/config_file.repo?os=${OS}&dist=${DIST}&name=${HOSTNAME}" > $FILENAME



The name that you submit to packagecloud can be anything you like. The
HOSTNAME used above was for example purposes. The resulting file
should hold contents like the following:


[basho_riak-cs]
name=basho_riak-cs
baseurl=https://packagecloud.io/basho/riak-cs/el/5/$basesearch
repo_gpgcheck=1
gpgcheck=0
enabled=1
gpgkey=https://packagecloud.io/gpg.key
sslverify=1
sslcacert=/etc/pki/tls/certs/ca-bundle.crt



With your basho.repo file populated, you can update your rpm sources
list.









Installing Stanchion on a Node


Stanchion is an application that manages globally unique entities within
a Riak CS cluster. It performs actions such as ensuring unique user
accounts and bucket names across the whole system. Riak CS cannot be
used without Stanchion.


All Riak CS nodes must be configured to communicate with a single
Stanchion node. Although multiple Stanchion instances may be installed
and running within a cluster, even one on each node, only one may be
actively used by the cluster. Running multiple instances of Stanchion
simultaneously can produce a variety of problems such as the inability
to create user accounts and buckets or the inability to enforce their
uniqueness.


Because only one Stanchion instance can be used at any given time, it’s
not uncommon for a load balancer to be used to handle Stanchion failover
in the event that the primary Stanchion node becomes unavailable. You
can achieve this by specifying a load balancer IP as the Stanchion IP
in each Riak CS node’s riak-cs.conf. This load balancer must be
configured to send all requests to a single Stanchion node, failing over
to a secondary Stanchion node if the primary is unavailable. More
details can be found in [[Specifying the Stanchion Node|Configuring Riak
CS#Specifying-the-Stanchion-Node]].



Installing Stanchion on Mac OS X


First, download the appropriate package from the [[downloads|Download
Riak CS#Stanchion-1-4-3]] page.


curl -O http://s3.amazonaws.com/downloads.basho.com/stanchion/1.4/1.4.3/osx/10.8/stanchion-2.0.0-OSX-x86_64.tar.gz



Then, unpack the downloaded tarball:


stanchion-2.0.0-OSX-x86_64.tar.gz



At this point, you can move on to [[configuring Riak CS]].





Installing Stanchion on Debian or Ubuntu


On Debian or Ubuntu, you can either use apt or install the .deb
package manually.



Installing Using apt (recommended)


First, install the signing key:


curl http://apt.basho.com/gpg/basho.apt.key | sudo apt-key add -



If the signing key and apt repository have already been added, add
the Basho repository to your apt sources list (and update them):


sudo bash -c "echo deb http://apt.basho.com $(lsb_release -sc) main > /etc/apt/sources.list.d/basho.list"
sudo apt-get update



Now, install Riak CS:


sudo apt-get install stanchion



At this point, you can move on to [[configuring Riak CS]].





Installing the .deb Package Manually (not recommended)


sudo dpkg -i <stanchion-package.deb>



Replace <riak-cs-package.deb> with the actual filename for the package
you are installing.


At this point, you can move on to [[configuring Riak CS]].







Installing Stanchion on RHEL or CentOS


On RHEL or CentOS, you can either use yum or install the .rpm
package manually.



Installing Using yum (recommended)


For CentOS/RHEL 6:


sudo yum install http://yum.basho.com/gpg/basho-release-6-1.noarch.rpm



For CentOS/RHEL 5:


sudo yum install http://yum.basho.com/gpg/basho-release-5-1.noarch.rpm



Once the .rpm package has been installed, install Stanchion:


sudo yum install stanchion



At this point, you can move on to [[configuring Riak CS]].





Installing the .rpm Package Manually (not recommended)


sudo rpm -Uvh <stanchion-package.rpm>



Replace <stanchion-package.rpm> with the actual filename for the
package you are installing.


At this point, you can move on to [[configuring Riak CS]].



Note on SELinux

CentOS enables Security-Enhanced Linux (SELinux) by default. If you
encounter errors during installation, try disabling SELinux.








What’s Next?


Once you’ve completed installation of Riak CS and Riak, you’re ready to
learn more about [[Configuring Riak CS]].






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/cookbooks/installing/Riak-CS-Using-Chef.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Installing Riak CS with Chef
project: riakcs
version: 1.2.0+
document: cookbook
toc: true
audience: intermediate
keywords: [operator, installing, chef]
moved: {
‘1.4.0-‘: ‘/cookbooks/Riak-CS-Using-Chef’
}




If you manage your infrastructure with Chef [http://www.opscode.com/chef/],
the open-source configuration management framework, you’ll be happy to know
that we maintain a cookbook [http://community.opscode.com/cookbooks/riak-cs]
for installing Riak CS with Chef.



Getting Started


The Riak CS cookbook can be used (alongside the Riak cookbook), by adding the
following recipes to your runlist:


run_list(
  "recipe[riak-cs::package]",
  "recipe[riak]",
  "recipe[riak-cs]",
  "recipe[riak-cs::stanchion]"
)



The default settings will cause Riak and Riak CS to be installed and configured via Basho-maintained package repositories.



Package Installation


There are two options for installation: package and enterprise_package.
package is the default— it installs Riak CS open source—and is the recommended option for Red Hat- and Debian-based operating systems. For source installations of Riak, Erlang/OTP R15B01 and above is recommended.





Enterprise Installation


To install Riak CS Enterprise, populate node['riak_cs']['package']['enterprise_key'] with a Basho-provided key for
the release.


Riak Enterprise installations managed through the cookbook must be installed
via a package.





Basic Configuration


All the configuration options exist within the node['riak_cs']['config']
namespace. In cases where an Erlang data type is necessary, use the appropriate methods from the [erlang_template_helper](https://github.com/basho/erlang_template_helper).



Networking


Riak CS and Stanchion communicate with Riak through the Protocol Buffers interface. By default, Riak listens for Protocol Buffers connections on port
8087:


# Riak CS
default['riak_cs']['config']['riak_cs']['riak_ip'] = node['ipaddress'].to_erl_string
default['riak_cs']['config']['riak_cs']['riak_pb_port'] = 8087

# Stanchion
default['stanchion']['config']['stanchion']['riak_ip'] = node['ipaddress'].to_erl_string
default['stanchion']['config']['stanchion']['riak_pb_port'] = 8087



At the same time, Riak listens for HTTP requests on port 8080 and Stanchion
on port 8085:


# Riak CS
default['riak_cs']['config']['riak_cs']['cs_ip'] = node['ipaddress'].to_erl_string
default['riak_cs']['config']['riak_cs']['cs_port'] = 8080

# Stanchion
default['stanchion']['config']['stanchion']['stanchion_ip'] = node['ipaddress'].to_erl_string
default['stanchion']['config']['stanchion']['stanchion_port'] = 8085






Credentials


Both Riak CS and Stanchion require administrative user credentials. The two credentials are admin_key and admin_secret:


# Riak CS
default['riak_cs']['config']['riak_cs']['admin_key'] = "admin-key".to_erl_string
default['riak_cs']['config']['riak_cs']['admin_secret'] = "admin-secret".to_erl_string

# Stanchion
default['stanchion']['config']['stanchion']['admin_key'] = "admin-key".to_erl_string
default['stanchion']['config']['stanchion']['admin_secret'] = "admin-secret".to_erl_string






Webmachine


Webmachine is used to service HTTP requests in Riak CS. Its server_name and
Lager log_handlers can be configured with the following:


default['riak_cs']['config']['webmachine']['server_name'] = "Riak CS".to_erl_string
default['riak_cs']['config']['webmachine']['log_handlers']['webmachine_log_handler'] = ["/var/log/riak-cs".to_erl_string].to_erl_list
default['riak_cs']['config']['webmachine']['log_handlers']['riak_cs_access_log_handler'] = [].to_erl_list






Erlang


A number of Erlang parameters may be configured through the cookbook. The node
-name and -setcookie are most important for creating multi-node clusters.


The rest of the parameters are primarily for performance tuning, with kernel
polling and SMP enabled by default. A few examples follow:


# Riak CS
default['riak_cs']['args']['-name'] = "riak-cs@#{node['fqdn']}"
default['riak_cs']['args']['-setcookie'] = "riak-cs"
default['riak_cs']['args']['+K'] = true
default['riak_cs']['args']['+A'] = 64
default['riak_cs']['args']['+W'] = "w"
default['riak_cs']['args']['-env']['ERL_MAX_PORTS'] = 4096
default['riak_cs']['args']['-env']['ERL_FULLSWEEP_AFTER'] = 0
default['riak_cs']['args']['-env']['ERL_CRASH_DUMP'] = "/var/log/riak/erl_crash.dump"

# Stanchion
default['stanchion']['args']['-name'] = "stanchion@#{node['ipaddress']}"
default['stanchion']['args']['-setcookie'] = "stanchion"
default['stanchion']['args']['+K'] = true
default['stanchion']['args']['+A'] = 64
default['stanchion']['args']['+W'] = "w"
default['stanchion']['args']['-env']['ERL_MAX_PORTS'] = 4096
default['stanchion']['args']['-env']['ERL_FULLSWEEP_AFTER'] = 0
default['stanchion']['args']['-env']['ERL_CRASH_DUMP'] = "/var/log/stanchion/erl_crash.dump"






Storage Backends


Riak CS uses a specific combination of storage backends. [[Bitcask]] is used to
store blocks and [[LevelDB]] to store manifests. The riak_cs_kv_multi_backend
must be specified in the Riak configuration file for Riak CS to work:


default['riak']['config']['riak_kv']['storage_backend'] = "riak_cs_kv_multi_backend"



The Riak cookbook takes care of populating all of the other default required
for the riak_cs_kv_multi_backend to be configured correctly.







Lager


Lager [https://github.com/basho/lager] is the logging framework used within
Riak CS and Stanchion. It can also be used with Erlang/OTP.


# Riak CS
error_log = ["/var/log/riak-cs/error.log".to_erl_string,"error",10485760,"$D0".to_erl_string,5].to_erl_tuple
info_log = ["/var/log/riak-cs/console.log".to_erl_string,"info",10485760,"$D0".to_erl_string,5].to_erl_tuple

default['riak_cs']['config']['lager']['handlers']['lager_file_backend'] = [error_log, info_log]
default['riak_cs']['config']['lager']['crash_log'] = "/var/log/riak-cs/crash.log".to_erl_string
default['riak_cs']['config']['lager']['crash_log_msg_size'] = 65536
default['riak_cs']['config']['lager']['crash_log_size'] = 10485760
default['riak_cs']['config']['lager']['crash_log_date'] = "$D0".to_erl_string
default['riak_cs']['config']['lager']['crash_log_count'] = 5
default['riak_cs']['config']['lager']['error_logger_redirect'] = true

# Stanchion
error_log = ["/var/log/stanchion/error.log".to_erl_string,"error",10485760,"$D0".to_erl_string,5].to_erl_tuple
info_log = ["/var/log/stanchion/console.log".to_erl_string,"info",10485760,"$D0".to_erl_string,5].to_erl_tuple

default['stanchion']['config']['lager']['handlers']['lager_file_backend'] = [error_log, info_log]
default['stanchion']['config']['lager']['crash_log'] = "/var/log/stanchion/crash.log".to_erl_string
default['stanchion']['config']['lager']['crash_log_msg_size'] = 65536
default['stanchion']['config']['lager']['crash_log_size'] = 10485760
default['stanchion']['config']['lager']['crash_log_date'] = "$D0".to_erl_string
default['stanchion']['config']['lager']['crash_log_count'] = 5
default['stanchion']['config']['lager']['error_logger_redirect'] = true








Additional Resources


More information related to cluster configuration and building development environments is available in our documentation.



		[[Building a Local Test Environment]]


		[[Building a Virtual Testing Environment]]









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/cookbooks/Keystone-Conf-Sample.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Keystone Configuration Sample
project: riakcs
version: 1.4.0+
document: api
toc: true
index: true
audience: advanced
keywords: [authentication, openstack]




The following displays the contents of a sample keystone.conf file
that can be used to test Riak CS with the Keystone authentication
service on a localhost setup.


[DEFAULT]
# A "shared secret" between keystone and other openstack services
admin_token = ADMIN

# The IP address of the network interface to listen on
bind_host = 127.0.0.1

# The port number which the public service listens on
public_port = 5000

# The port number which the public admin listens on
admin_port = 35357

# The port number which the OpenStack Compute service listens on
# compute_port = 8774

# Path to your policy definition containing identity actions
# TODO(dolph): This config method will probably be deprecated during grizzly
# policy_file = policy.json

# Rule to check if no matching policy definition is found
# FIXME(dolph): This should really be defined as [policy] default_rule
# policy_default_rule = admin_required

# === Logging Options ===
# Print debugging output
verbose = True

# Print more verbose output
# (includes plaintext request logging, potentially including passwords)
debug = True

# Name of log file to output to. If not set, logging will go to stdout.
log_file = keystone.log

# The directory to keep log files in (will be prepended to --logfile)
log_dir = log/keystone

# Use syslog for logging.
use_syslog = False

# syslog facility to receive log lines
# syslog_log_facility = LOG_USER

# If this option is specified, the logging configuration file specified is
# used and overrides any other logging options specified. Please see the
# Python logging module documentation for details on logging configuration
# files.
#log_config = logging.conf

# A logging.Formatter log message format string which may use any of the
# available logging.LogRecord attributes.
# log_format = %(asctime)s %(levelname)8s [%(name)s] %(message)s

# Format string for %(asctime)s in log records.
# log_date_format = %Y-%m-%d %H:%M:%S

# onready allows you to send a notification when the process is ready to serve
# For example, to have it notify using systemd, one could set shell command:
# onready = systemd-notify --ready
# or a module with notify() method:
# onready = keystone.common.systemd

[sql]
# The SQLAlchemy connection string used to connect to the database
connection = sqlite:///keystone.db

# the timeout before idle sql connections are reaped
idle_timeout = 200

[identity]
driver = keystone.identity.backends.sql.Identity

[catalog]
# dynamic, sql-based backend (supports API/CLI-based management commands)
#driver = keystone.catalog.backends.sql.Catalog

# static, file-based backend (does *NOT* support any management commands)
driver = keystone.catalog.backends.templated.TemplatedCatalog

template_file = ./etc/default_catalog.templates

[token]
# driver = keystone.token.backends.kvs.Token

# Amount of time a token should remain valid (in seconds)
# expiration = 86400

[policy]
driver = keystone.policy.backends.sql.Policy

[ec2]
# driver = keystone.contrib.ec2.backends.kvs.Ec2

[ssl]
#enable = True
#certfile = /etc/keystone/ssl/certs/keystone.pem
#keyfile = /etc/keystone/ssl/private/keystonekey.pem
#ca_certs = /etc/keystone/ssl/certs/ca.pem
#cert_required = True

[signing]
token_format = UUID
#certfile = /etc/keystone/ssl/certs/signing_cert.pem
#keyfile = /etc/keystone/ssl/private/signing_key.pem
#ca_certs = /etc/keystone/ssl/certs/ca.pem
#key_size = 1024
#valid_days = 3650
#ca_password = None

[ldap]
# url = ldap://localhost
# user = dc=Manager,dc=example,dc=com
# password = None
# suffix = cn=example,cn=com
# use_dumb_member = False
# allow_subtree_delete = False
# dumb_member = cn=dumb,dc=example,dc=com

# user_tree_dn = ou=Users,dc=example,dc=com
# user_filter =
# user_objectclass = inetOrgPerson
# user_id_attribute = cn
# user_name_attribute = sn
# user_mail_attribute = email
# user_pass_attribute = userPassword
# user_enabled_attribute = enabled
# user_enabled_mask = 0
# user_enabled_default = True
# user_attribute_ignore = tenant_id,tenants
# user_allow_create = True
# user_allow_update = True
# user_allow_delete = True

# tenant_tree_dn = ou=Groups,dc=example,dc=com
# tenant_filter =
# tenant_objectclass = groupOfNames
# tenant_id_attribute = cn
# tenant_member_attribute = member
# tenant_name_attribute = ou
# tenant_desc_attribute = desc
# tenant_enabled_attribute = enabled
# tenant_attribute_ignore =
# tenant_allow_create = True
# tenant_allow_update = True
# tenant_allow_delete = True

# role_tree_dn = ou=Roles,dc=example,dc=com
# role_filter =
# role_objectclass = organizationalRole
# role_id_attribute = cn
# role_name_attribute = ou
# role_member_attribute = roleOccupant
# role_attribute_ignore =
# role_allow_create = True
# role_allow_update = True
# role_allow_delete = True

[filter:debug]
paste.filter_factory = keystone.common.wsgi:Debug.factory

[filter:token_auth]
paste.filter_factory = keystone.middleware:TokenAuthMiddleware.factory

[filter:admin_token_auth]
paste.filter_factory = keystone.middleware:AdminTokenAuthMiddleware.factory

[filter:xml_body]
paste.filter_factory = keystone.middleware:XmlBodyMiddleware.factory

[filter:json_body]
paste.filter_factory = keystone.middleware:JsonBodyMiddleware.factory

[filter:user_crud_extension]
paste.filter_factory = keystone.contrib.user_crud:CrudExtension.factory

[filter:crud_extension]
paste.filter_factory = keystone.contrib.admin_crud:CrudExtension.factory

[filter:ec2_extension]
paste.filter_factory = keystone.contrib.ec2:Ec2Extension.factory

[filter:s3_extension]
paste.filter_factory = keystone.contrib.s3:S3Extension.factory

[filter:url_normalize]
paste.filter_factory = keystone.middleware:NormalizingFilter.factory

[filter:stats_monitoring]
paste.filter_factory = keystone.contrib.stats:StatsMiddleware.factory

[filter:stats_reporting]
paste.filter_factory = keystone.contrib.stats:StatsExtension.factory

[app:public_service]
paste.app_factory = keystone.service:public_app_factory

[app:service_v3]
paste.app_factory = keystone.service:v3_app_factory

[app:admin_service]
paste.app_factory = keystone.service:admin_app_factory

[pipeline:public_api]
pipeline = stats_monitoring url_normalize token_auth admin_token_auth xml_body json_body debug ec2_extension user_crud_extension public_service

[pipeline:admin_api]
pipeline = stats_monitoring url_normalize token_auth admin_token_auth xml_body json_body debug stats_reporting ec2_extension s3_extension crud_extension admin_service

[pipeline:api_v3]
pipeline = stats_monitoring url_normalize token_auth admin_token_auth xml_body json_body debug stats_reporting ec2_extension s3_extension service_v3

[app:public_version_service]
paste.app_factory = keystone.service:public_version_app_factory

[app:admin_version_service]
paste.app_factory = keystone.service:admin_version_app_factory

[pipeline:public_version_api]
pipeline = stats_monitoring url_normalize xml_body public_version_service

[pipeline:admin_version_api]
pipeline = stats_monitoring url_normalize xml_body admin_version_service

[composite:main]
use = egg:Paste#urlmap
/v2.0 = public_api
/v3 = api_v3
/ = public_version_api

[composite:admin]
use = egg:Paste#urlmap
/v2.0 = admin_api
/v3 = api_v3
/ = admin_version_api





          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/cookbooks/installing/Launching-and-Stopping-Riak-CS.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Launching and Stopping Riak CS
project: riakcs
version: 1.2.0+
document: cookbook
toc: true
audience: intermediate
keywords: [operator, installing]




To launch Riak CS in the background:


sudo riak-cs start



To run Riak CS with an interactive Erlang console:


sudo riak-cs console



When Riak CS is running, the Riak CS process appears in the process
list. To check for the Riak CS process, enter:


ps -ef | grep riak-cs



To stop Riak CS, enter:


sudo riak-cs stop



You can use the command


sudo riak-cs attach



to attach and obtain an interactive console to a running instance of
Riak CS.


You can check the liveness of your Riak CS installation with the
riak-cs ping command, which should return pong if Riak CS is up and
running.


riak-cs ping



Please note that riak-cs ping tests only the liveness of Riak CS and
does not test the connection between Riak CS and Riak. In order to test
that, you can run a GET request against the /riak-cs/ping endpoint of a Riak
CS node, as in the example below:


curl http://localhost:8080/riak-cs/ping





          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/protocol-buffers/dt-counter-store.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: PBC Data Type Counter Store
project: riak
version: 2.0.0+
document: api
toc: true
audience: advanced
keywords: [api, protocol-buffer, datatypes]
group_by: “Object/Key Operations”




An operation to update a [[counter|Using Data Types]].



Request


message CounterOp {
    optional sint64 increment = 1;
}



The increment value specifies how much the counter will be incremented
or decremented, depending on whether the increment value is positive
or negative. This operation can be used to update counters that are
stored on their own in a key or [[within a map|PBC Data Type Map
Store]].






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/theory/comparisons/mongodb.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Riak Compared to MongoDB
project: riak
version: 1.1.0+
document: appendix
toc: true
index: true
keywords: [comparisons, mongodb]
moved: {
‘1.4.0-‘: ‘/references/appendices/comparisons/Riak-Compared-to-MongoDB’
}




This is intended to be a brief, objective, and technical comparison of
Riak and MongoDB. The MongoDB version described is 2.2.x. The Riak
version described is Riak 1.2.x. If you feel this comparison is
unfaithful for whatever reason, please submit an issue [https://github.com/basho/basho_docs/issues/new]
or send an email to docs@basho.com.



At A Very High Level



		Riak is Apache 2.0 [http://www.apache.org/licenses/LICENSE-2.0.html] licensed; MongoDB is distributed under the AGPL [http://www.gnu.org/licenses/agpl-3.0.html]


		Riak is written primarily in Erlang with some bits in C; MongoDB is written in C++








Feature/Capability Comparison


The table below provides a high-level comparison of Riak and MongoDB features and capabilities. To keep this page relevant in the face of rapid development on both sides, low-level details can be found in links to specific pages in the online documentation for both systems.


    <!-- Riak -->
    <td>
        Riak stores key/value pairs under [[keys|Keys and Objects]] in [[buckets]]. [[Using bucket types]] you can set bucket-level configurations for things like [[replication properties]]. In addition to basic [[key/value lookup|Key/Value Modeling]], Riak has a variety of features for discovering objects, including [[Riak Search|Using Search]] and [[secondary indexes|Using Secondary Indexes]].
    </td>
    
    <!-- MongoDB -->
    <td>
        MongoDB's data format is BSON (a binary equivalent to JSON) stored as documents (self-contained records with no intrinsic relationships). Documents in MongoDB may store any of the defined BSON types and are grouped in collections.
        
        <ul>
            <li>[[Documents|http://www.mongodb.org/display/DOCS/Documents]]</li>
            <li>[[Data Types and Conventions|http://www.mongodb.org/display/DOCS/Data+Types+and+Conventions]]</li>

        </ul>
    </td>
</tr>
<tr>
    <td><strong>Storage Model</strong></td>
    
    <!-- Riak -->
    <td>
        Riak has a modular, extensible local storage system that lets you plug in a backend store of your choice to suit your use case. The default backend is [[Bitcask]].
        
        <ul>
          <li>[[Riak Supported Storage Backends|Choosing a Backend]]</li>
        </ul>

        You can also write your own storage backend for Riak using our [[backend API|Backend API]].
    </td>
    
    <!-- MongoDB -->
    <td>
        MongoDB's default storage system is the Memory-Mapped Storage Engine. It uses memory-mapped files for all disk I/O. It is the responsibility of the OS to manage flushing data to disk and paging data in and out.
        
        <ul>
            <li>[[Caching|http://www.mongodb.org/display/DOCS/Caching]]</li>
        </ul>
    </td>
</tr>
<tr>
    <td><strong>Data Access and APIs</strong></td>
    
    <!-- Riak -->
    <td>
        Riak offers two primary interfaces (in addition to raw Erlang access):
        
        <ul>
            <li>[[Protocol Buffers|PBC API]] (strongly recommended)</li>
            <li>[[HTTP|HTTP API]]</li>
        </ul>
        
        Riak [[client libraries]] are wrappers around these APIs, and client support exists for dozens of languages. Basho currently has officially supported clients for [[Java|https://github.com/basho/riak-java-client]], [[Ruby|https://github.com/basho/riak-ruby-client]], [[Python|https://github.com/basho/riak-python-client]], and [[Erlang|https://github.com/basho/riak-erlang-client]].
    </td>

    <!-- MongoDB -->
    <td>
        MongoDB uses a custom, socket-based wire protocol with BSON as the interchange format. 

        <ul>
            <li><a href="http://www.mongodb.org/display/DOCS/Mongo+Wire+Protocol">Mongo Wire Protocol</a></li>
        </ul>
        
        10Gen and the Mongo community support many client libraries.
        
        <ul>    
            <li>[[Client Libraries|http://www.mongodb.org/display/DOCS/Drivers]]</li>
        </ul>
    </td>
</tr>
<tr>
    <td><strong>Query Types and Queryability</strong></td>

    <!-- Riak -->
    <td>

        There are currently five ways to query data in Riak:
        
        <ul>
            <li>Via [[primary key operations|The Basics]] (GET, PUT, DELETE, UPDATE)</li>
            <li>[[Using MapReduce]]</li>
            <li>[[Using secondary indexes]]</li>
            <li>[[Using Search]]</li>
            <li>[[Using Data Types]]</li>
        </ul>
    </td>
    
    <!-- MongoDB -->
    <td>
        MongoDB has a query interface that has some similarities to relational databases, including secondary indexes that can be derived from the stored documents. MongoDB also has facilities for performing MapReduce queries and ad-hoc queries on documents. Hadoop support is available as well.
        
        <ul>
            <li>[[Querying|http://www.mongodb.org/display/DOCS/Querying]]</li>
            <li>[[Indexes|http://www.mongodb.org/display/DOCS/Indexes]]</li>
            <li>[[MapReduce|http://www.mongodb.org/display/DOCS/MapReduce]]</li>
            <li>[[MongoDB Hadoop Adapter|https://github.com/mongodb/mongo-hadoop]]</li>
        <ul>
    </td>
</tr>
<tr>
    <td><strong>Data Versioning and Consistency</strong></td>

    <!-- Riak -->
    <td>
        Riak uses a data structure called a [[vector clock|Vector Clocks]] to reason about causality and staleness of stored values. Vector clocks enable clients to always write to the database in exchange for consistency conflicts being resolved either at read time by application or client code or by Riak's [[active anti-entropy]] subsystem. Vector clocks can be configured to store copies of a given object based on the size and age of that object. There is also an option to disable vector clocks and fall back to simple timestamp-based resolution, known as [[last write wins|Conflict Resolution#Client-and-Server-side-Conflict-Resolution]].

        <ul>
            <li>[[Why Vector Clocks Are Easy|http://basho.com/blog/technical/2010/01/29/why-vector-clocks-are-easy/]]</li>
            <li>[[Why Vector Clocks Are Hard|http://basho.com/blog/technical/2010/04/05/why-vector-clocks-are-hard/]]</li>
        </ul>
    
        In addition, as of version 2.0 you can use Riak in a [[strongly consistent|Strong Consistency]] fashion.
    </td>

    <!-- MongoDB -->
    <td>
        MongoDB exhibits strong consistency. Eventually consistent reads can be accomplished via secondaries. A MongoDB cluster (with auto-sharding and replication) has a master server at any given point in time for each shard.
        
        <ul>
          <li>[[On Distributed Consistency|http://blog.mongodb.org/post/475279604/on-distributed-consistency-part-1]]</li>
        </ul>
    </td>
</tr>
    <td><strong>Concurrency</strong></td>

    <!-- Riak -->
    <td>
        In Riak, any node in the cluster can coordinate a read/write operation for any other node. Riak stresses availability for writes and reads, and puts the burden of resolution on the client at read time.
    </td>

    <!-- MongoDB -->
    <td>
        MongoDB relies on locks for consistency. As of version 2.2, MongoDB has a DB Level Lock for all operations.
        <ul>
            <li>[[Locks|http://docs.mongodb.org/manual/administration/monitoring/#locks]]</li>
            <li>[[DB Level Locking|https://jira.mongodb.org/browse/SERVER-4328]]</li>
            <li>[[How Does Concurrency Work?|http://www.mongodb.org/display/DOCS/How+does+concurrency+work]]</li>
        </ul>
    </td>
</tr>
<tr>
    <td><strong>Replication</strong></td>

    <!-- Riak -->
    <td>
        Riak's replication system is heavily influenced by the Dynamo Paper and Dr. Eric Brewer's CAP Theorem. Riak uses consistent hashing to replicate and distribute N copies of each value around a Riak cluster composed of any number of physical machines. Under the hood, Riak uses virtual nodes to handle the distribution and dynamic rebalancing of data, thus decoupling the data distribution from physical assets.
        
        <ul>
          <li>[[Replication]]</li>
          <li>[[Clustering|Clusters]]</li>
        </ul>

        The Riak APIs expose tunable consistency and availability parameters that let you select which level of configuration is best for your use case. Replication is configurable at the bucket level when first storing data in Riak. Subsequent reads and writes to that data can have request-level parameters.
        
        <ul>
            <li>[[Reading, Writing, and Updating Data|Concepts#Reading, Writing, and Updating Data]]</li>
        </ul>
    </td>
    
    <!-- MongoDB -->
    <td>
        Mongo manages replication via replica sets, a form of asynchronous master/slave replication. Traditional master/slave replication is available but not recommended.
        
        <ul>
            <li>[[Replication|http://www.mongodb.org/display/DOCS/Replication]]</li>
            <li>[[Replica Sets|http://www.mongodb.org/display/DOCS/Replica+Sets]]</li>
            <li>[[Master/Slave|http://www.mongodb.org/display/DOCS/Master+Slave]]</li>
        </ul>
    </td>
</tr>
<tr>
    <td><strong>Scaling Out and In</strong></td>

    <!-- Riak -->
    <td>
        Riak allows you to [[elastically grow and shrink|Adding and Removing Nodes]] your cluster while evenly balancing the load on each machine. No node in Riak is special or has any particular role. In other words, all nodes are masterless. When you add a physical machine to Riak, the cluster is made aware of its membership via gossiping of [[ring state|Clusters#the-ring]]. Once it's a member of the ring, it's assigned an equal percentage of the partitions and subsequently takes ownership of the data belonging to those partitions. The process for removing a machine is the inverse of this. Riak also ships with a comprehensive suite of [[command line tools|riak-admin Command Line]] to help make node operations simple and straightforward.
    </td>

    <!-- MongoDB -->
    <td>
        Mongo relies on sharding for scaling out. This involves designating a certain server to hold certain chunks of the data as the data set grows.

        <ul>
            <li>[[Sharding in MongoDB|http://www.mongodb.org/display/DOCS/Sharding]]</li>
            <li>[[Sharding Introduction|http://www.mongodb.org/display/DOCS/Sharding+Introduction]]</li>
            <li>[[Sharding (on Wikipedia)|http://en.wikipedia.org/wiki/Sharding]]</li>

        </ul>

        To scale in, MongoDB has support for removing shards from your database.
        
        <ul>
            <li>[[Removing Shards|http://docs.mongodb.org/manual/administration/sharding/#remove-a-shard-from-a-cluster]]</li>
        </ul>
    </td>
</tr>
<tr>
    <td><strong>Multi-Datacenter Replication and Awareness</strong></td>

    <!-- Riak -->
    <td>
        Riak features two distinct types of [[replication]]. Users can replicate to any number of nodes in one cluster (which is usually contained within one datacenter over a LAN) using the Apache 2.0-licensed database. Riak Enterprise, Basho's commercial extension to Riak, is required for Multi-Datacenter deployments (meaning the ability to run active Riak clusters in N datacenters).

        <ul>
            <li><a href="http://basho.com/products/riak-enterprise/">Riak Enterprise</a></li>
        </ul>
    </td>

    <!-- MongoDB -->
    <td>
        MongoDB can be configured to run in multiple datacenters via various options.

        <ul>
            <li><a href="http://www.mongodb.org/display/DOCS/Data+Center+Awareness">Datacenter Awareness</a></li>
        </ul>
    </td>
</tr>
<tr>
    <td><strong>Graphical Monitoring/Admin Console</strong></td>

    <!-- Riak -->
    <td>
        Riak ships with [[Riak Control]], an open source graphical console for monitoring and managing Riak clusters.
    </td>
    
    <!-- MongoDB -->
    <td>
        MongoDB does not ship with a graphical monitoring/admin console. However, several community projects have developed graphical monitoring/admin programs.
        
        <ul>
            <li>[[Monitoring and Diagnostics|http://www.mongodb.org/display/DOCS/Monitoring+and+Diagnostics]]</li>
            <li>[[Admin UIs|http://www.mongodb.org/display/DOCS/Admin+UIs]]</li>
        </ul>

        10Gen offers a hosted monitoring service.

        <ul>
            <li><a href="http://www.10gen.com/mongodb-monitoring-service">Mongo Monitoring Service</a></li>
        </ul>
    </td>
</tr>



    
        		Feature/Capability
        		Riak
        		MongoDB
    


    
        		Data Model








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/running/recovery/repairing-leveldb.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Repairing LevelDB
project: riak
version: 1.4.8+
document: tutorial
audience: advanced
keywords: [leveldb, troubleshooting, backend]




In the event of major hardware or filesystem problems, LevelDB can become corrupted. These failures are uncommon, but they could happen, as heavy loads can push I/O limits.



Checking for Compaction Errors


Any time there is a compaction error, it will be noted in the LevelDB logs. Those logs are located in a LOG file in each instance of LevelDB in a Riak node, specifically in #(platform_data_dir)/leveldb/<vnode>/LOG. The platform_data_dir can be specified in the [[riak.conf|Configuration Files]] configuration file. The default is ./data.


Compaction error messages take the following form:


<timestamp> Compaction Error: Corruption: corrupted compressed block contents



To check whether your node has experienced such errors, you will need to run a script that searches for Compaction Error in each LOG file. Here is an example script:


find . -name "LOG" -exec grep -l 'Compaction error' {} \;



If there are compaction errors in any of your vnodes, those will be listed in the console. If any vnode has experienced such errors, you would see output like this:


./442446784738847563128068650529343492278651453440/LOG 




Note

While corruption on one vnode is not uncommon, corruption in several vnodes very likely means that there is a deeper problem that needs to be address, perhaps on the OS or hardware level.




Healing Corrupted LevelDBs


{{#1.3.0-}}



Warning

There is a known issue in Riak 1.2.x where running a LevelDB repair will bring down a machine and affect the whole cluster as a result.  Please contact Basho support before running a LevelDB repair on any Riak 1.2.x nodes.


{{/1.3.0-}}The first step in properly addressing this problem is to stop the node.


riak stop



Repairing the corrupted LevelDB can be done through the Erlang shell [http://learnyousomeerlang.com/starting-out]. Do not start Riak at this point; use the shell only.


You can fire up the shell by running the erl command. To ensure that you start up the shell using the same version of Erlang that’s embedded with Riak, you should run the erl command as an absolute path. Here’s an example:


/opt/local/riak/erts-5.8.5/bin/erl



Once you’re in the shell, run the following command:


[application:set_env(eleveldb, Var, Val) || {Var, Val} <- 
    [{max_open_files, 2000}, 
     {block_size, 1048576}, 
     {cache_size, 20*1024*1024*1024}, 
     {sync, false}, 
     {data_root, ""}]].



For each corrupted LevelDB that you found using the find command (as demonstrated above), run the following repair command, substituting the path to your LevelDB vnodes and the appropriate vnode number:


eleveldb:repair("/path-to-vnode/<vnode_number>", []).



This process will likely take several minutes. When it has completed successfully, you can restart the node and continue as usual.


riak start







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/protocol-buffers/yz-schema-get.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: PBC Yokozuna Schema Get
project: riak
version: 2.0.0+
document: api
toc: true
audience: advanced
keywords: [api, protocol-buffer, yokozuna, search]
group_by: “Object/Key Operations”




Fetch a [[search schema]] from Riak Search.



Request


In a request message, you only need to specify the name of the schema as
a binary (under name);


message RpbYokozunaSchemaGetReq {
    required bytes name  =  1;  // Schema name
}






Response


message RpbYokozunaSchemaGetResp {
  required RpbYokozunaSchema schema =  1;
}



The response message will include a RpbYokozunaSchema structure.


message RpbYokozunaSchema {
    required bytes name    =  1;
    optional bytes content =  2;
}



This message includes the schema name and its xml content.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/running/recovery/rolling-restart.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Rolling Restart
project: riak
version: 1.4.8+
document: tutorial
audience: advanced
keywords: [kv, troubleshooting]




Because Riak functions as a multi-node system, cluster-level [[Riak version upgrades|Rolling Upgrades]] and restarts can be performed on a node-by-node, “rolling” basis.


The following steps should be undertaken on each Riak node that you wish to restart:


1. Stop Riak


riak stop



2. Perform any necessary maintenance, upgrade, or other work in your cluster.


3. Start Riak again


riak start



4. Verify that the riak_kv service is once again available on the target node


riak-admin wait-for-service riak_kv <nodename>



If this responds with riak_kv is up, then the service is available and you can move on to the next step. Otherwise, the console will periodically return riak_kv is not up until the service is available.


5. Verify that all in-progress handoffs have been completed


riak-admin transfers



If this responds with No transfers active, then all handoffs are complete. You can either run this command periodically until no more transfers are active or run the following script, which will run the riak-admin transfers command every 5 seconds until the transfers are complete:


while ! riak-admin transfers | grep -iqF 'No transfers active'
do
    echo 'Transfers in progress'
    sleep 5
done



6. Repeat the above process for any other nodes that need to be restarted.




          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/protocol-buffers/delete-object.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: PBC Delete Object
project: riak
version: 0.14.0+
document: api
toc: true
audience: advanced
keywords: [api, protocol-buffer]
group_by: “Object/Key Operations”
moved: {
‘1.4.0-‘: ‘/references/apis/protocol-buffers/PBC-Delete-Object’
}




Delete an object in the specified [[bucket type|Using Bucket
Types]]/bucket/key location.



Request


message RpbDelReq {
    required bytes bucket = 1;
    required bytes key = 2;
    optional uint32 rw = 3;
    optional bytes vclock = 4;
    optional uint32 r = 5;
    optional uint32 w = 6;
    optional uint32 pr = 7;
    optional uint32 pw = 8;
    optional uint32 dw = 9;
    optional uint32 timeout = 10;
    optional bool sloppy_quorum = 11;
    optional uint32 n_val = 12;
    optional bytes type = 13;
}




Required Parameters


Parameter | Description |
:———|:————|
bucket | The name of the bucket in which the object is stored
key | The key under which the object is stored





Optional Parameters



Note on defaults and special values

All of the optional parameters below have default values determined on a
per-bucket basis. Please refer to the documentation on setting bucket
properties for more information.Furthermore, you can assign an integer value to the rw,
r, w, pr, pw, and
dw, provided that that integer value is less than or equal
to N, or a special value denoting one
(4294967295-1), quorum
(4294967295-2), all
(4294967295-3), or default
(4294967295-4).



Parameter | Description |
:———|:————|
rw | How many replicas to delete before returning a successful response
r | Read quorum, i.e. how many replicas need to agree when retrieving the object
w | Write quorum, i.e. how many replicas to write to before returning a successful response
pr | Primary read quorum, i.e. how many primary replicas need to be available when retrieving the object
pw | Primary write quorum, i.e. how many primary nodes must be up when the write is attempted
dw | Durable write quorum, i.e. how many replicas to commit to durable storage before returning a successful response
timeout | The timeout duration, in milliseconds, after which Riak will return an error message
vclock | Opaque vector clock provided by an earlier RpbGetResp message Used to prevent deleting of objects that have been modified since the last GET request (sent as a byte array)
sloppy_quorum | If this parameter is set to true, the next available node in the ring will accept requests if any primary node is unavailable
n_val | The number of nodes to which the delete request will be sent
type | The bucket types associated with the object. If the bucket type is not specified, the default bucket type will be used, as is the case for all messages sent to Riak that have the bucket type as an optional parameter.







Response


Only the message code is returned.





Example



Request


Hex      00 00 00 12 0D 0A 0A 6E 6F 74 61 62 75 63 6B 65
         74 12 01 6B 18 01
Erlang <<0,0,0,18,13,10,10,110,111,116,97,98,117,99,107,101,116,18,1,107,24,1>>

RpbDelReq protoc decode:
bucket: "notabucket"
key: "k"
rw: 1







Response


Hex      00 00 00 01 0E
Erlang <<0,0,0,1,14>>

RpbDelResp - only message code defined









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/running/recovery/failed-node.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Recovering a Failed Node
project: riak
version: 0.10.0+
document: cookbook
toc: true
audience: advanced
keywords: [troubleshooting]
moved: {
‘1.4.0-‘: ‘/cookbooks/Recovering-a-Failed-Node’
}





General Recovery Notes


A Riak node can fail for many reasons, but a handful of checks enable you to
uncover some of the most common problems that can lead to node failure,
such as checking for RAID and filesystem consistency or faulty memory and
ensuring that your network connections are fully functioning.


When a node fails and is then brought back into the cluster, make sure that it has the same node name that it did before it crashed. If the name has changed, the cluster will assume that the node is entirely new and that the crashed node is still part of the cluster.


During the recovery process, hinted handoff will kick in and update the data on
the recovered node with updates accepted from other nodes in the cluster. Your
cluster may temporarily return not found for objects that are currently
being handed off (see our page on [[Eventual Consistency]] for more details on
these scenarios, in particular how the system behaves while the failed node is
not part of the cluster).





Node Name Changed


If you are recovering from a scenario in which node name changes are out of
your control, you’ll want to notify the cluster of its new name using the
following steps:



		Stop the node you wish to rename:


riak stop










		Mark the node down from another node in the cluster:


riak-admin down <previous_node_name>






		Update the node name in Riak’s configuration files:


nodename = <updated_node_name>



-name <updated_node_name>






		Delete the ring state directory (usually /var/lib/riak/ring).





		Start the node again:


riak start






		Ensure that the node comes up as a single instance:


riak-admin member-status



The output should look something like this:


========================= Membership ==========================












Status     Ring    Pending    Node





valid     100.0%      –      ‘dev-rel@127.0.0.1’


Valid:1 / Leaving:0 / Exiting:0 / Joining:0 / Down:0
```



		Join the node to the cluster:


riak-admin cluster join <node_name_of_a_member_of_the_cluster>






		Replace the old instance of the node with the new:


riak-admin cluster force-replace <previous_node_name> <new_node_name>






		Review the changes:


riak-admin cluster plan



Finally, commit those changes:


riak-admin cluster commit













          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/protocol-buffers/search.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: PBC Search
project: riak
version: 1.2.0+
document: api
toc: true
audience: advanced
keywords: [api, protocol-buffer]
group_by: “Query Operations”
moved: {
‘1.4.0-‘: ‘/references/apis/protocol-buffers/PBC-Search’
}




Send a Search request to retrieve a list of documents, along with a few
stats.



Request


message RpbSearchQueryReq {
  required bytes  q      =  1;
  required bytes  index  =  2;
  optional uint32 rows   =  3;
  optional uint32 start  =  4;
  optional bytes  sort   =  5;
  optional bytes  filter =  6;
  optional bytes  df     =  7;
  optional bytes  op     =  8;
  repeated bytes  fl     =  9;
  optional bytes  presort = 10;
}



Required Parameters



		q — The contents of the query


		index — The name of the index to search





Optional Parameters



		rows — The maximum number of rows to return


		start — A start offset, i.e. the number of keys to skip before
returning values


		sort — How the search results are to be sorted


		filter — Filters search with additional query scoped to inline
fields


		df — Override the default_field setting in the schema file


		op — and or or, to override the default_op operation setting
in the schema file


		fl — Return the fields limit


		presort — Presort. The options are key or score








Response


The results of a search query are returned as a repeating list of 0 or
more RpbSearchDocs. RpbSearchDocs themselves are composed of 0 or
more key/value pairs (RpbPair) that match the given request
parameters. It also returns the maximum search score and the number of
results.


// RbpPair is a generic key/value pair datatype used for
// other message types
message RpbPair {
  required bytes key = 1;
  optional bytes value = 2;
}

message RpbSearchDoc {
  repeated RpbPair fields = 1;
}

message RpbSearchQueryResp {
  repeated RpbSearchDoc docs      = 1;
  optional float        max_score = 2;
  optional uint32       num_found = 3;
}



Values



		docs — A list of docs that match the search request


		max_score — The top score returned


		num_found — Returns the total number of values matched by this
search








Example


Request


Here we search for any animals that being with the string pig. We only
want the first 100, and sort the values by a name field.


RpbSearchQueryReq protoc decode:
q: "pig*"
index: "animals"
rows: 100
start: 0
sort: "name"

Hex     00 00 00 1A 1B 0A 04 70 69 67 2A 12 07 61 6E
        69 6D 61 6C 73 18 64 20 00 2A 04 6E 61 6D 65
Erlang  <<0,0,0,26,27,10,4,112,105,103,42,18,7,97,110,
          105,109,97,108,115,24,100,32,0,42,4,110,97,
          109,101>>



Response


Hex     00 00 00 36 1B 0A 1D 0A 0D 0A 06 61 6E 69 6D
        61 6C 12 03 70 69 67 0A 0C 0A 04 6E 61 6D 65
        12 04 66 72 65 64 0A 12 0A 10 0A 06 61 6E 69
        6D 61 6C 12 06 70 69 67 65 6F 6E 18 02
Erlang  <<0,0,0,54,27,10,29,10,13,10,6,97,110,105,109,
          97,108,18,3,112,105,103,10,12,10,4,110,97,
          109,101,18,4,102,114,101,100,10,18,10,16,10,
          6,97,110,105,109,97,108,18,6,112,105,103,
          101,111,110,24,2>>

RpbSearchQueryResp protoc decode:
docs {
  fields {
    key: "animal"
    value: "pig"
  }
  fields {
    key: "name"
    value: "fred"
  }
}
docs {
  fields {
    key: "animal"
    value: "pigeon"
  }
}
num_found: 2







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/running/recovery/repairing-indexes.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Repairing Indexes
project: riak
version: 1.2.0+
document: tutorial
toc: true
audience: advanced
keywords: [kv, 2i, troubleshooting]
moved: {
‘1.4.0-‘: ‘/cookbooks/Repairing-KV-Indexes’
}





Repairing Secondary Indexes


The riak-admin repair-2i command can be used to repair any stale or missing secondary indexes.  This command scans and repairs any mismatches between the secondary index data used for querying and the secondary index data stored in the Riak objects. It can be run on all partitions of a node or on a subset of them.  It is recommended that these repairs are only scheduled outside of peak load time.



Running a Repair


The secondary indexes of a single partition can be repaired by executing:


riak-admin repair-2i <Partition_ID>



The secondary indexes of every partition can be repaired by executing the same command, without a partition ID:


riak-admin repair-2i






Monitoring a Repair


Repairs can be monitored using the below command:


riak-admin repair-2i status






Killing a Repair


In the event the secondary index repair operation needs to be halted, all repairs can be killed with:


riak-admin repair-2i kill










Repairing Search Indexes


Riak Search indexes currently have no form of anti-entropy (such as read-repair). Furthermore, for performance and load balancing reasons, Search reads from one random node. This means that when a replica loss has occurred, inconsistent results may be returned.



Running a Repair


If a replica loss has occurred, you need to run the repair command. This command repairs objects from a node’s adjacent partitions on the ring, consequently fixing the search index.


This is done as efficiently as possible by generating a hash range for all the buckets and thus avoiding a preflist calculation for each key. Only a hash of each key is done, its range determined from a bucket

→


range map, and then the hash is checked against the range.


This code will force all keys in each partition on a node to be reread, thus rebuilding the search index properly.



		From a cluster node with Riak installed, attach to the Riak console:


riak attach



You may have to hit enter again to get a console prompt.





		Get a list of partitions owned by the node that needs repair:


{ok, Ring} = riak_core_ring_manager:get_my_ring().



You will get a lot of output with Ring record information. You can safely ignore it.





		Then run the following code to get a list of partitions. Replace ‘dev1@127.0.0.1’ with the name of the node you need to repair.


Partitions = [P || {P, 'dev1@127.0.0.1'} <- riak_core_ring:all_owners(Ring)].



Note: The above is an Erlang list comprehension [http://www.erlang.org/doc/programming_examples/list_comprehensions.html], that loops over each {Partition, Node} tuple in the Ring, and extracts only the partitions that match the given node name, as a list.





		Execute repair on all the partitions. Executing them all at once like this will cause a lot of {shutdown,max_concurrency} spam but it’s not anything to worry about. That is just the transfers mechanism enforcing an upper limit on the number of concurrent transactions.


[riak_search_vnode:repair(P) || P <- Partitions].






		When you’re done, press Ctrl-D to disconnect the console. DO NOT RUN q() which will cause the running Riak node to quit. Note that Ctrl-D merely disconnects the console from the service, it does not stop the code from running.











Monitoring a Repair


The above Repair command can be slow, so if you reattach to the console, you can run the repair_status function. You can use the Partitions variable defined above to get the status of every partition.


[{P, riak_search_vnode:repair_status(P)} || P <- Partitions].



When you’re done, press Ctrl-D to disconnect the console.





Killing a Repair


Currently there is no easy way to kill an individual repair.  The only
option is to kill all repairs targeting a given node.  This is done by
running riak_core_vnode_manager:kill_repairs(Reason) on the node
undergoing repair.  This means you’ll either have to be attached to
that node’s console or you can use the rpc module to make a remote
call.  Here is an example of killing all repairs targeting partitions
on the local node.


riak_core_vnode_manager:kill_repairs(killed_by_user).



Log entries will reflect that repairs were killed manually, something akin to this:


2012-08-10 10:14:50.529 [warning] <0.154.0>@riak_core_vnode_manager:handle_cast:395 Killing all repairs: killed_by_user



Here is an example of executing the call remotely.


rpc:call('dev1@127.0.0.1', riak_core_vnode_manager, kill_repairs, [killed_by_user]).



When you’re done, press Ctrl-D to disconnect the console.


Repairs are not allowed to occur during ownership changes.  Since
ownership entails the moving of partition data it is safest to make
them mutually exclusive events.  If you join or remove a node all
repairs across the entire cluster will be killed.








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/protocol-buffers/dt-set-store.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: PBC Data Type Set Store
project: riak
version: 2.0.0+
document: api
toc: true
audience: advanced
keywords: [api, protocol-buffer, datatypes]
group_by: “Object/Key Operations”




An operation to update a set, either on its own (at the bucket/key
level) or [[inside of a map|PBC Data Type Map Store]].



Request


message SetOp {
    repeated bytes adds    = 1;
    repeated bytes removes = 2;
}



Set members are binary values that can only be added (adds) or removed
(removes) from a set. You can add and/or remove as many members of a
set in a single message as you would like.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/running/monitoring/snmp.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: SNMP
project: riak
header: riakee
version: 1.0.0+
document: cookbook
toc: true
audience: intermediate
keywords: [snmp]
moved: {
‘2.0.0-‘: ‘riakee:/cookbooks/SNMP-Configuration’
}




Riak Enterprise provides a built-in SNMP server that allows an external system, such as Hyperic, to query the Riak node for statistics such as the average get and put times as well as the number of puts and gets. This document only covers SNMP v2c support at this time.



Configuration


The first step in configuring your SNMP setup is to edit the appropriate files in the Riak node’s etc/snmp/agent/conf/ directory.


First, edit the agent.conf file and set the appropriate IP on which the SNMP server should listen (Ex: 192.168.1.20):


{intAgentIpAddress, [192,168,1,20]}.
{intAgentUDPPort, 4000}.
{snmpEngineID, "agent's engine"}.
{snmpEngineMaxMessageSize, 484}.

%% Note: The commas in the IP are in the correct format



Next, edit the community.conf file if you would like to change your community from public to a different string.


Finally, edit the standard.conf file and update it with the proper information:


{sysName, "Riak Node 1"}.
{sysDescr, "Riak Agent"}.
{sysContact, "syadmin@company.com"}.
{sysLocation, "System and Rack Location"}.
{sysObjectID, [3,6,1,4,1,193,19]}.  %% {ericsson otp} - don't change
{sysServices, 72}. %% don't change



Riak needs to be restarted for configuration changes to take affect.


Note: Prior to Riak Enterprise 0.13, SNMP configuration values were not reloaded during a restart.


To force Riak to reload SNMP configuration files on startup:



		Open app.config (most package installs place this file in /etc/riak/; Solaris package installs place this file in /opt/riak/etc/).


		Locate the SNMP term:





```erlang
{snmp,
  [{agent,
    [{config, [{dir, "/etc/riak/snmp/agent/conf/"},
               {force_load, true}]},
     {db_dir, "/var/lib/riak/snmp/agent/db/"}]}]}
{snmp,
  [{agent,
    [{config, [{dir, "/etc/riak/snmp/agent/conf/"}]},
     {db_dir, "/var/lib/riak/snmp/agent/db/"}]}]}
```




		Add {force_load, true} to the config term:





```erlang
  {snmp,
    [{agent,
      [{config, [{dir, "/etc/riak/snmp/agent/conf/"},
       {force_load, true}]},
       {db_dir, "/var/lib/riak/snmp/agent/db/"}]}]}
```




		Save app.config


		Restart Riak





Once you have configured the SNMP settings you can start your Riak node and will be able to snmpwalk the node to verify that the setup is working:


$ snmpwalk -OS -c public -v2c -m all 192.168.52.129:4000 .



If you would like to query the OIDs associated with Riak you will need to reference the MIB shipped with Riak. For example, the x86_64 packages have the MIB in the following folder:


/usr/lib64/riak/lib/riak_snmp-0.2/priv/mibs



This folder can be referenced in the snmpwalk command as follows:


$ snmpwalk -OS -c public -v 2c -m ALL \
  -M +/usr/lib64/riak/lib/riak_snmp-0.2/priv/mibs \
  192.168.52.129:4000 RIAK 






SNMP Counters


vnodeGetsType: CounterNumber of vnode-level GETs in past minute


vnodePutsType: CounterNumber of vnode-level PUTs in past minute


nodeGetsType: CounterNumber of GETs in past minute


nodePutsType: CounterNumber of PUTs in past minute


nodeGetTimeMeanType: GaugeMean GET time (microseconds)


nodeGetTimeMedianType: GaugeMedian GET time (microseconds)


nodeGetTime95Type: Gauge95th percentile GET time (microseconds)


nodeGetTime99Type: Gauge99th percentile GET time (microseconds)


nodeGetTime100Type: GaugeMaximum GET time (microseconds)


nodePutTime95Type: Gauge95th percentile PUT time (microseconds)


nodePutTime99Type: Gauge99th percentile PUT time (microseconds)


nodePutTime100Type: GaugeMaximum PUT time (microseconds)


nodePutTimeMeanType: GaugeMean PUT time (microseconds)


nodePutTimeMedianType: GaugeMedian PUT time (microseconds)






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/protocol-buffers/secondary-indexes.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: PBC Secondary Indexes
project: riak
version: 1.2.0+
document: api
toc: true
audience: advanced
keywords: [api, protocol-buffer]
group_by: “Query Operations”
moved: {
‘1.4.0-‘: ‘/references/apis/protocol-buffers/PBC-Index’
}




Request a set of keys that match a secondary index query.



Request


message RpbIndexReq {
    enum IndexQueryType {
        eq = 0;
        range = 1;
    }
    required bytes bucket = 1;
    required bytes index = 2;
    required IndexQueryType qtype = 3;
    optional bytes key = 4;
    optional bytes range_min = 5;
    optional bytes range_max = 6;
    optional bool return_terms = 7;
    optional bool stream = 8;
    optional uint32 max_results = 9;
    optional bytes continuation = 10;
    optional uint32 timeout = 11;
    optional bytes type = 12;
    optional bytes term_regex = 13;
    optional bool pagination_sort = 14;
}




Required Parameters


Parameter | Description
:———|:———–
bucket | The name of the bucket in which the Data Type is stored
index | The name of the index to be queried
qtype | The type of index query to be performed. This can take either of the two possible values of the IndexQueryType enum: eq for an exact index match for the given key or range for a range query





Optional Parameters


Parameter | Description
:———|:———–
key | The name of the index to be queried if qtype is set to eq
range_min and range_max | The minimum and maximum values for a range query if qtype is set to range
return_terms | If set to true, the response will include matched indexed values (for range queries only)
stream | If set to true, keys matching the index query will be streamed to the client instead of waiting for max_results or the full result to be tabulated
max_results | If pagination is turned on, the number of results to be returned to the client
continuation | If set to true, values are returned in a paginated response
timeout | The timeout duration, in milliseconds, after which Riak will return an error message
type | The bucket type of the bucket that is being queried. If not set, the bucket type default will be used. Learn more about [[using bucket types]].
term_regex | If set to a regular expression (as a binary), a term filter will be applied to the index query
pagination_sort | If set to true, paginated results will be sorted, first by index value, then by key







Response


The results of a Secondary Index query are returned as a repeating list
of 0 or more keys that match the given request parameters.


message RpbIndexResp {
    repeated bytes keys = 1;
    repeated RpbPair results = 2;
    optional bytes continuation = 3;
    optional bool done = 4;
}




Values


Parameter | Description
:———|:———–
keys | A list of keys that match the index request
results | If return_terms is specified with range queries, used to return matched index values as key/value pairs in RpbPair messages. More on RpbPair messages can be found in [[PBC Fetch Object]].
continuation | Used for paginated responses
done | Used for streaming. The value will be true when the current stream is done (either max_results has been reached or there are no more results).







Example



Request


Here we look for any exact matches of chicken on an animal_bin index
for a bucket named farm.


RpbIndexReq protoc decode:
bucket: "farm"
index: "animal_bin"
qtype: 0
key: "chicken"

Hex     00 00 00 1E 19 0A 04 66 61 72 6D 12 0A 61 6E 69
        6D 61 6C 5F 62 69 6E 18 00 22 07 63 68 69 63 6B 65 6E
Erlang  <<0,0,0,30,25,10,10,4,102,97,114,109,18,10,97,110,105,
          109,97,108,95,98,105,110,24,0,34,7,99,104,105,99,107,
          101,110>>






Response


Hex     00 00 00 0F 1A 0A 03 68 65 6E 0A 07 72 6F 6F 73 74 65 72
Erlang  <<0,0,0,15,26,10,3,104,101,110,10,7,114,111,111,115,116,101,114>>

RpbIndexResp protoc decode:
keys: "hen"
keys: "rooster"









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/running/recovery/failure-recovery.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Failure and Recovery
project: riak
version: 1.0.0+
document: cookbook
toc: true
audience: advanced
keywords: [operator, troubleshooting]
moved: {
‘1.4.0-‘: ‘/cookbooks/Failure-and-Recovery’
}




Riak was built to withstand—or at the very least reduce the severity
of—many types of system failure. Nonetheless, bugs are a reality,
hardware does break, and occasionally Riak itself will fail. Here, we’ll
list some steps that can be taken to minimize the harm caused by a general
cluster failure.



Forensics


When a failure occurs, collect as much information as possible. Check
monitoring systems, backup log and configuration files if they are
available, including system logs like dmesg and syslog. Make sure
that the other nodes in the Riak cluster are still operating normally and
are not affected by a wider problem like a virtualization or network outage.
Try to determine the cause of the problem from the data you have collected.





Data Loss


Many failures incur no data loss or minimal loss that can be
repaired automatically, without intervention. Outage of a single node
does not necessarily cause data loss, as other replicas of every key are
available elsewhere in the cluster. Once the node is detected as down,
other nodes in the cluster will take over its responsibilities
temporarily and transmit the updated data to it when it eventually
returns to service (also called [[hinted handoff|Riak Glossary#hinted-handoff]]).


More severe data loss scenarios usually relate to hardware failure.
If data is lost, several options are available for restoring it.



		Restore from backup — A daily backup of Riak nodes can be helpful.
The data in this backup may be stale depending on the time at which
the node failed, but it can be used to partially restore data from
lost storage volumes. If running in a RAID configuration, rebuilding
the array may also be possible.


		Restore from multi-cluster replication — If replication is enabled
between two or more clusters, the missing data will gradually be
restored via realtime replication and fullsync replication. A
fullsync operation can also be triggered manually via the riak-repl
command.


		Restore using intra-cluster repair — Riak versions 1.2 and greater
include a repair feature which will restore lost partitions with
data from other replicas. Currently, this must be invoked manually
using the Riak console and should be performed with guidance from a
Basho Client Services Engineer.





Once data has been restored, normal operations should continue. If
multiple nodes completely lose their data, consultation and assistance
from Basho are strongly recommended.





Data Corruption


Data at rest on disk can become corrupted by hardware failure or other
events. Generally, the Riak storage backends are designed to handle
cases of corruption in individual files or entries within files, and can
repair them automatically or simply ignore the corrupted parts.
Otherwise, clusters can recover from data corruption in roughly the same
way that they recover from data loss.





Out-of-Memory


Sometimes, Riak will exit when it runs out of available RAM. While this
does not necessarily cause data loss, it may indicate that the cluster
needs to be scaled out. If free capacity is low on the rest of the cluster while the node is out, other nodes may also be at risk, so monitor carefully.


Replacing the node with one that has greater RAM capacity may temporarily
alleviate the problem, but out-of-memory (OOM) issues tend to be an indication
that the cluster is under-provisioned.





High Latency / Request Timeout


High latencies and timeouts can be caused by slow disks or networks or an
overloaded node. Check iostat and vmstat or your monitoring system to
determine the state of resource usage. If I/O utilization is high but
throughput is low, this may indicate that the node is responsible for
too much data and growing the cluster may be necessary. Additional RAM
may also improve latency because more of the active dataset will be
cached by the operating system.


Sometimes extreme latency spikes can be caused by [[sibling explosion
|Vector Clocks#Siblings]]. This condition occurs when the client
application does not resolve conflicts properly or in a timely fashion.
In that scenario, the size of the value on disk grows in proportion to
the number of siblings, causing longer disk service times and slower
network responses.


Sibling explosion can be detected by examining the node_get_fsm_siblings
and node_get_fsm_objsize statistics from the riak-admin status command.
To recover from sibling explosion, the application should be throttled and
the resolution policy might need to be invoked manually on offending keys.


A Basho CSE can assist in manually finding large values, i.e. those that
potentially have a sibling explosion problem, in the storage backend.


MapReduce requests typically involve multiple I/O operations and are
thus the most likely to time out. From the perspective of the client
application, the success of MapReduce requests can be improved by reducing the
number of inputs, supplying a longer request timeout, and reducing the usage
of secondary indexes. Heavily loaded clusters may experience more MapReduce
timeouts simply because many other requests are being serviced as well. Adding
nodes to the cluster can reduce MapReduce failure in the long term by
spreading load and increasing available CPU and IOPS.





Cluster Recovery From Backups


The general procedure for recovering a cluster from catastrophic failure
involves:


Note

If you are restoring in an environment where the new nodes will have new network addresses (such as with AWS for example) or you will otherwise need to give the nodes new names, you will need to rename the nodes in the cluster.  After performing steps 1-8, use the instructions in the [[Renaming Nodes]] document to finish restoring this cluster.


		Establish replacement cluster configured with the same number of nodes.


		Restore the Riak configuration on each of the nodes.


		Ensure that Riak is not running on any of the nodes.


		Remove any previous Riak data (e.g., from /var/lib/riak) to ensure that
the node is started with no data present.


		Restore the backup data to each node’s data root (e.g, /var/lib/riak).


		If you are restoring in an environment where the new nodes will have new
network addresses (such as on AWS) or you will otherwise need to give the
nodes new names, you need to execute riak-admin replace to change the network name for every node in the cluster from each node.


		After renaming the nodes with riak-admin replace if necessary, you should
check the vm.args configuration file to ensure that each node has the
updated name.


		Make sure the [[firewall settings|Security and Firewalls]] for the new
nodes allow the same traffic that was permitted between the old nodes.
The first node will not be able to start up if attempts to contact the
other down nodes hang instead of being refused.


		Start the first node and check that its name is correct; one way to do
this is to start the node, then attach to the node with riak attach.
You should see the node name as part of the prompt as in the example
below. Once you’ve verified the correct node name, exit the console
with CTRL-D.


		Execute riak-admin member-status on the node and verify that it
returns expected output.


		Start each of the remaining nodes, verifying the details in the same
manner as the first node.






Tip
 If you are a licensed Riak Enterprise or CS customer and require assistance or further advice with a cluster recovery, please file a ticket with the Basho Helpdesk.





          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/protocol-buffers/auth-req.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: PBC Auth Request
project: riak
version: 2.0.0+
document: api
toc: true
audience: advanced
keywords: [api, protocol-buffer]
group_by: “Object/Key Operations”




Sends a username (user) and password (password) to Riak as part of
an authentication request. Both values are sent as binaries.



Request


message RpbAuthReq {
    required bytes user = 1;
    required bytes password = 2;
}



For more on authentication, see our documentation on [[Authentication
and Authorization]].






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/running/tools/index.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Command Line Tools
project: riak
version: 0.10.0+
document: reference
toc: true
index: true
audience: beginner
keywords: [command-line]
moved: {
‘1.4.0-‘: ‘/cookbooks/Repairing-KV-Indexes’
}




This is a description of the Riak command-line tools and their
subcommands. These tools are located in the bin directory of an
embedded node, and the path when installed from a package (usually
/usr/sbin or /usr/local/sbin).


This is a description of the Riak command-line tools and their
subcommands. These tools are located in the bin directory of an
embedded node, and the path when installed from a package (usually
/usr/sbin or /usr/local/sbin).



riak


[[riak|riak Command Line]] is the primary script for controlling the
Riak node process. The following subcommands are available:



		[[help|riak Command Line#help]]


		[[start|riak Command Line#start]]


		[[stop|riak Command Line#stop]]


		[[restart|riak Command Line#restart]]


		[[reboot|riak Command Line#reboot]]


		[[ping|riak Command Line#ping]]


		[[console|riak Command Line#console]]


		[[attach|riak Command Line#attach]]


		[[attach-direct|riak Command Line#attach-direct]]


		[[ertspath|riak Command Line#ertspath]]


		[[chkconfig|riak Command Line#chkconfig]]


		[[escript|riak Command Line#escript]]


		[[version|riak Command Line#version]]


		[[getpid|riak Command Line#getpid]]


		[[top|riak Command Line#top]]


		[[config|riak Command Line#config]]








riak-admin


[[riak-admin|riak-admin Command Line]] performs operations not related
to node liveness, including node membership, backup, and basic status
reporting. The node must be running for most of these commands to work.
The following subcommands are supported:



		[[cluster|riak-admin Command Line#cluster]]
		[[cluster join|riak-admin Command Line#cluster join]]


		[[cluster leave|riak-admin Command Line#cluster leave]]


		[[cluster force-remove|riak-admin Command Line#cluster force-remove]]


		[[cluster replace|riak-admin Command Line#cluster replace]]


		[[cluster force-replace|riak-admin Command Line#cluster force-replace]]


		[[cluster plan|riak-admin Command Line#cluster-plan]]


		[[cluster clear|riak-admin Command Line#cluster-clear]]


		[[cluster commit|riak-admin Command Line#cluster-commit]]


		[[cluster plan|riak-admin Command Line#cluster-plan ]]


		[[cluster clear|riak-admin Command Line#cluster-clear]]


		[[cluster commit|riak-admin Command Line#cluster-commit]]








		[[join|riak-admin Command Line#join]]


		[[leave|riak-admin Command Line#leave]]


		[[backup|riak-admin Command Line#backup]]


		[[restore|riak-admin Command Line#restore]]


		[[test|riak-admin Command Line#test]]


		[[reip|riak-admin Command Line#reip]]


		[[status|riak-admin Command Line#status]]


		[[js-reload|riak-admin Command Line#js-reload]]


		[[erl-reload|riak-admin Command Line#erl-reload]]


		[[services|riak-admin Command Line#services]]


		[[wait-for-service|riak-admin Command Line#wait-for-service]]


		[[ringready|riak-admin Command Line#ringready]]


		[[transfers|riak-admin Command Line#transfers]]


		[[transfer limit|riak-admin Command Line#transfer-limit]]


		[[down|riak-admin Command Line#down]]


		[[cluster-info|riak-admin Command Line#cluster-info]]


		[[member-status|riak-admin Command Line#member-status]]


		[[ring-status|riak-admin Command Line#ring-status]]


		[[vnode-status|riak-admin Command Line#vnode-status]]


		[[aae-status|riak-admin Command Line#aae-status]]


		[[diag|riak-admin Command Line#diag]]


		[[status|riak-admin Command Line#status]]


		[[reformat-indexes|riak-admin Command Line#reformat-indexes]]


		[[top|riak-admin Command Line#top]]


		[[downgrade-objects|riak-admin Command Line#downgrade-objects]]


		[[security|riak-admin Command Line#security]]


		[[bucket-type|riak-admin Command Line#bucket-type]]


		[[repair-2i|riak-admin Command Line#repair-2i]]


		[[search|riak-admin Command Line#search]]


		[[ensemble-status|riak-admin Command Line#ensemble-status]]









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/protocol-buffers/yz-index-put.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: PBC Yokozuna Index Put
project: riak
version: 2.0.0+
document: api
toc: true
audience: advanced
keywords: [api, protocol-buffer, yokozuna, search]
group_by: “Object/Key Operations”




Create a new index or modify an existing index.



Request


message RpbYokozunaIndexPutReq {
    required RpbYokozunaIndex index  =  1;
}



Each message must contain a RpbYokozunaIndex message providing
information about the index being stored.


message RpbYokozunaIndex {
    required bytes name   =  1;
    optional bytes schema =  2;
    optional uint32 n_val =  3;
}



Each message specifying an index must include the index’s name as a
binary (as name). Optionally, you can specify a [[schema|search schema]] name and/or an n_val, i.e. the number of nodes on which the
index is stored (for GET requests) or on which you wish the index to be
stored (for PUT requests). An index’s n_val must match the associated
bucket’s n_val.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/running/monitoring/jmx.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: JMX Monitoring
project: riak
header: riakee
version: 1.0.0+
document: cookbook
toc: true
audience: intermediate
keywords: [mdc, repl, config]
moved: {
‘2.0.0-‘: ‘riakee:/cookbooks/JMX-Monitoring’
}




Riak exposes monitoring data via JMX.  To enable JMX monitoring, edit the [[app.config|Configuration Files#app-config]] associated with your Riak installation and set the enabled property of the riak_jmx section to true as shown below.  The TCP port on which the JMX provider listens is also configurable in this section (the default JMX port is 41110).


    {riak_jmx, [
        {enabled, true},
        {port, 41110}
      ]}



To view JMX data—assuming that you have the Sun JDK installed—launch JConsole as follows:


$ jconsole <hostname_to_monitor>:<jmx_port>



Once connected, click on the MBeans tab, expand the com.basho.riak tree view, and select Attributes. The attributes listed in the table below will be displayed.


Riak JMX has been tested with the Sun JRE 1.6.0_12 and 1.6.0_20. Some older/non-Sun JREs do not work (e.g. the default java-gcj JRE installed on Debian lenny). If you have problems with JMX or see the message below, please try upgrading to the Sun JRE:


   =INFO REPORT==== 9-Jun-2010::08:14:57 ===
   JMX server monitor <pid> exited with code <non-zero>.




Exported JMX Attributes







    
        		Attribute
        		Type
        		Description
    


    
        		CPUNProcs
        		int
        		Number of running processes
    


    
        		CpuAvg1
        		int
        		1 minute load average
    


    
        		CpuAvg5
        		int
        		5 minute load average
    


    
        		CpuAvg15
        		int
        		15 minute load average
    


    
        		NodeGetFsmTime95
        		float
        		95th percentile GET time (microseconds)
    


    
        		NodeGetFsmTime99
        		float
        		99th percentile GET time (microseconds)
    


    
        		NodeGetFsmTimeMax
        		float
        		Maximum GET time (microseconds)
    


    
        		NodeGetFsmTimeMean
        		float
        		Mean GET time (microseconds)
    


    
        		NodeGetFsmTimeMedian
        		float
        		Median GET time (microseconds)
    


    
        		NodeGets
        		int
        		Number of GETs in past minute
    


    
        		NodeGetsTotal
        		int
        		Number of GETs since node start
    


    
        		NodeName
        		string
        		Node name
    


    
        		NodePutFsmTime95
        		float
        		95th percentile PUT time (microseconds)
    


    
        		NodePutFsmTime99
        		float
        		99th percentile PUT time (microseconds)
    


    
        		NodePutFsmTimeMax
        		float
        		Maximum PUT time (microseconds)
    


    
        		NodePutFsmTimeMean
        		float
        		Mean PUT time (microseconds)
    


    
        		NodePutFsmTimeMedian
        		float
        		Median PUT time (microseconds)
    


    
        		NodePuts
        		int
        		Number of PUTs in past minute
    


    
        		NodePutsTotal
        		int
        		Number of PUTs since node start
    


    
        		PBCActive
        		int
        		Number of active Protocol Buffers connections
    


    
        		PBCConnects
        		int
        		Number of Protocol Buffers connections in past minute
    


    
        		PBCConnectsTotal
        		int
        		Number of Protocol Buffers connections since node start
    


    
        		RingCreationSize
        		int
        		Number of partitions in Riak ring
    


    
        		VnodeGets
        		int
        		Number of vnode-level GETs in past minute
    


    
        		VnodeGetsTotal
        		int
        		Number of vnode-level GETs since node start
    


    
        		VnodePuts
        		int
        		Number of vnode-level PUTs in past minute
    


    
        		VnodePutsTotal
        		int
        		Number of vnode-level PUTs since node start
    








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/protocol-buffers/dt-map-store.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: PBC Data Type Map Store
project: riak
version: 2.0.0+
document: api
toc: true
audience: advanced
keywords: [api, protocol-buffer, datatypes]
group_by: “Object/Key Operations”




An operation to be applied to a value stored in a map (the contents of an update operation). The operation field that is present depends on the type of the field to which it is applied. All operations apply to individual fields nested in the map, i.e. counter-specific operations apply to specified counters in the map, set-specific operations to sets, etc.



Request


Operations on maps are requested using a MapOp message, which has the following structure:


message MapOp {
    repeated MapField  adds    = 1;
    repeated MapField  removes = 2;
    repeated MapUpdate updates = 3;
}



In a MapOp message, you can either add or remove fields (sets, counters, or maps) to or from the map or update a field or multiple fields. You can include as many field additions or removals and/or field updates as you wish.


Adding or removing a field involves including a MapField message in your MapOp operation:


message MapField {
    enum MapFieldType {
        COUNTER  = 1;
        SET      = 2;
        REGISTER = 3;
        FLAG     = 4;
        MAP      = 5;
    }
    required bytes        name = 1;
    required MapFieldType type = 2;
}



The MapFieldType specifies which type of field is being updated, and must be one of the possible values of the MapFieldType enum (either COUNTER, SET, REGISTER, FLAG, or MAP). The name parameter specifies the name of the field that will be updated.


If you wish to update a map field, you can do so using a MapUpdate message, which has the following structure:


message MapUpdate {
    enum FlagOp {
        ENABLE  = 1;
        DISABLE = 2;
    }
    required MapField  field       = 1;
    optional CounterOp counter_op  = 2;
    optional SetOp     set_op      = 3;
    optional bytes     register_op = 4;
    optional FlagOp    flag_op     = 5;
    optional MapOp     map_op      = 6;
}



The MapField parameter is explained above. The operations used to update fields depend on the Data Type in that field, i.e. CounterOp messages to update counters, SetOp messages to update sets, etc. Updating counters is covered in [[PBC Data Type Counter Store]] while updating sets is covered in [[PBC Data Type Set Store]].


If you are updating a flag, you do so by including a FlagOp message. As shown in the MapUpdate message above, this operation takes one of two values: ENABLE and DISABLE (1 and 2, respectively).


Updating a register does not involve sending a special message type. Instead, you must set the register to a desired value by specifying a binary for the register_op parameter.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/running/recovery/errors.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Common Errors
project: riak
version: 1.3.0+
document: reference
toc: true
audience: advanced
keywords: [errors]
interest: []
body_id: errors
moved: {
‘1.4.0-‘: ‘/references/Errors’
}




This is not a comprehensive listing of every error that Riak may
encounter – screws fall out all of the time, the world is an imperfect
place. This is an attempt at capturing the most common recent errors
that users do encounter, as well as give some description to non
critical error atoms which you may find in the logs.


Discovering the source of an error can take some detective work, since
one error can cause a cascade of errors.



Errors and Messages


The tables in this document do not specify which logs these error
messages may appear in. Depending upon your log configuration some may
appear more often (i.e., if you set the log to debug), while others may
output to your console (eg. if you tee’d your output or started as riak console).


You can optionally customize your log message format via the
lager_default_formatter field under lager in app.config. If you
do, your messages will look different from those shown in this document.


Finally, this document is organized to be able to lookup portions of a
log message, since printing every variation would be a bit unwieldy. For
example, this message:


12:34:27.999 [error] gen_server riak_core_capability terminated with reason:\
no function clause matching orddict:fetch('riak@192.168.2.81', []) line 72



Starts with a date (12:34:27.999), followed by the log severity
([error]), with a message formatted by lager (found in the Lager table
below as gen_server Mod terminated with reason: Reason)



Lager Formats


Riak’s main logging mechanism is the project Lager, so it’s good to note
some of the more common message formats. In almost every case the
reasons for the error are described as variables, such as Reason of
Mod (meaning the Erlang module which is generally the source of the
error).


Riak does not format all error messages that it receives into
human-readable sentences. However, It does output errors as objects.


The above example error message corresponds with the first message in
this table, where the Erlang Mod value is riak_core_capability and
the reason was an Erlang error: no function clause matching orddict:fetch('riak@192.168.2.81', []) line 72.


Error | Message
——|——–
| gen_server <Mod> terminated with reason: <Reason>
| gen_fsm <Mod> in state <State> terminated with reason: <Reason>
| gen_event <ID> installed in <Mod> terminated with reason: <Reason>
badarg | bad argument in call to <Mod1> in <Mod2>
badarith | bad arithmetic expression in <Mod>
badarity | fun called with wrong arity of <Ar1> instead of <Ar2> in <Mod>
badmatch | no match of right hand value <Val> in <Mod>
bad_return | bad return value <Value> from <Mod>
bad_return_value | bad return value: <Val> in <Mod>
badrecord | bad record <Record> in <Mod>
case_clause | no case clause matching <Val> in <Mod>
emfile | maximum number of file descriptors exhausted, check ulimit -n
function_clause | no function clause matching <Mod>
function not exported | call to undefined function <Func> from <Mod>
if_clause | no true branch found while evaluating if expression in <Mod>
noproc | no such process or port in call to <Mod>
{system_limit, {erlang, open_port}} | maximum number of ports exceeded
{system_limit, {erlang, spawn}} | maximum number of processes exceeded
{system_limit, {erlang, spawn_opt}} | maximum number of processes exceeded
{system_limit, {erlang, list_to_atom}} | tried to create an atom larger than 255, or maximum atom count exceeded
{system_limit, {ets, new}} | maximum number of Erlang Term Storage (ETS) tables exceeded
try_clause | no try clause matching <Val> in <Mod>
undef | call to undefined function <Mod>





Error Atoms


Since Erlang programming support is a “happy path/fail fast” style, one
of the more common error log strings you might encounter contain
{error,{badmatch,{....  This is Erlang’s way of telling you that an
unexpected value was assigned, so these errors can prefix the more
descriptive parts. In this case, {error,{badmatch,{... prefixes the
more interesting insufficient_vnodes_available error, which can be
found in the riak_kv table later on in this document.


2012-01-13 02:30:37.015 [error] <0.116.0> webmachine error: path="/riak/contexts"\
{error,{error,{badmatch,{error,insufficient_vnodes_available}},\
[{riak_kv_wm_keylist,produce_bucket_body,2},{webmachine_resource,resource_call,3},\
{webmachine_resour,resource_call,1},{webmachine_decision_core,decision,1},\
{webmachine_decision_core,handle_request,2},\
{webmachine_mochiweb,loop,1},{mochiweb_http,headers,5}]}}








Erlang Errors


Although relatively rare once a Riak cluster is running in production,
users new to Riak or Erlang occasionally encounter errors on initial
installation. These spring from a setup Erlang does not expect,
generally due to network, permission, or configuration problems.


Error | Description | Resolution
:—–|:————|:———-
{error,duplicate_name} | You are trying to start a new Erlang node, but another node with the same name is already running | You might be attempting to start multiple nodes on the same machine with the same vm.args -name value; or if Riak is already running, check for beam.smp; or epmd thinks Riak is running, check/kill epmd
{error,econnrefused} | Remote Erlang node connection refused | Ensure your cluster is up and nodes are able to communicate with each other. See 1.
{error,ehostunreach} | Remote node cannot be connected to | Ensure that nodes are able to communicate with each other. See 1.
{error,eacces} | Cannot write a given file | Ensure the Riak beam process has permission to write to all *_dir values in app.config, for example, ring_state_dir, platform_data_dir, and others
{error,enoent} | Missing an expected file or directory | Ensure all *_dir values in app.config exist, for example, ring_state_dir, platform_data_dir, and others
{error,erofs} | A file/directory is attempted to be written to a read-only filesystem | Only set Riak directories to read/write filesystems
system_memory_high_watermark | Often a sign than an ETS table has grown too large | Check that you are using a backend appropriate for your needs (LevelDB for very large key counts) and that your vnode count is reasonable (measured in dozens per node rather than hundreds)
temp_alloc | Erlang attempting to allocate memory | Often associated with Cannot allocate X bytes of memory, which means that you’re either creating too large of an object or that you simply don’t have enough RAM. Base minimum suggested RAM per node is 4GB.





Riak Errors and Messages


Many KV errors have prescriptive messages. For such cases we leave it to
Riak to explain the correct course of action. For example, the
map/reduce parse_input phase will respond like this when it
encounters an invalid input:



Note on inputs

Inputs must be a binary bucket, a tuple of bucket and key-filters, a
list of target tuples, a search index, or modfun tuple: `INPUT`.

For the remaining common error codes, they are often marked by Erlang
atoms (and quite often wrapped within an {error,{badmatch,{... tuple,
as described in the [[Error|Common Errors#Erlang-Errors]] section
above). This table lays out those terse error codes and related log
messages, if they exist.



Riak Core


Riak Core is the underlying implementation for KV. These are errors
originating from that framework, and can appear whether you use KV,
Search, or any Core implementation.


Error | Message | Description | Resolution
:—–|:——–|:————|:———-
behavior | | Attempting to execute an unknown behavior | Ensure that your configuration file choices (e.g. backends) support the behaviors you’re attempting to use, such as configuring LevelDB to use secondary indexes
already_leaving | Node is already in the process of leaving the cluster | An error marking a node to leave when it is already leaving | No need to duplicate the leave command
already_replacement |  | This node is already in the replacements request list | You cannot replace the same node twice
{different_owners, N1, N2} |  | Two nodes list different partition owners, meaning the ring is not ready | When the ring is ready, the status should be ok
different_ring_sizes |  | The joining ring is a different size from the existing cluster ring | Don’t join a node already joined to a cluster
insufficient_vnodes_available |  | When creating a query coverage plan, not enough vnodes are available | Check the riak-admin ring-status and ensure all of your nodes are healthy and connected
invalid_replacement |  | A new node is currently joining from a previous operation, so a replacement request is invalid until it is no longer joining | Wait until the node is finished joining
invalid_ring_state_dir | Ring state directory <RingDir> does not exist, and could not be created: <Reason> | The ring directory does not exist and no new dir can be created in expected location | Ensure that the Erlang proc can write to ring_state_diror has permission to create that dir
is_claimant |  | A node cannot be the claimant of its own remove request | Remove/replace nodes from another node
is_up |  | Node is expected to be down but is up | When a node is downed, it should be down
legacy |  | Attempting to stage a plan against a legacy ring | Staging is a feature only of Riak versions 1.2.0+
max_concurrency | Handoff receiver for partition <Partition> exited abnormally after processing <Count> objects: <Reason> | Disallow more handoff processes than the riak_core handoff_concurrency setting (defaults to 2) | If this routinely kills vnodes, this issue has been linked to LevelDB compactions which can build up and block writing, which will also be accompanied by LevelDB logs saying Waiting... or Compacting
{nodes_down, Down} |  | All nodes must be up to check |
not_member |  | This node is not a member of the ring | Cannot leave/remove/down when this is not a ring member
not_reachable |  | Cannot join unreachable node | Check your network connections, ensure Erlang cookie setting vm.args -setcookie
{not_registered, App} |  | Attempting to use an unregistered process | Ensure that your app.config choices contain the app you’re attempting to use {riak_kv_stat, true}
not_single_node |  | There are no other members to join | Join with at least one other node
nothing_planned |  | Cannot commit a plan without changes | Ensure at least one ring change is planned before running commit
only_member |  | This is the only member of the ring | Cannot leave/remove/down when this is the only member of the ring
ring_not_ready |  | Ring not ready to perform command | Attempting to plan a ring change before the ring is ready to do so
self_join |  | Cannot join node with itself | Join another node to form a valid cluster
timeout | <Type> transfer of <Module> from <SrcNode> <SrcPartition> to <TargetNode> <TargetPartition> failed because of TCP recv timeout |  | Ensure that ports chosen in your configuration files do not overlap with ports being used by your system, or with each other
unable_to_get_join_ring |  | Cannot access cluster ring to join | Possible corrupted ring
{unknown_capability, Capability} |  | Attempting to use a capability unsupported by this implementation | Ensure that your configuration choices support the capability you’re attempting to use, such as Pipe MapReduce (setting a mapred_2i_pipe value in app.config)
vnode_exiting | <Mod> failed to store handoff obj: <Err> |  | A vnode fails to hand off data because the handoff state is deleted
vnode_shutdown |  | The vnode worker pool is shutting down | Various reasons can cause a shutdown, check other log messages
| Bucket validation failed <Detail> |  | Only set value bucket properties
| set_recv_data called for non-existing receiver | Cannot connect to receiver during handoff | Ensure receiver node is still up and running, and that the standard
| An <Dir> handoff of partition <M> was terminated because the vnode died | Handoff stopped because of vnode was DOWN and sender must be killed | An expected message if a vnode dies during handoff. Check the logs for other causes.
| status_update for non-existing handoff <Target> | Cannot get the status of a handoff Target module that doesn’t exist | An expected message. Check the logs for other causes.
| SSL handoff config error: property <FailProp>: <BadMat>. | The receiver may reject the senders attempt to start a handoff | Ensure your SSL settings and certificates are proper
| Failure processing SSL handoff config <Props>:<X>:<Y> |  | Ensure your SSL settings and certificates are proper
| <Type> transfer of <Module> from <SrcNode> <SrcPartition> to <TargetNode> <TargetPartition> failed because of <Reason> | Nodes cannot hand off data | Ensure that your cluster is up and nodes are able to communicate with each other. See 1.
| Failed to start application: <App> | Expected application cannot load | This relates to an Erlang application, and not necessarily the Riak application in general. The app may fail to load for many reasons, such as a missing native library. Read other log messages for clues
| Failed to read ring file: <Reason> | Gives a reason why the ring file cannot be read on startup | The reason given explains the problem, such as eacces meaning the Erlang process does not have permission to read
| Failed to load ring file: <Reason> | Gives a reason why the ring file cannot be loaded on startup | The reason given explains the problem, such as enoent meaning the expected file cannot be found
| ring_trans: invalid return value: <Other> | Transferring ring data between nodes received an invalid value | Often associated with ring corruption, or an unexpected exit from the transferring node
| Error while running bucket fixup module <Fixup> from application <App> on bucket <BucketName>: <Reason> |  | Various sources for a fixup error, read associated errors
| Crash while running bucket fixup module <Fixup> from application <App> on bucket <BucketName> : <What>:<Why> |  | Various source for a fixup error, read associated errors
| <Index> <Mod> worker pool crashed <Reason> |  | Various reasons can be the source of a worker pool crash, read associated errors
| Received xfer_complete for non-existing repair: <ModPartition> | Unexpected repair message | Not much to do here, but a node did not expect to receive a xfer_complete status





Riak KV


Riak KV is the key/value implementation, generally just considered to be
Riak proper. This is the source of most of the code, and consequently,
most of the error messages.


Error | Message | Description | Resolution
:—–|:——–|:————|:———-
all_nodes_down |  | No nodes are available | Check riak-admin member-status and ensure that all expected nodes in the cluster are of valid Status
{bad_qterm, QueryTerm} |  | Bad query when performing MapReduce | Fix your MapReduce query
{coord_handoff_failed, Reason} | Unable to forward put for <Key> to <CoordNode> - <Reason> | Vnodes unable to communicate | Check that coordinating vnode is not down. Ensure your cluster is up and nodes are able to communicate with each other. See 1
{could_not_reach_node, Node} |  | Erlang process was not reachable | Check network settings; ensure remote nodes are running and reachable; ensure all nodes have the same Erlang cookie setting vm.args -setcookie. See 1
{deleted, Vclock} |  | The value was already deleted, includes the current vector clock | Riak will eventually clean up this tombstone
{dw_val_violation, DW} |  | Same as w_val_violation but concerning durable writes | Set a valid DW value
{field_parsing_failed, {Field, Value}} | Could not parse field <Field>, value <Value>. | Could not parse an index field | Most commonly an _int field which cannot be parsed. For example a query like this is invalid: /buckets/X/index/Y_int/BADVAL, since BADVAL should instead be an integer
{hook_crashed, {Mod, Fun, Class, Exception}} | Problem invoking pre-commit hook | Precommit process exited due to some failure | Fix the precommit function code, follow the message’s exception and stacktrace to help debug
{indexes_not_supported, Mod} |  | The chosen backend does not support indexes (only LevelDB currently supports secondary indexes) | Set your configuration to use the LevelDB backend
{insufficient_vnodes, NumVnodes, need, R} |  | R was set greater than the total vnodes | Set a proper R value; or too many nodes are down; or too many nodes are unavailable due to crash or network partition. Ensure all nodes are available by running riak-admin ring-status.
{invalid_hook_def, HookDef} | Invalid post-commit hook definition <Def> | No Erlang module and function or JavaScript function name | Define the hook with the correct settings
{invalid_inputdef, InputDef} |  | Bad inputs definitions when running MapReduce | Fix inputs settings; set mapred_system from legacy to pipe
invalid_message | | Unknown event sent to module | Ensure you’re running similar versions of Riak across (and specifically poolboy) across all nodes
{invalid_range, Args} |  | Index range query hasStart > End | Fix your query
{invalid_return, {Mod, Fun, Result}} | Problem invoking pre-commit hook <Mod>:<Fun>, invalid return <Result> | The given precommit function gave an invalid return for the given Result | Ensure your pre-commit functions return a valid result
invalid_storage_backend | storage_backend <Backend> is non-loadable. | Invalid backend choice when starting up Riak | Set a valid backend in your configuration files
key_too_large |  | The key was larger than 65536 bytes | Use a smaller key
local_put_failed |  | A local vnode PUT operation failed | This has been linked to a LevelDB issue related to restricted memory usage and inability to flush a write to disk.  If this happens repetitively, stop/start the riak node, forcing a memory realloc
{n_val_violation, N} |  | (W > N) or (DW > N) or (PW > N) or (R > N) or (PR > N) | No W or R values may be greater than N
{nodes_not_synchronized, Members} |  | Rings of all members are not synchronized | Backups will fail if nodes are not synchronized
{not_supported, mapred_index, FlowPid} |  | Index lookups for MapReduce are only supported with Pipe | Set mapred_system from legacy to pipe
notfound |  | No value found | Value was deleted, or was not yet stored or replicated
{pr_val_unsatisfied, PR, Primaries} |  | Same as r_val_unsatisfied but only counts Primary node replies | Too many primary nodes are down or the PR value was set too high
{pr_val_violation, R} |  | Same as r_val_violation but concerning Primary reads | Set a valid PR value
precommit_fail | Pre-commit hook <Mod>:<Fun> failed with reason <Reason> | The given precommit function failed for the given Reason | Fix the precommit function code
{pw_val_unsatisfied, PR, Primaries} | | Same as w_val_unsatisfied but only counts Primary node replies | Too many primary nodes are down or the PW value was set too high
{pw_val_violation, PW} |  | Same as w_val_violation but concerning primary writes | Set a valid PW value
{r_val_unsatisfied, R, Replies} |  | Not enough nodes replied to satisfy the R value, contains the given R value and the actual number of Replies | Too many nodes are down or the R value was set too high
{r_val_violation, R} |  | The given R value was non-numeric and not a valid setting (on, all, quorum) | Set a valid R value
receiver_down |  | Remote process failed to acknowledge request | Can occur when listkeys is called
{rw_val_violation, RW} |  | The given RW property was non-numeric and not a valid setting (one, all, quorum) | Set a valid RW value
{siblings_not_allowed, Object} | Siblings not allowed: <Object> | The hook to index cannot abide siblings | Set the buckets allow_mult property to false
timeout|  | The given action took too long to reply | Ensure your cluster is up and nodes are able to communicate with each other. See 1. Or check you have a reasonable ulimit size. Note that listkeys commands can easily timeout and shouldn’t be used in production.
{too_few_arguments, Args} |  | Index query requires at least one argument | Fix your query format
{too_many_arguments, Args} |  | Index query is malformed with more than 1 (exact) or 2 (range) values | Fix your query format
too_many_fails |  | Too many write failures to satisfy W or DW | Try writing again. Or ensure your nodes/network is healthy. Or set a lower W or DW value
too_many_results | | Too many results are attempted to be returned | This is a protective error. Either change your query to return fewer results, or change your max_search_results setting in app.config (it defaults to 100,000)
{unknown_field_type, Field} | Unknown field type for field: <Field>. | Unknown index field extension (begins with underscore) | The only value field types are _int and _bin
{w_val_unsatisfied, RepliesW, RepliesDW, W, DW} | | Not enough nodes replied to satisfy the W value, contains the given W value and the actual number of Replies* for either W or DW | Too many nodes are down or the W or DW value was set too high
{w_val_violation, W} |  | The given W property was non-numeric and not a valid setting (on, all, quorum) | Set a valid W value
| Invalid equality query <SKey> | Equality query is required and must be binary for an index call | Pass in an equality value when performing a 2i equality query
| Invalid range query: <Min> -> <Max> | Both range query values are required and must be binary an index call | Pass in both range values when performing a 2i equality query
| Failed to start <Mod> <Reason>:<Reason> | Riak KV failed to start for given Reason | Several possible reasons for failure, read the attached reason for insight into resolution





Backend Errors


These errors tend to stem from server-based problems. Backends are
sensitive to low or corrupt disk or memory resources, native code, and
configuration differences between nodes. Conversely, a network issue is
unlikely to affect a backend.


Error | Message | Description | Resolution
:—–|:——–|:————|:———-
data_root_not_set | | Same as data_root_unset | Set the data_root directory in config
data_root_unset | Failed to create bitcask dir: data_root is not set | The data_root config setting is required | Set data_root as the base directory where to store bitcask data, under the bitcask section
{invalid_config_setting, multi_backend, list_expected} | | Multi backend configuration requires a list | Wrap multi_backend config value in a list
{invalid_config_setting, multi_backend, list_is_empty} | | Multi backend configuration requires a value | Configure at least one backend under multi_backend in app.config
{invalid_config_setting, multi_backend_default, backend_not_found} | | | Must choose a valid backend type to configure
multi_backend_config_unset | | No configuration for Multi backend | Configure at least one backend under multi_backend in app.config
not_loaded | | Native driver not loading | Ensure your native drivers exist (.dll or .so files {riak_kv_multi_backend, undefined_backend, BackendName} | | Backend defined for a bucket is invalid | Define a valid backed before using this bucket under lib/project/priv, where project is most likely eleveldb).
reset_disabled | | Attempted to reset a Memory backend in production | Don’t use this in production





JavaScript


These are some errors related to JavaScript pre-commit functions,
MapReduce functions, or simply the management of the pool of JavaScript
VMs. If you do not use JavaScript, these should not be encountered. If
they are, check your configuration for high *js_vm* values or as an
epiphenomenon to a real issue, such as low resources.


Error    | Message | Description | Resolution
———|———|————-|——-
no_vms | JS call failed: All VMs are busy. | All JavaScript VMs are in use | Wait and run again; increase JavaScript VMs in app.config (map_js_vm_count, reduce_js_vm_count, or hook_js_vm_count)
bad_utf8_character_code | Error JSON encoding arguments: <Args> | A UTF-8 character give was a bad format | Only use correct UTF-8 characters for JavaScript code and arguments
bad_json | | Bad JSON formatting | Only use correctly formatted JSON for JavaScript command arguments
| Invalid bucket properties: <Details> | Listing bucket properties will fail if invalid | Fix bucket properties
{load_error, "Failed to load spidermonkey_drv.so"} | | The JavaScript driver is corrupted or missing | In OS X you may have compiled with llvm-gcc rather than gcc.





MapReduce


These are possible errors logged by Riak’s MapReduce implementation,
both legacy as well as Pipe. If you never use or call MapReduce, you
should not run across these.


Error | Message | Description | Resolution
:—–|:——–|:————|:———-
bad_mapper_props_no_keys | | At least one property should be found by default. Unused in Riak 1.3+ | Set mapper properties, or don’t use it
bad_mapred_inputs | | A bad value sent to MapReduce. Unused in Riak 1.3+ | When using the Erlang client interface, ensure all MapReduce and search queries are correctly binary
bad_fetch | | An expected local query was not retrievable.  Unused in Riak 1.3+ | Placing javascript MapReduce query code as a riak value must first be stored before execution
{bad_filter, <Filter>} | | An invalid keyfilter was used | Ensure your MapReduce keyfilter is correct
{dead_mapper, <Stacktrace>, <MapperData>} | | Getting a reply from a mapper for a job that has already exited.  Unused in Riak 1.3+ | Check for a stuck Erlang process, or if using legacy MR ensure map_cache_size is set (Both issues may require a node restart)
{inputs, Reason} | An error occurred parsing the "inputs" field. | MapReduce request has invalid input field | Fix MapReduce fields
{invalid_json, Message} | The POST body was not valid JSON. The error from the parser was: <Message> | Posting a MapReduce command requires correct JSON | Format MapReduce requests correctly
javascript_reduce_timeout | | JavaScript reduce function taking too long | For large numbers of objects, your JavaScript functions may become bottlenecks. Decrease the quantity of values being passed to and returned from the reduce functions, or rewrite as Erlang functions
missing_field | The post body was missing the "inputs" or "query" field. | Either an inputs or query field is required | Post MapReduce request with at least one
{error,notfound} | | Used in place of a RiakObject in the mapping phase | Your custom Erlang map function should deal with this type of value
not_json | The POST body was not a JSON object. | Posting a MapReduce command requires correct JSON | Format MapReduce requests correctly
{no_candidate_nodes, exhausted_prefist, <Stacktrace>, <MapperData>} | | Some map phase workers died | Possibly a long running job hitting MapReduce timeout, upgrade to Pipe
{<query>, Reason} | An error occurred parsing the "query" field. | MapReduce request has invalid query field | Fix MapReduce query
{unhandled_entry, Other} | Unhandled entry: <Other> | The reduce_identity function is unused | If you don’t need reduce_identity, just don’t set reduce phase at all
{unknown_content_type, ContentType} | | Bad content type for MapReduce query | Only application/json and application/x-erlang-binary are accepted
| Phase <Fitting>: <Reason> | A general error when something happens using the Pipe MapReduce implementation with a bad argument or configuration | Can happen with a bad map or reduce implementation, most recent known gotcha is when a JavaScript function improperly deals with tombstoned objects
| riak_kv_w_reduce requires a function as argument, not a <Type> | Reduce requires a function object, not any other type | This shouldn’t happen







Specific messages


Although you can put together many error causes with the tables above,
here are some common yet esoteric messages with known causes and
solutions.


Message | Resolution
:——–|:———-
gen_server riak_core_capability terminated with reason: no function clause matching orddict:fetch(‘Node‘, []) | The Node has been changed, either through change of IP or vm.args -name without notifying the ring. Either use the riak-admin cluster replace command, or remove the corrupted ring files rm -rf /var/lib/riak/ring/* and rejoin to the cluster
gen_server <PID> terminated with reason: no function clause matching riak_core_pb:encode(Args) line 40 | Ensure you do not have different settings on different nodes (for example, a ttl mem setting on one node’s mem backend, and another without)
monitor busy_dist_port Pid [...{almost_current_function,...] | This message means distributed Erlang buffers are filling up. Try setting zdbbl higher in vm.args, such as +zdbbl 16384. Or check that your network is not slow. Or ensure you are not slinging large values. If a high bandwidth network is congested, try setting RTO_min down to 0 msec (or 1msec).
<PID>@riak_core_sysmon___handler:handle_event:89 Monitor got {suppressed,port_events,1} | Logged as info, you can add +swt very_low to your vm.args
(in LevelDB LOG files) Compaction error | Turn off the node and run repair on the LevelDB partition. See 2
enif_send: env==NULL on non-SMP VM/usr/lib/riak/lib/os_mon-2.2.9/priv/bin/memsup: Erlang has closed. | Riak’s Erlang VM is built with SMP support and if Riak is started on a non-SMP system, an error like this one is logged. This is commonly seen in virtualized environments configured for only one CPU core.
exit with reason bad return value: {error,eaddrinuse} in context start_error | An error like this example can occur when another process is already bound to the same address as the process being started is attempting to bind to. Use operating system tools like netstat, ps, and lsof to determine the root cause for resolving this kind of errors; check for existence of stale  beam.smp processes.
exited with reason: eaddrnotavail in gen_server:init_it/6 line 320 | An error like this example can result when Riak cannot bind to the addresses specified in the configuration. In this case, you should verify HTTP and Protocol Buffers addresses in app.config and ensure that the ports being used are not in the privileged (1-1024) range as the riak user will not have access to such ports.
gen_server riak_core_capability terminated with reason: no function clause matching orddict:fetch(‘riak@192.168.2.2’, []) line 72 | Error output like this example can indicate that a previously running Riak node with an original -name value in vm.args has been modified by simply changing the value in vm.args and not properly through riak-admin cluster replace.
** Configuration error: [FRAMEWORK-MIB]: missing context.conf file => generating a default file | This error is commonly encountered when starting Riak Enterprise without prior [[SNMP]] configuration.
RPC to ‘node@example.com’ failed: {‘EXIT’, {badarg, [{ets,lookup, [schema_table,<<“search-example”>>], []} {riak_search_config,get_schema,1, [{file,”src/riak_search_config.erl”}, {line,69}]} ...| This error can be caused when attempting to use Riak Search without first enabling it in each node’s app.config. See the [[Configuration Files]] documentation for more information on enabling Riak Search.



More



		[bookmark: f1]Ensure node inter-communication






		Check riak-admin member-status and ensure the cluster is valid.


		Check riak-admin ring-status and ensure the ring and vnodes are communicating as expected.


		Ensure your machine does not have a firewall or other issue that prevents traffic to the remote node.


		Your remote vm.args -setcookie must be the same value for every node in the cluster.


		The vm.args -name value must not change after joining the node (unless you use riak-admin cluster replace).






		[bookmark: f2]Run LevelDB compaction





		find . -name "LOG" -exec grep -l 'Compaction error' {} \; (Finding one compaction error is interesting, more than one might be a strong indication of a hardware or OS bug)





		Stop Riak on the node: riak stop





		Start an Erlang session (do not start riak, we just want Erlang)





		From the Erlang console perform the following command to open the LevelDB database


[application:set_env(eleveldb, Var, Val) || {Var, Val} <-
[{max_open_files, 2000},
{block_size, 1048576},
{cache_size, 20*1024*1024*1024},
{sync, false},
{data_root, "/var/db/riak/leveldb"}]].






		For each of the corrupted LevelDB databases (found by find . -name "LOG" -exec | grep -l 'Compaction error' {} \;) run this command substituting in the proper vnode number.


eleveldb:repair("/var/db/riak/leveldb/442446784738847563128068650529343492278651453440", []).






		When all have finished successfully you may restart the node: riak start





		Check for proper operation by looking at log files in /var/log/riak and in the LOG files in the effected LevelDB vnodes.














          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/protocol-buffers/server-info.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: PBC Server Info
project: riak
version: 0.14.0+
document: api
toc: true
audience: advanced
keywords: [api, protocol-buffer]
group_by: “Server Operations”
moved: {
‘1.4.0-‘: ‘/references/apis/protocol-buffers/PBC-Server-Info/’
}




A message from Riak that contains two pieces of information about the
server: the name of the node and the version of Riak in use on that
node.



Request


A request consists only of the RpbGetServerInfoReq message code. No
request message is defined.





Response


message RpbGetServerInfoResp {
    optional bytes node = 1;
    optional bytes server_version = 2;
}






Example



Request


Hex      00 00 00 01 07
Erlang <<0,0,0,1,7>>

RpbGetServerInfoReq - only message code defined






Response


Hex      00 00 00 17 08 0A 0E 72 69 61 6B 40 31 32 37 2E
         30 2E 30 2E 31 12 04 30 2E 31 30
Erlang <<0,0,0,23,8,10,14,114,105,97,107,64,49,50,55,46,48,46,48,46,49,18,4,48,
         46,49,48>>

RpbGetServerInfoResp protoc decode:
node: "riak@127.0.0.1"
server_version: "0.10"









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/running/backups.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Backing up Riak
project: riak
version: 0.10.0+
document: cookbook
toc: true
audience: intermediate
keywords: [operator]
moved: {
‘1.4.0-‘: ‘/cookbooks/Backups’
}




Riak is a [[clustered|Clusters]] system built to survive a wide range of
failure scenarios, including the loss of nodes due to network or
hardware failure. Although this is one of Riak’s core strengths, it
cannot withstand all failure scenarios. Like any storage system, it
remains susceptible to contingencies such as accidental or malicious
deletions. Many Riak users confront this possibility by backing up their
data, i.e. duplicating their database onto a different long-term storage
mechanism. This document covers how to perform such backups.


Riak backups can be performed using OS features or filesystems that
support snapshots, such as LVM or ZFS, or by using tools like rsync or
tar. Choosing your Riak backup strategy will largely depend on your
already-established backup methodologies, as well as the backend
configuration of your nodes. When backing up a node, it is important to
back up the data, ring, and configuration directories of your nodes.


Due to Riak’s eventually consistent nature, backups can become slightly
inconsistent from node to node. Data could exist on some nodes and not
others at the exact time a backup is made. Any inconsistency will be
corrected once a backup is restored, either by Riak’s [[active
anti-entropy]] processes or when the object is read, via [[read
repair|Active Anti-Entropy#Read-Repair-vs-Active-Anti-Entropy]].


Additionally, backups must be performed on a stopped node to prevent
data loss as a result of the background merging and compaction processes
of Riak’s backends. Downtime of a node can be significantly reduced by
using an OS feature or filesystem that supports snapshotting.



OS-Specific Directory Locations


The default Riak data, ring, strong consistency, and configuration
directories for each of the supported operating systems is as follows:



Note on upgrading

If you are upgrading to Riak version 2.0 or later from a pre-2.0
release, you can use either your old app.config
configuration file or the newer riak.conf if you wish.If you have installed Riak 2.0 directly, you should use only
riak.conf.


More on configuring Riak can be found in the [[configuration files]]
doc.




Debian and Ubuntu


Data | Directory
:—-|:———
Bitcask | /var/lib/riak/bitcask
LevelDB | /var/lib/riak/leveldb
Ring | /var/lib/riak/ring
Configuration | /etc/riak
Strong consistency | /var/lib/riak/ensembles





Fedora and RHEL


Data | Directory
:—-|:———
Bitcask | /var/lib/riak/bitcask
LevelDB | /var/lib/riak/leveldb
Ring | /var/lib/riak/ring
Configuration | /etc/riak
Strong consistency | /var/lib/riak/ensembles





FreeBSD


Data | Directory
:—-|:———
Bitcask | /var/db/riak/bitcask
LevelDB | /var/db/riak/leveldb
Ring | /var/db/riak/ring
Configuration | /usr/local/etc/riak
Strong consistency | /var/db/riak/ensembles





OS X


Data | Directory
:—-|:———
Bitcask | ./data/bitcask
LevelDB | ./data/leveldb
Ring | ./data/riak/ring
Configuration | ./etc
Strong consistency | ./data/ensembles


Note: OS X paths are relative to the directory in which the package
was extracted.





SmartOS


Data | Directory
:—-|:———
Bitcask | /var/db/riak/bitcask
LevelDB | /var/db/riak/leveldb
Ring | /var/db/riak/ring
Configuration | /opt/local/etc/riak
Strong consistency | /var/db/riak/ensembles





Solaris


Data | Directory
:—-|:———
Bitcask | /opt/riak/data/bitcask
LevelDB | /opt/riak/data/leveldb
Ring | /opt/riak/ring
Configuration | /opt/riak/etc
Strong consistency | /opt/riak/data/ensembles



Note on strong consistency directories

The listings above show directories for data related to Riak's
[[strong consistency]] feature. This feature is purely optional, so
/ensembles directories will not exist in your installation
if this feature is not being used. For more information, see [[Using
Strong Consistency]] and [[Managing Strong Consistency]].






Performing Backups



Deprecation notice

In previous versions of Riak, there was a `[[riak-admin
backup|riak-admin Command Line#backup]]` command commonly used for
backups. This functionality is now deprecated. We strongly recommend
using the backup procedure documented below instead.

Backups of both Bitcask and LevelDB can be accomplished through a
variety of common methods. Standard utilities such cp, rsync, and
tar can be used as well as any backup system or method already in
place in your environment. Please remember that the node must not be
running while performing the backup.


A simple shell command such as the following example is sufficient for
creating a backup of your Bitcask or LevelDB data, ring, and Riak
configuration directories for a binary package-based Riak Linux
installation. The following examples use tar:



Bitcask


tar -czf /mnt/riak_backups/riak_data_`date +%Y%m%d_%H%M`.tar.gz \
  /var/lib/riak/bitcask /var/lib/riak/ring /etc/riak






LevelDB


tar -czf /mnt/riak_backups/riak_data_`date +%Y%m%d_%H%M`.tar.gz \
  /var/lib/riak/leveldb /var/lib/riak/ring /etc/riak






Strong Consistency Data


Persistently stored data used by Riak’s [[strong consistency]] feature
can be stored in an analogous fashion:


tar -czf /mnt/riak_backups/riak_data_`date +%Y%m%d_%H%M`.tar.gz \
  /var/lib/riak/ensembles



The basic process for getting a backup of Riak from a node is as
follows:



		Stop the node with riak stop


		Back up the appropriate data, ring, configuration, and strong consistency
(if applicable) directories as relevant to your operating system


		Start the node





Consult the [[Bitcask]] and [[LevelDB]] documentation to learn more
about these backends.







Restoring a Node


The method you use to restore a node will differ depending on a
combination of factors, including node name changes and your network
environment.


If you are replacing a node with a new node that has the same node name
(typically a fully qualified domain name or IP address), then restoring
the node is a simple process:



		Install Riak on the new node.


		Restore your old node’s configuration files, data directory, and ring
directory.


		Start the node and verify proper operation with riak ping,
riak-admin status, and other methods you use to check node health.





If the node name of a restored node (-name argument in vm.args or
nodename parameter in riak.conf) is different than the name of the
node that the restored backup was taken from, you will need to
additionally:



		Mark the original instance down in the cluster using
[[riak-admin down <node>|riak-admin Command Line#down]]


		Join the restored node to the cluster using
[[riak-admin cluster join <node>|riak-admin Command Line#cluster-join]]


		Replace the original instance with the renamed instance with
[[riak-admin cluster force-replace <node1> <node2>|riak-admin Command Line#cluster-force-replace]]


		Plan the changes to the cluster with riak-admin cluster plan


		Finally, commit the cluster changes with riak-admin cluster commit






Further information

For more information on the riak-admin cluster commands,
refer to our documentation on [[cluster administration]].

For example, if there are five nodes in the cluster with the original
node names riak1.example.com through riak5.example.com and you wish
to restore riak1.example.com as riak6.example.com, you would execute
the following commands on riak6.example.com.



		Join to any existing cluster node.


riak-admin cluster join riak@riak2.example.com






		Mark the old instance down.


riak-admin down riak@riak1.example.com






		Force-replace the original instance with the new one.


riak-admin cluster force-replace \
  riak@riak1.example.com riak@riak6.example.com






		Display and review the cluster change plan.


riak-admin cluster plan






		Commit the changes to the cluster.


riak-admin cluster commit









Your [[configuration files]] should also be changed to match the new
name in addition to running the commands (the -name setting in
vm.args in the older config system, and the nodename setting in
riak.conf in the newer system). If the IP address of any node has
changed, verify that the changes are reflected in your configuration
files to ensure that the HTTP and Protocol Buffers interfaces are
binding to the correct addresses.


A robust DNS configuration can simplify the restore process if the IP
addresses of the nodes change, but the hostnames are used for the node
names and the hostnames stay the same. Additionally, if the HTTP and
Protocol Buffers interface settings are configured to bind to all IP
interfaces (0.0.0.0), then no changes will need to be made to your
configuration files.


When performing restore operations involving riak-admin cluster force-replace, we recommend that you start only one node at a time and
verify that each node that is started has the correct name for itself
and for any other nodes whose names have changed.


To do this, first verify that the correct name is present your
configuration file. Then, once the node is started, run riak attach to
connect to the node. It may be necessary to enter an Erlang atom and
press enter to obtain a prompt, by typing x. and pressing enter. The
prompt obtained should contain the correct node name. Disconnect from
the attached session with ^d (Ctrl-d). Finally, run riak-admin member_status to list all of the nodes and verify that all nodes listed
have the correct names.





Restoring a Cluster


Restoring a cluster from backups is documented [[on its own page|Failure
and Recovery#Cluster-Recovery-From-Backups]].






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/protocol-buffers/fetch-object.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: PBC Fetch Object
project: riak
version: 0.14.0+
document: api
toc: true
audience: advanced
keywords: [api, protocol-buffer]
group_by: “Object/Key Operations”
moved: {
‘1.4.0-‘: ‘/references/apis/protocol-buffers/PBC-Fetch-Object’
}




Fetch an object from the specified bucket type/bucket/key location
(specified by bucket, type, and key, respectively). If the bucket
type is not specified, the default bucket type will be used, as is the
case for all messages sent to Riak that have the bucket type as an
optional parameter.



Request


message RpbGetReq {
    required bytes bucket = 1;
    required bytes key = 2;
    optional uint32 r = 3;
    optional uint32 pr = 4;
    optional bool basic_quorum = 5;
    optional bool notfound_ok = 6;
    optional bytes if_modified = 7;
    optional bool head = 8;
    optional bool deletedvclock = 9;
    optional uint32 timeout = 10;
    optional bool sloppy_quorum = 11;
    optional uint32 n_val = 12;
    optional bytes type = 13;
}






Optional Parameters



Note on defaults and special values

All of the optional parameters below have default values determined on a
per-bucket basis. Please refer to the documentation on setting bucket
properties for more information.Furthermore, you can assign an integer value to the r and
pr parameters, provided that that integer value is less than or
equal to N, or a special value denoting one
(4294967295-1), quorum (4294967295-2),
all (4294967295-3), or default
(4294967295-4).  





Parameter | Description |
:———|:————|
basic_quorum | Whether to return early in some failure cases, e.g. when r=1 and you get 2 errors and a success basic_quorum=true would return an error
notfound_ok | Whether to treat not found responses as successful reads for the purposes of R
if_modified | When a vclock is supplied as this option, the response will only return the object if the vclocks don’t match
head | If set to true, Riak will return the object with the value(s) set as empty, which allows you to get the metadata without a potentially large value accompanying it
deletedvclock | If set to true, Riak will return the tombstone’s vclock, if applicable
timeout | The timeout duration, in milliseconds, after which Riak will return an error message
sloppy_quorum | If this parameter is set to true, the next available node in the ring will accept requests if any primary node is unavailable





Response


message RpbGetResp {
    repeated RpbContent content = 1;
    optional bytes vclock = 2;
    optional bool unchanged = 3;
}




Values


Value | Description
:—–|:———–
content | The value plus metadata entries for the object. If there are siblings, there will be more than one entry. If the key is not found, the content will be empty.
vclock | The opaque vector clock that must be included in the RpbPutReq to resolve the siblings
unchanged | If if_modified was specified in the GET request but the object has not been modified, this will be set to true


The content entries hold the object value and any metadata.
Below is the structure of a RpbContent message, which is
included in GET/PUT responses (RpbGetResp (above) and
[[RpbPutResp|PBC Store Object]], respectively):


message RpbContent {
    required bytes value = 1;
    optional bytes content_type = 2;
    optional bytes charset = 3;
    optional bytes content_encoding = 4;
    optional bytes vtag = 5;
    repeated RpbLink links = 6;
    optional uint32 last_mod = 7;
    optional uint32 last_mod_usecs = 8;
    repeated RpbPair usermeta = 9;
    repeated RpbPair indexes = 10;
    optional bool deleted = 11;
}



From the above, we can see that an RpbContent message will always
contain the binary value of the object. But it could also contain any
of the following optional parameters:



		content_type — The content type of the object, e.g. text/plain
or application/json





		charset — The character encoding of the object, e.g. utf-8





		content_encoding — The content encoding of the object, e.g.
video/mp4





		vtag — The object’s [[vtag|Vector Clocks]]





		links — This parameter is associated with the now-deprecated link
walking feature and should not be used by Riak clients





		last_mod — A timestamp for when the object was last modified, in
ISO 8601 time [http://en.wikipedia.org/wiki/ISO_8601]





		last_mod_usecs — A timestamp for when the object was last modified,
in Unix time [http://en.wikipedia.org/wiki/Unix_time]





		usermeta — This field stores user-specified key/value metadata
pairs to be associated with the object. RpbPair messages used to
send metadata of this sort are structured like this:


message RpbPair {
    required bytes key = 1;
    optional bytes value = 2;
}



Notice that both a key and value can be stored or just a key.
RpbPair messages are also used to attach [[secondary
indexes|Using Secondary Indexes]] to objects (in the optional
indexes field).





		deleted — Whether the object has been deleted (i.e. whether a
tombstone for the object has been found under the specified key)









Note on missing keys

Remember: if a key is not stored in Riak, an RpbGetResp
response without the content and vclock fields
will be returned. This should be mapped to whatever convention the
client language uses to return not found. The Erlang client, for
example, returns the atom {error, notfound}.






Example



Request


Hex      00 00 00 07 09 0A 01 62 12 01 6B
Erlang <<0,0,0,7,9,10,1,98,18,1,107>>

RpbGetReq protoc decode:
bucket: "b"
key: "k"






Response


Hex      00 00 00 4A 0A 0A 26 0A 02 76 32 2A 16 33 53 44
         6C 66 34 49 4E 4B 7A 38 68 4E 64 68 79 49 6D 4B
         49 72 75 38 BB D7 A2 DE 04 40 E0 B9 06 12 1F 6B
         CE 61 60 60 60 CC 60 CA 05 52 2C AC C2 5B 3F 65
         30 25 32 E5 B1 32 EC 56 B7 3D CA 97 05 00
Erlang <<0,0,0,74,10,10,38,10,2,118,50,42,22,51,83,68,108,102,52,73,78,75,122,
         56,104,78,100,104,121,73,109,75,73,114,117,56,187,215,162,222,4,64,
         224,185,6,18,31,107,206,97,96,96,96,204,96,202,5,82,44,172,194,91,63,
         101,48,37,50,229,177,50,236,86,183,61,202,151,5,0>>

RpbGetResp protoc decode:
content {
  value: "v2"
  vtag: "3SDlf4INKz8hNdhyImKIru"
  last_mod: 1271442363
  last_mod_usecs: 105696
}
vclock: "k316a```314`312005R,254302[?e0%23452612354V267=312227005000"









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/theory/comparisons/couchdb.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Riak Compared to CouchDB
project: riak
version: 1.1.0+
document: appendix
toc: true
index: true
keywords: [comparisons, couchdb]
moved: {
‘1.4.0-‘: ‘/references/appendices/comparisons/Riak-Compared-to-CouchDB’
}




This is intended to be a brief, objective, and technical comparison of
Riak and CouchDB.  The CouchDB version described is 1.2.x. The Riak
version described is Riak 2.x. If you feel this comparison is unfaithful
for whatever reason, please submit an issue [https://github.com/basho/basho_docs/issues/new]
or send an email to docs@basho.com.



At A Very High Level



		Riak and CouchDB are both Apache 2.0 [http://www.apache.org/licenses/LICENSE-2.0.html] licensed


		Riak is written primarily in Erlang with some bits in C; CouchDB is written in Erlang








Feature/Capability Comparison


The table below gives a high level comparison of Riak and CouchDB
features/capabilities. To keep this page relevant in the face of rapid
development on both sides, low level details are found in links to
the online documentation for both Riak [http://docs.basho.com/] and
CouchDB [https://couchdb.readthedocs.org/en/latest/].


    <th WIDTH="15%">Feature/Capability</th>
    <th WIDTH="42%">Riak</th>
    <th WIDTH="43%">CouchDB</th>
</tr>
<tr>
    <td><strong>Data Model</strong></td>
    <td>Riak stores key/value pairs under [[keys|Keys and Objects]] in [[buckets]]. [[Using bucket types]] you can set bucket-level configurations for things like [[replication properties]]. In addition to basic [[key/value lookup|Key/Value Modeling]], Riak has a variety of features for discovering objects, including [[Riak Search|Using Search]] and [[secondary indexes|Using Secondary Indexes]].</td>
    <td>CouchDB's data format is JSON stored as documents (self-contained records with no intrinsic relationships), grouped into "database" namespaces.
        <ul>
            <li>[[Document API|http://wiki.apache.org/couchdb/HTTP_Document_API]]</li>
        </ul>
    </td>
</tr>
<tr>
    <td><strong>Storage Model</strong></td>
    <td>Riak has a modular, extensible local storage system that lets you plug in a backend store of your choice to suit your use case. The default backend is [[Bitcask]].
        <ul>
          <li>[[Riak Supported Storage Backends|Choosing a Backend]]</li>
        </ul>

    You can also write your own storage backend for Riak using our [[backend API|Backend API]].
    </td>
    <td>CouchDB stores data to disk in "append-only" files. As the files continue to grow, they require occasional compaction.
        <ul>
         <li>[[Indexes and File|http://guide.couchdb.org/draft/btree.html]]</li>
        </ul>
    </td>
</tr>
<tr>
    <td><strong>Data Access and APIs</strong></td>
    <td>Riak offers two primary interfaces (in addition to raw Erlang access):
        <ul>
        <li>[[Protocol Buffers|PBC API]] (strongly recommended)</li>
        <li>[[HTTP|HTTP API]]</li>
        </ul>
        Riak [[client libraries]] are wrappers around these APIs, and client support exists for dozens of languages. Basho currently has officially supported clients for [[Java|https://github.com/basho/riak-java-client]], [[Ruby|https://github.com/basho/riak-ruby-client]], [[Python|https://github.com/basho/riak-python-client]], and [[Erlang|https://github.com/basho/riak-erlang-client]].
        </td>
    <td>CouchDB provides an HTTP API for both data access and administration.

            <ul>
            <li>[[Document API|http://wiki.apache.org/couchdb/HTTP_Document_API]]</li>
            <li>[[View API|http://wiki.apache.org/couchdb/HTTP_view_API]]</a></li>
            <li>[[DB API|http://wiki.apache.org/couchdb/HTTP_database_API]]</a></li>
            </ul>

        The CouchDB community supports many client libraries.
        <ul>
          <li>[[Client-Libraries|http://wiki.apache.org/couchdb/Related_Projects/#Libraries]]</li>
        </ul>
 </td>
</tr>
<tr>
    <td><strong>Query Types and Queryability</strong></td>
    <td>There are currently five ways to query data in Riak:
        <ul>
        <li>Via [[primary key operations|The Basics]] (GET, PUT, DELETE, UPDATE)</li>
        <li>[[Using MapReduce]]</li>
        <li>[[Using secondary indexes]]</li>
        <li>[[Using Search]]</li>
        <li>[[Using Data Types]]</li>
        </ul>

</td>
    <td>CouchDB is generally queried by direct ID lookups, or by creating MapReduce "views" that CouchDB runs to create a queryable index for querying by or computing other attributes. In addition, the ChangesAPI shows documents in the order they were last modified. Finally, there exist some community plugins to expand CouchDB's queryability, such as the CouchDB-Lucene full-text search plugin.

        <ul>
        <li>[[Views|http://wiki.apache.org/couchdb/HTTP_view_API]]</li>
        <li>[[Changes Notifications|http://guide.couchdb.org/draft/notifications.html]]</li>
        <li>[[Lucene Plugin|https://github.com/rnewson/couchdb-lucene/]]</li>
        <ul>
</td>
</tr>
<tr>
    <td><strong>Data Versioning and Consistency</strong></td>
    <td>Riak uses a data structure called a [[vector clock|Vector Clocks]] to reason about causality and staleness of stored values. Vector clocks enable clients to always write to the database in exchange for consistency conflicts being resolved either at read time by application or client code or by Riak's [[active anti-entropy]] subsystem. Vector clocks can be configured to store copies of a given object based on the size and age of that object. There is also an option to disable vector clocks and fall back to simple timestamp-based resolution, known as [[last write wins|Conflict Resolution#Client-and-Server-side-Conflict-Resolution]].

    <ul>
        <li>[[Why Vector Clocks Are Easy|http://basho.com/blog/technical/2010/01/29/why-vector-clocks-are-easy/]]</li>
        <li>[[Why Vector Clocks Are Hard|http://basho.com/blog/technical/2010/04/05/why-vector-clocks-are-hard/]]</li>
    </ul>
    
    In addition, as of version 2.0 you can use Riak in a [[strongly consistent|Strong Consistency]] fashion.
    </td>

    <td>CouchDB replicates newer document versions between nodes, making it an eventually consistent system. CouchDB uses Multi-Version Concurrency Control (MVCC) to avoid locking the database file during writes. Conflicts are left to the application to resolve at write time. Older document versions (called revisions) may be lost when the append-only database file is compacted.
        <ul>
          <li>[[Eventual Consistency|http://guide.couchdb.org/draft/consistency.html]]</li>
        </ul>
 </td>
</tr>
    <td><strong>Concurrency</strong></td>
    <td>In Riak, any node in the cluster can coordinate a read/write operation for any other node. Riak stresses availability for writes and reads, and puts the burden of resolution on the client at read time.
     </td>

    <td>Because of CouchDB's append-only value mutation, individual instances will not lock. When distributed, CouchDB won't allow updating similarly keyed document without a preceding version number, and conflicts must be manually resolved before concluding a write.

        <ul>
            <li>[[No Locking|http://guide.couchdb.org/draft/consistency.html#locking]]</li>
            <li>[[Conflict Management|http://guide.couchdb.org/draft/conflicts.html]]</li>
        </ul>
 </td>
</tr>
<tr>
    <td><strong>Replication</strong></td>
    <td>Riak's replication system is heavily influenced by the Dynamo Paper and Dr. Eric Brewer's CAP Theorem. Riak uses consistent hashing to replicate and distribute N copies of each value around a Riak cluster composed of any number of physical machines. Under the hood, Riak uses virtual nodes to handle the distribution and dynamic rebalancing of data, thus decoupling the data distribution from physical assets.
        <ul>
          <li>[[Replication]]</li>
          <li>[[Clustering|Clusters]]</li>
        </ul>

        The Riak APIs expose tunable consistency and availability parameters that let you select which level of configuration is best for your use case. Replication is configurable at the bucket level when first storing data in Riak. Subsequent reads and writes to that data can have request-level parameters.
            <ul>
                <li>[[Reading, Writing, and Updating Data|Concepts#Reading, Writing, and Updating Data]]</li>
            </ul>
 </td>
    <td>CouchDB incrementally replicates document changes between nodes. It can be deployed with master/master or master/slave replication. Replication can be finely controlled by way of replication filters.

        <ul>
        <li>[[Replication|http://wiki.apache.org/couchdb/Replication]]</li>
        </ul>
 </td>
</tr>
<tr>
    <td><strong>Scaling Out and In</strong></td>
    <td>Riak allows you to [[elastically grow and shrink|Adding and Removing Nodes]] your cluster while evenly balancing the load on each machine. No node in Riak is special or has any particular role. In other words, all nodes are masterless. When you add a physical machine to Riak, the cluster is made aware of its membership via gossiping of [[ring state|Clusters#the-ring]]. Once it's a member of the ring, it's assigned an equal percentage of the partitions and subsequently takes ownership of the data belonging to those partitions. The process for removing a machine is the inverse of this. Riak also ships with a comprehensive suite of [[command line tools|riak-admin Command Line]] to help make node operations simple and straightforward.
    </td>
    <td>Out of the box, CouchDB is focused on a master-master replication of values (using MVCC to help with conflict resolution). There are external projects that help manage a CouchDB cluster, such as BigCouch (also Apache 2.0 licensed), that shards values across multiple nodes.

        <ul>
            <li>[[BigCouch|http://bigcouch.cloudant.com/]]</li>
            <li>[[Sharding (on Wikipedia)|http://en.wikipedia.org/wiki/Sharding]]</li>
        </ul>
</td>
</tr>
<tr>
    <td><strong>Multi-Datacenter Replication and Awareness</strong></td>

    <td>Riak features two distinct types of [[replication]]. Users can replicate to any number of nodes in one cluster (which is usually contained within one datacenter over a LAN) using the Apache 2.0-licensed database. Riak Enterprise, Basho's commercial extension to Riak, is required for Multi-Datacenter deployments (meaning the ability to run active Riak clusters in N datacenters).

    <ul>
        <li><a href="http://basho.com/products/riak-enterprise/">Riak Enterprise</a></li>
    </ul>

    </td>
    <td>CouchDB can be configured to run in multiple datacenters. Robust awareness will generally require a third part solution, or by developing replication filters.

        <ul>
        <li>[[Filtered Replication|http://wiki.apache.org/couchdb/Replication#Filtered_Replication]]</li>
        <li>[[The Split Brain|http://guide.couchdb.org/draft/conflicts.html#brain]]</li>
        </ul>

</td>
</tr>
<tr>
    <td><strong>Graphical Monitoring/Admin Console</strong></td>
    <td>Riak ships with [[Riak Control]], an open source graphical console for monitoring and managing Riak clusters.</td>
    <td>CouchDB ships with a graphical interface called Futon.

        <ul>
            <li>[[Welcome to Futon|http://guide.couchdb.org/draft/tour.html#welcome]]</li>
        </ul>
 </td>
</tr>



    








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/running/recovery/repairing-partitions.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Repairing Partitions
project: riak
version: 1.2.0+
document: tutorial
toc: true
audience: advanced
keywords: [kv, troubleshooting]
moved: {
‘1.4.0-‘: ‘/cookbooks/Repairing-KV-Indexes’
}




If you have experienced a loss of object replicas in your cluster, you
may need to perform a repair operation on one or more of your data
[[partitions|Clusters#The-Ring]]. Repairs of Riak KV data are typically
run in situations where partitions or whole nodes are lost due to
corruption or hardware failure. In these cases, nodes or partitions are
brought back online without any data, which means that the need to
repair data will depend mainly on your use case and on whether [[active
anti-entropy]] is enabled.


You will need to run a repair if the following are both true:



		Active anti-entropy is [[disabled|Managing Active
Anti-Entropy#Disabling-Active-Anti-Entropy]]


		You have both non-expiring data and keys that are not accessed
frequently (which means that they are not likely to be subject to
[[read repair|Active Anti-Entropy#Read-Repair-vs-Active-Anti-Entropy]])





You will most likely not need to run a repair operation if any of the
following is true:



		Active anti-entropy is [[enabled|Active
Anti-Entropy#Enabling-Active-Anti-Entropy]]


		Your entire key set is accessed frequently, allowing passive read
repair to repair the partitions


		Your data expires frequently





In most cases, we recommend either using active anti-entropy or, if
necessary and only when necessary, running a repair operation using the
instructions below.



Running a Repair


The Riak KV repair operation will repair objects from a node’s adjacent
partitions on the ring, consequently fixing the index. This is done as
efficiently as possible by generating a hash range for all the buckets
and thus avoiding a preflist calculation for each key. Only a hash of
each key is done, its range determined from a bucket->range map, and
then the hash is checked against the range.


Repairs are not allowed to occur during ownership changes. Since
ownership entails the moving of partition data it is safest to make them
mutually exclusive events. If you join or remove a node all repairs
across the entire cluster will be killed.



Repairing a Single Partition


In the case of data loss in a single partition, only that partition can
be repaired.



		From any node in the cluster, attach to Riak’s Erlang shell:


riak attach



You may have to hit Enter again to get a console prompt.





		Execute the repair for a single partition using the below command:


riak_kv_vnode:repair(<Partition_ID>).



where <Partition_ID> is replaced by the ID of the partition to
repair. For example:


riak_kv_vnode:repair(251195593916248939066258330623111144003363405824).






		Once the command has been executed, detach from Riak using
Control-C.











Repairing All Partitions on a Node


If a node is lost, all partitions currently owned by that node can be
repaired.



		From any node in the cluster, attach to Riak’s Erlang shell:


riak attach






		Get a copy of the current Ring:


{ok, Ring} = riak_core_ring_manager:get_my_ring().



You will get a lot of output with ring record information.
You can safely ignore it.





		Get a list of partitions owned by the node that needs to be repaired.
Replace dev1@127.0.0.1 with the name of the node to be repaired.  The
name can be found in each node’s vm.args file, specified as the
-name parameter, if you are using the older configuration system; if
you are using the newer, riak-conf-based system, the name is given by
the nodename parameter.


Partitions = [P || {P, 'dev1@127.0.0.1'} <- riak_core_ring:all_owners(Ring)].



Note: The above is an Erlang list
comprehension [http://www.erlang.org/doc/programming_examples/list_comprehensions.html]
that loops over each {Partition, Node} tuple in the ring and
extracts only the partitions that match the given node name, as a
list.









		Execute the repair on all the partitions. Executing the repairs all
at once will cause a lot of {shutdown, max_concurrency} messages in
the logs. These can be safely ingored, as it is just the transfers
mechanism enforcing an upper limit on the number of concurrent
transfers.


[riak_kv_vnode:repair(P) || P <- Partitions].






		Once the command has been executed, detach from Riak using
Control-C.













Monitoring Repairs


The above repair commands can be monitored via the riak-admin transfers command.





Killing a Repair


Currently there is no easy way to kill an individual repair. The only
option is to kill all repairs targeting a given node. This is done by
running riak_core_vnode_manager:kill_repairs(Reason) on the node
undergoing repair.  This command can be executed from a riak attach
session like below:


riak_core_vnode_manager:kill_repairs(killed_by_user).



Log entries will reflect that repairs were killed manually, and will
look similar to:


2012-08-10 10:14:50.529 [warning] <0.154.0>@riak_core_vnode_manager:handle_cast:395 Killing all repairs: killed_by_user



Repairs on a node can also be killed remotely from another node in the
cluster. From a riak attach session the below command can be used:


rpc:call('dev1@127.0.0.1', riak_core_vnode_manager, kill_repairs, [killed_by_user]).







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/mdc/v2/scheduling-fullsync.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Multi Data Center Replication: Scheduling Fullsync”
project: riak
header: riakee
version: 1.0.0+
document: cookbook
toc: true
audience: intermediate
keywords: [mdc, repl]
moved: {
‘2.0.0-‘: ‘riakee:/cookbooks/Multi-Data-Center-Replication-Schedule-Fullsync’
}





Scheduling Fullsync Operation


With the pause and resume commands it is possible to limit the
fullsync operation to off-peak times. First, disable fullsync_interval
and set fullsync_on_connect to false. Then, using cron or something
similar, execute the commands below at the start of the sync window.
In these examples, the commands are combined in a .sh or analogous
file:


#!/bin/sh

## Resume from where we left off
riak-repl resume-fullsync

## Start fullsync if nothing is running
riak-repl start-fullsync



At the end of the sync window:


#!/bin/sh

## Stop fullsync until start of next sync window
riak-repl pause-fullsync







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/advanced/client-security/java.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Client-side Security: Java”
project: riak
version: 2.0.0+
document: tutorial
audience: advanced
keywords: [developers, security, ssl, java]




This tutorial shows you how to set up a Riak Java client to authenticate
itself when connecting to Riak.


If you are using [[trust-|Managing Security
Sources#Trust-based-Authentication]] or [[PAM|Managing Security
Sources#PAM-based-Authentication]]-based authentication, you can use the
security setup described [[below|Client-side Security:
Java#Java-Client-Basics]]. [[Certificate|Managing Security
Sources#Certificate-based-Authentication]]-based authentication is not
yet supported in the Java client.



Note on certificate generation

This tutorial does not cover certificate generation. It assumes that all
necessary certificates have already been created and are stored in a
directory called `/ssl_dir`. This directory name is used only for
example purposes.


Java Client Basics


When connecting to Riak using a Java-based client, you typically do so
by instantiating separate RiakNode objects for each node in your
cluster, a RiakCluster object registering those RiakNode objects,
and finally a RiakClient object that registers the general cluster
configuration. In this document, we will be working with only one node.


If you are using Riak security, all connecting clients should have
access to the same Certificate Authority (CA) used on the server side,
regardless of which [[security source|Managing Security Sources]] you
choose. All clients should also provide a username, regardless of
security source. The example below sets up a single node object (we’ll
simply call it node) that connects to Riak on localhost and on port
8087 and specifies riakuser as a username. That object will be used to
create a cluster object (we’ll call it cluster), which will in turn be
used to create a client object. The setup below does not specify a CA:


import com.basho.riak.client.api.RiakClient;
import com.basho.riak.client.api.RiakCluster;
import com.basho.riak.client.api.RiakNode;

RiakNode node = new RiakNode.Builder()
        .withRemoteAddress("127.0.0.1")
        .withRemotePort(8087)
        // This will specify a username but no password or keystore:
        .withAuth("riakuser", null, null)
        .build();

RiakCluster cluster = new RiakCluster.Builder(node)
        .build();

RiakClient client = new RiakClient(cluster);



This client object is not currently set up to use any of the available
security sources. This will change in the sections below.





Password-based Authentication


To enable our client to use password-based auth, we can use most of the
setup from the example above, with the exception that we will specify a
password for the client in the withAuth method in the node object’s
constructor rather than leaving it as null. We will also pass a
KeyStore object into that method.


import java.io.FileInputStream;
import java.io.InputStream;
import java.security.KeyStore;
import java.security.cert.CertificateFactory;
import java.security.cert.X509Certificate;

// Generate an InputStream from the CA cert
InputStream inputStream = new InputStream("/ssl_dir/cacertfile.pem");

// Generate an X509Certificate from the InputStream and close the stream
CertificateFactory certFactory = CertificateFactory.getInstance("X.509");
X509Certificate caCert = (X509Certificate) certFactory.generateCertificate(inputStream);
inputStream.close();

// Generate a KeyStore object
KeyStore ks = KeyStore.getInstance(KeyStore.getDefaultType());
ks.load(null, "password".toCharArray());
ks.setCertificateEntry("cacert", caCert);

RiakNode node = new RiakNode.Builder()
        .withRemoteAddress("127.0.0.1")
        .withRemotePort(8087)
        .withAuth("riakuser", "rosebud", ks)
        .build();

// Construct the cluster and client object in the same fashion as above






PAM- and Trust-based Authentication


If you are using PAM- or trust-based authentication, the only difference
from password-based authentication is that you do not need to specify a
password.





Certificate-based Authentication


Certificate-based authentication is not currently supported in the
official Riak Java client.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/advanced/client-security/index.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Client-side Security
project: riak
version: 2.0.0+
document: tutorial
audience: advanced
keywords: [developers, security, ssl, certificate]




Versions of Riak 2.0 and later come equipped with a [[security
subsystem|Authentication and Authorization]] that enables you to choose



		which Riak users/clients are authorized to perform a wide variety of
Riak operations, and


		how those users/clients are required to authenticate themselves.





The following four authentication mechanisms, aka [[security
sources|Managing Security Sources]] are available:



		[[Trust|Managing Security Sources#Trust-based-Authentication]]-based
authentication enables you to specify trusted
CIDR [http://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing]s
from which all clients will be authenticated by default


		[[Password|Managing Security
Sources#Password-based-Authentication]]-based authentication requires
that clients provide a username and password


		[[Certificate|Managing Security
Sources#Certificate-based-Authentication]]-based authentication
requires that clients


		[[Pluggable authentication module (PAM)|Managing Security
Sources#PAM-based-Authentication]]-based authentication requires
clients to authenticate using the PAM service specified using the
[[riak-admin security|Authentication and Authorization#Managing-Sources]]
command line interface





Riak’s approach to security is highly flexible. If you choose to use
Riak’s security feature, you do not need to require that all clients
authenticate via the same means. Instead, you can specify authentication
sources on a client-by-client, i.e. user-by-user, basis. This means that
you can require clients performing, say, [[MapReduce|Using MapReduce]]
operations to use certificate auth, while clients performing [[K/V
Operations|The Basics]] have to use username and password. The approach
that you adopt will depend on your security needs.


This document provides a general overview of how that works. For
managing security in Riak itself, see the following documents:



		[[Authentication and Authorization]]


		[[Managing Security Sources]]





We also provide client-library-specific guides for the following
officially supported clients:



		[[Java|Client-side Security: Java]]


		[[Ruby|Client-side Security: Ruby]]


		[[PHP|Client-side Security: PHP]]


		[[Python|Client-side Security: Python]]


		[[Erlang|Client-side Security: Erlang]]






Certificates, Keys, and Authorities


If Riak security is enabled, all client operations, regardless of the
security source you choose for those clients, must be over a secure SSL
connection. If you are using a self-generated Certificate Authority
(CA), Riak and connecting clients will need to share that CA.


To use certificate-based auth, you will need to create a Public Key
Infrastructure (PKI) based on
x.509 [http://en.wikipedia.org/wiki/X.509] certificates. The central
foundation of your PKI should be a Certificate Authority (CA), created
inside of a secure environment, that can be used to sign certificates.
In addition to a CA, your client will need to have access to a private
key shared only by the client and Riak as well as a CA-generated
certificate.


To prevent so-called Man-in-the-Middle
attacks [http://en.wikipedia.org/wiki/Man-in-the-middle_attack], private
keys should never be shared beyond Riak and connecting clients.



HTTP not supported

Certificate-based authentication is available only through Riak's
[[Protocol Buffers|PBC API]] interface. It is not available through the
[[HTTP API]].


Default Names


In Riak’s [[configuration files|Configuration Files#Security]], the
default certificate file names are as follows:


Cert | Filename
:—-|:——-
Certificate authority (CA) | cacertfile.pem
Private key | key.pem
CA-generated cert | cert.pem


These filenames will be used in the client-library-specific tutorials.








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/mdc/v3/quick-start.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Multi Data Center Replication v3 Quick Start”
project: riak
header: riakee
version: 1.3.0+
document: cookbook
toc: true
audience: intermediate
keywords: [mdc, repl, bnw]
moved: {
‘2.0.0-‘: ‘riakee:/cookbooks/Multi-Data-Center-Replication-v3-Quick-Start’
}




This guide will walk you through the process of configuring Riak’s v3
Replication to perform replication between two sample Riak clusters on
separate networks. This guide will also cover bidirectional replication,
which is accomplished by setting up unidirectional replication in both
directions between the clusters.  It is important to note that both
clusters must have the same ring size, but can have a different number
of nodes.



Prerequisites


This guide assumes that you have completed the following steps:



		Install Riak Enterprise [http://basho.com/riak-enterprise/]


		Perform [[System Tuning|System Performance Tuning]]


		Review [[Configuration|Multi Data Center Replication v3 Configuration]]








About v3 Replication in 1.3


In Riak’s v3 Replication in 1.3, the nomenclature for Source and Site
clusters has changed. To more accurately reflect the behavior of each of
the clusters, “listeners” and “sites” are now known as “sources” and
“sinks.” Data transfer now originates at the “source” and replicates to
the “sink;” initiation is always from the primary (source) to the backup
(sink) data center.


Additionally, knowledge of the state of each cluster is now managed by a
cluster manager process, which greatly simplifies the setup and
maintenance of Multi-Datacenter replication.





Scenario


Configure Riak MDC to perform replication, given the following two
Riak Enterprise Clusters, each of which consists of three nodes:



Cluster 1


Name  | IP          | Node name
:—–|:————-|—————–
node1 | 10.60.67.149 | riak@10.60.67.149
node2 | 10.60.83.39  | riak@10.60.83.39
node3 | 10.60.90.252 | riak@10.60.90.252





Cluster 2


Name  | IP          | Node name
:—–|:————|:—————-
node4 | 10.60.77.10 | riak@10.60.77.10
node5 | 10.60.84.41 | riak@10.60.84.41
node6 | 10.60.92.44 | riak@10.60.92.44





Set up Cluster1 →


 Cluster2 Connection



Set up the Source on Cluster1


On a node in Cluster1, node1 for example, initiate and name this
cluster with riak-repl clustername <name>:


riak-repl clustername Cluster1






Setup the Sink on Cluster2


On a node in Cluster2, node4 for example, initiation and name this
cluster with riak-repl clustername <name>:


riak-repl clustername Cluster2






Connect the Source to the Sink


From Cluster1, connect to the IP and port of Cluster2 with riak-repl connect <sink_ip>:<port>:


riak-repl connect 10.60.77.10:9080




The port can be found in the riak_core section of the app.config
under cluster_mgr.






View your active connections


From Cluster1, view your active connections with riak-repl connections:


Sink             Cluster Name         <Ctrl-Pid>      [Members]
----             ------------         ----------      ---------
Cluster2          Cluster2            <0.7985.0>      ["10.60.77.10:9080"] (via 10.60.77.10:9080)








Set up Cluster2 →


 Cluster1 Connection (if bidirectional replication is desired)



Connect the Source to the Sink


From Cluster2, connect to the IP and port of Cluster1 with riak-repl connect <sink_ip>:<port>:


riak-repl connect 10.60.67.149:9080






View Your Active Connections


From Cluster2, view your active connections with riak-repl connections:


Sink             Cluster Name         <Ctrl-Pid>      [Members]
----             ------------         ----------      ---------
Cluster1          Cluster1            <0.4456.0>      ["10.60.67.149:9080"] (via 10.60.67.149:9080)




Note on connections

At this point, if you do not have connections, replication will not
work. Check your IP bindings by running netstat -a on all
nodes. You should see *:9080 LISTENING. If not, you have
configuration problems.






Enable Realtime Replication


From Cluster1, run riak-repl realtime enable <clustername> to start
queuing updates on Cluster1 for replication:


riak-repl realtime enable Cluster2



Also on Cluster1, run riak-repl realtime start <clustername> to
establish connectivity from Cluster1 to Cluster2 to push queued updates:


riak-repl realtime start Cluster2



To enable bidirectional replication, do the reverse from Cluster2.
Once this is done, bidirectional replication should be operating.







More information


For a full list of commands, you may enter riak-repl to see full
instructions on usage, or check the [[Operations|Multi Data Center
Replication v3 Operations]] documentation.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/advanced/client-security/php.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Client-side Security: PHP”
project: riak
version: 2.0.0+
document: tutorial
audience: advanced
keywords: [developers, security, ssl, php]




This tutorial shows you how to set up a Riak PHP client to authenticate
itself when connecting to Riak.


If you are using [[trust-|Managing Security
Sources#Trust-based-Authentication]] or [[PAM|Managing Security
Sources#PAM-based-Authentication]]-based authentication, you can use the
security setup described [[below|Client-side Security:
PHP#PHP-Client-Basics]]. [[Certificate|Managing Security
Sources#Certificate-based-Authentication]]-based authentication is not
yet supported in the PHP client due to limitations of the HTTP interface of Riak.



PHP Client Basics


When connecting to Riak using a PHP-based client, you typically do so
by instantiating separate \Basho\Riak\Node objects for each node in your
cluster and passing those \Basho\Riak\Node objects as an array to a
\Basho\Riak object as a dependency. In this document, we will be working with
only one node.


If you are using Riak security, all connecting clients should have
access to the same Certificate Authority (CA) used on the server side,
regardless of which [[security source|Managing Security Sources]] you
choose. All clients should also provide a username, regardless of
security source. The example below sets up a single node object (we’ll
simply call it node) that connects to Riak on localhost and on port
8087 and specifies riakuser as a username. That object will be used to
create a Riak object. The setup below does not specify a CA and will throw
an \Basho\Riak\Node\Builder\Exception:


use \Basho\Riak;
use \Basho\Riak\Node;

$node = (new Node\Builder())
    ->atHost('127.0.0.1')
    ->onPort('8087')
    ->usingPasswordAuthentication('riakuser')
    ->build();

// since we are using a single node, it needs to be wrapped in array brackets
$riak = new Riak([$node]);



This client object is not currently set up to use any of the available
security sources. This will change in the sections below.





Password-based Authentication


To enable our client to use password-based auth, we can use most of the
setup from the example above, with the exception that we will specify a
password for the client in the usingPasswordAuthentication method in
the node object’s builder rather than ommitting it. We will also
pass the path of the CA file relative to the current working directory into
the withCertificateAuthorityFile method.


use \Basho\Riak;
use \Basho\Riak\Node;

$node = (new Node\Builder())
    ->atHost('127.0.0.1')
    ->onPort('8087')
    ->usingPasswordAuthentication('riakuser', 'rosebud')
    ->withCertificateAuthorityFile(getcwd() . '/ssl_dir/cacertfile.pem')
    ->build();

// since we are using a single node, it needs to be wrapped in array brackets
$riak = new Riak([$node]);






PAM- and Trust-based Authentication


If you are using PAM- or trust-based authentication, the only difference
from password-based authentication is that you do not need to specify a
password. There are helper methods that handle this for you,
usingPamAuthentication and usingTrustAuthentication.


use \Basho\Riak;
use \Basho\Riak\Node;

// PAM Example
$node = (new Node\Builder())
    ->atHost('127.0.0.1')
    ->onPort('8087')
    ->usingPamAuthentication('riakuser')
    ->withCertificateAuthorityFile(getcwd() . '/ssl_dir/cacertfile.pem')
    ->build();

// Trust Example
$node = (new Node\Builder())
    ->atHost('127.0.0.1')
    ->onPort('8087')
    ->usingTrustAuthentication('riakuser')
    ->withCertificateAuthorityFile(getcwd() . '/ssl_dir/cacertfile.pem')
    ->build();

// since we are using a single node, it needs to be wrapped in array brackets
$riak = new Riak([$node]);






Certificate-based Authentication


Certificate-based authentication is not currently supported in the
official Riak PHP client due to limitations in the HTTP interface.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/mdc/v3/architecture.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Multi Data Center Replication v3 Architecture”
project: riak
header: riakee
version: 1.3.0+
document: cookbook
toc: true
audience: intermediate
keywords: [mdc, repl, bnw]
moved: {
‘1.4.0-‘: ‘riakee:/cookbooks/Multi-Data-Center-Replication-Architecture-New’,
‘1.4.0-2.0.0’: ‘riakee:/cookbooks/Multi-Data-Center-Replication-v3-Architecture’
}





How Version 3 Replication Works


In Multi-Datacenter (MDC) Replication, a cluster can act as either the



		source cluster, which sends replication data to one or


		sink clusters, which are generally located in datacenters in other
regions or countries.





Bidirectional replication can easily be established by making a cluster
both a source and sink to other clusters. Riak Enterprise
Multi-Datacenter Replication is considered “masterless” in that all
clusters participating will resolve replicated writes via the normal
resolution methods available in Riak.


In Multi-Datacenter Replication, there are two primary modes of
operation:



		Fullsync replication is a complete synchronization that occurs
between source and sink cluster(s), which can be performed upon
initial connection of a sink cluster if you wish


		Realtime replication is a continual, incremental synchronization
triggered by successful writing of new updates on the source cluster





Fullsync and realtime replication modes are described in detail below.





Concepts



Sources


A source refers to a cluster that is the primary producer of replication
data. A source can also refer to any node that is part of the source
cluster. Source clusters push data to sink clusters.





Sinks


A sink refers to a cluster that is the primary consumer of replication
data. A sink can also refer to any node that is part of the sink
cluster. Sink clusters receive data from source clusters.





Cluster Manager


The cluster manager is a Riak Enterprise service that provides
information regarding nodes and protocols supported by the sink and
source clusters. This information is primarily consumed by the
riak-repl connect command.





Fullsync Coordinator


In fullsync replication, a node on the source cluster is elected to be
the fullsync coordinator. This node is responsible for starting and
stopping replication to the sink cluster. It also communicates with the
sink cluster to exchange key lists and ultimately transfer data across a
TCP connection. If a fullsync coordinator is terminated as the result of
an error, it will automatically restart on the current node. If the node
becomes unresponsive, a leader election will take place within 5 seconds
to select a new node from the cluster to become the coordinator. In the
event of a coordinator restart, a fullsync will have to restart.







Fullsync Replication


Fullsync replication scans through the list of partitions in a Riak
cluster and determines which objects in the sink cluster need to be
updated. A source partition is synchronized to a node on the sink
cluster containing the current partition.





Realtime Replication


In realtime replication, a node in the source cluster will forward data
to the sink cluster. A node in the source cluster does not necessarily
connect to a node containing the same [[vnode|Riak Glossary#vnode]] on
the sink cluster. This allows Riak to spread out realtime replication
across the entire cluster, thus improving throughput and making
replication more fault tolerant.



Initialization


Before a source cluster can begin pushing realtime updates to a sink,
the following commands must be issued:



		riak-repl realtime enable <sink_cluster>


After this command, the realtime queues (one for each Riak node) are
populated with updates to the source cluster, ready to be pushed to
the sink.





		riak-repl realtime start <sink_cluster>


This instructs the Riak connection manager to contact the sink
cluster.




[image: MDC fullsync]




At this point realtime replication commences.









		Nodes with queued updates establish connections to the sink cluster
and replication begins.






[image: MDC fullsync]







Realtime queueing and synchronization


Once initialized, realtime replication continues to use the queues to
store data updates for synchronization.



		The client sends an object to store on the source cluster.


		Riak writes N replicas on the source cluster.






[image: MDC fullsync]





		The new object is stored in the realtime queue.


		The object is copied to the sink cluster.






[image: MDC fullsync]





		The destination node on the sink cluster writes the object to N
nodes.






[image: MDC fullsync]





		The successful write of the object to the sink cluster is
acknowledged and the object removed from the realtime queue.






[image: MDC fullsync]









Restrictions


It is important to note that both clusters must have certain attributes
in common for Multi-Datacenter Replication to work. If you are using
either fullsync or realtime replication, both clusters must have the
same [[ring size|Clusters#The-Ring]]; if you are using fullsync
replication, every bucket’s [[n_val|Replication Properties#N-Value-and-Replication]] must be the same in both the
source and sink cluster.







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/advanced/client-security/ruby.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Client-side Security: Ruby”
project: riak
version: 2.0.0+
document: tutorial
audience: advanced
keywords: [developers, security, ssl, ruby]




This tutorial shows you how to set up a Riak Ruby client to authenticate
itself when connecting to Riak.


If you are using [[trust-|Managing Security Sources]] or [[PAM|Managing
Security Sources#PAM-based-authentication]]-based authentication, you
can use the security setup described in the [[Ruby Client
Basics|Client-side Security: Ruby#Ruby-Client-Basics]] section.
[[Password|Managing Security
Sources#Password-based-Authentication]]-based authentication is covered
in a [[later section|Client-side Security:
Ruby#Password-based-Authentication]], while [[certificate|Managing
Security Sources#Certificate-based-Authentication]]-based authentication
is covered [[further down|Client-side Security:
Ruby#Certificate-Based-Authentication]].



Note on certificate generation

This tutorial does not cover certificate generation. It assumes that all
necessary certificates have already been created and are stored in a
directory called `/ssl_dir`. This directory name is used only for
example purposes.


Ruby Client Basics


When connecting to Riak using a Ruby-based client, you must instantiate
an object from the Riak::Client class that then handles interactions
with Riak (you may have more than one client object active in an
application if you wish). All authentication-related information that
needs to be used can be passed to the object upon instantiation in an
authentication hash.


If you are using Riak Security, all connecting clients should have
access to the same Certificate Authority (CA) used on the server side,
regardless of which [[security source|Managing Security Sources]] you
choose. All clients should also provide a username. The example below
sets up a client object (we’ll simply call it client) that connects
to Riak on localhost and on port 8087, specifies riakuser as a
username, and points the client to a CA located at
/ssl_dir/cacertfile.pem.


require 'riak'

client = Riak::Client.new(
  host: '127.0.0.1',
  pb_port: 8087,
  authentication: {
    ca_file: '/ssl_dir/cacertfile.pem',
    user: 'riakuser'
  }
)



This client object is currently not set up to use any of the available
security sources, except trust-based auth, provided that the CIDR from
which the client is connecting has been specified as trusted. More on
this in [[Trust-based Authentication|Managing Security
Sources#Trust-based-Authentication]].





Password-based Authentication


To enable our client to use password-based auth, we can use most of the
information from the example above, with the exception that we will
specify a password for the client in the authentication hash. We’ll
use the password rosebud here and in the rest of the examples.


client = Riak::Client.new(
  # Using the host and pb_port from above
  authentication: {
    ca_file: '/ssl_dir/cacertfile.pem',
    user: 'riakuser',
    password: 'rosebud'
  }
)






PAM-based Authentication


If you have specified that a specific client be authenticated using
[[PAM|Managing Security Sources#PAM-based-Authentication]], you you will
need to provide a CA as well as the username and password that you
specified when creating the user in Riak. For more, see our
documentation on [[User Management|Authentication and
Authorization#User-Management]].





Certificate-based Authentication


Using certificate-based authentication requires us to specify the
location of a CA (as with all security sources), a username, a
client-specific CA, a CA-generated cert, and a private key. We’ll assume
that all certs are stored in /ssl_dir, as in the previous examples.


client = Riak::Client.new(
  # Using the host and pb_port from above
  authentication: {
    ca_file: '/path/to/cacertfile.pem',
    user: 'riakuser',
    client_ca: '/path/to/client_cert.pem',
    cert: '/path/to/cert.pem',
    key: '/path/to/key.pem'
  }
)



The client_ca must be specified if you intend to use a CA that is
different from the CA used by Riak, e.g. if you are integrating with
an existing single sign-on (SSO) system. If the client and server CA are
the same, you don’t need to specify client_ca. The client cert and
key, however, must always be specified.


The client_ca, cert, and key fields are all flexible in their
usage. You can use a string specifying a filename (as in the example
above), or you can pass in an appropriate OpenSSL object, e.g. an SSL
object created using the
OpenSSL [http://ruby-doc.org/stdlib-2.0/libdoc/openssl/rdoc/OpenSSL.html]
gem. If you use specify filenames, those files will be loaded and
converted into the appropriate OpenSSL object.





Specifying a Certificate Revocation List


If you create certificates specifying a CA-signed Certificate Revocation
List (CRL), those certs will be checked against the CRLs specified. You
can specify the location of the list in the authentication hash:


client = Riak::Client.new(
  # Using the host and pb_port from above
  authentication: {
    ca_file: '/ssl_dir/cacertfile.pem',
    user: 'riakuser',
    # Using the cert paths from above
    crl_file: '/ssl_dir/revocation.crl'
  }
)



CRL checking can sometimes be a slow process. To disable it, you can set
crl to false in the authentication hash when instantiating your
client object.





Online Certificate Status Protocol


If you create certificates with a specified Online Certificate Status
Protocol
(OCSP [http://en.wikipedia.org/wiki/Online_Certificate_Status_Protocol]),
the OCSP endpoint will automatically be checked. If that endpoint is not
available or if checking is running slowly, you can disable OCSP
checking by setting ocsp to false in the authentication hash.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/mdc/v3/aae.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Multi Data Center Replication v3 With AAE”
project: riak
header: riakee
version: 1.4.0+
document: cookbook
toc: true
audience: intermediate
keywords: [mdc, repl, aae, entropy, fullsync]
moved: {
‘2.0.0-‘: ‘riakee:/cookbooks/Multi-Data-Center-Replication-v3-With-AAE’
}





Note: Technical preview

The active anti-entropy fullsync strategy, as it pertains to
replication, is currently in **technical preview** mode. This means that
it hasn't been tested at large scale and that there may be issues that
Basho must address prior to a general release. Please don't use this
feature on a production system without professional services or customer
service engineering support.


Overview


Riak Enterprise Multi-Datacenter (MDC) Replication version 3 (Riak
Enterprise version 1.4.0+) can now take advantage of Riak’s [[active
anti-entropy]] (AAE) subsystem, which was first introduced as a
technology preview in Riak 1.3.0.


AAE plus Replication uses existing Riak AAE hash trees stored in
LevelDB, so if AAE is already active, there is no additional startup
delay for enabling the aae fullsync strategy. AAE can also be enabled
for the first time on a cluster, although some custom settings can
enhance performance in this case to help AAE trees be built more
quickly. See [[Configuration/AAE Tree Build Optimization|Multi Data
Center Replication v3 With AAE#aae-tree-build-optimization]].





Requirements:



		Riak Enterprise version 1.4.0 or later installed on source and sink
clusters


		Riak Enterprise MDC Replication Version 3 enabled on source and sink
clusters


		Both source and sink clusters must be of the same
[[ring|Clusters#The-Ring]] size


		AAE must be enabled on both source and sink clusters


		fullsync_strategy in the riak_repl section of the
advanced.config configuration file must be set to aae on both
source and sink clusters


		AAE trees must have been built on both source and sink clusters. In
the event that an AAE tree is not built on both the source and sink,
fullsync will default to the keylisting fullsync strategy for that
partition.








Configuration


If you are using Riak Enterprise version 2.0, configuration is managed
using the advanced.config files on
each node. The semantics of the advanced.config file are similar to
the formerly used app.config file. For more information and for a list
of configurable parameters, see our documentation on [[Advanced
Configuration|Configuration Files#Advanced-Configuration]].



Enable Active Anti-Entropy


To enable [[active anti-entropy]] (AAE) in Riak Enterprise, you must
enable it in Riak in both source and sink clusters. If it is not
enabled, the keylist strategy will be used.


To enable AAERiak KV:


{riak_kv, [
    % ...
    {anti_entropy, {on, []}},
    % ...
    ]}



By default, it could take a couple of days for the cluster to build all
of the necessary hash trees because the default build rate of trees
is to build 1 partition per hour, per node. With a [[ring
size|Clusters#The-Ring]] of 256 and 5 nodes, that is 2 days.


Changing the rate of tree building can speed up this process, with the
caveat that rebuilding a tree takes processing time from the cluster,
and this should not be done without assessing the possible impact on
get/put latencies for normal cluster operations. For a production
cluster, it is recommended that you leave the default in place.


For a test cluster, the build rate can be changed with
anti_entropy_build_limit and anti_entropy_concurrency. If a
partition has not had its AAE tree built yet, it will default to using
the keylist replication strategy. Instructions on these settings can
be found in the section directly below.




### AAE Tree Build OptimizationYou can speed up the build rate for AAE-related hash trees by raising
the frequency dictated by the anti_entropy_build_limit setting.


{riak_kv, [
    % ...
    {anti_entropy_build_limit, {10, 3600000}}, %% up to 10 per hour
    {anti_entropy_concurrency, 10}             %% up to 10 concurrent builds
    % ...
    ]}






Enable AAE Fullsync Replication Strategy


Finally, the replication fullsync strategy must be set to use aae on
both source and sink clusters. If not, the keylist replication
strategy will be used.


To enable AAE w/ Version 3 MDC Replication:


{riak_repl, [
             % ...
             {fullsync_strategy, aae},
             % ...
            ]}









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/advanced/client-security/python.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Client-side Security: Python”
project: riak
version: 2.0.0+
document: tutorial
audience: advanced
keywords: [developers, security, ssl, python]




This tutorial shows you how to set up a Riak Python client to
authenticate itself when connecting to Riak.


If you are using [[trust-|Managing Security Sources]] or [[PAM-|Managing
Security Sources#PAM-based-authentication]], you can use the security
setup described [[below|Client-side Security:
Python#Python-Client-Basics]]. [[Password|Managing Security
Sources#Password-based-Authentication]]-based authentication is covered
in a [[later section|Client-side Security:
Python#Password-based-Authentication]]. If you are using
[[certificate|Managing Security
Sources#Certificate-based-Authentication]]-based authentication, follow
the instructions in the [[section below|Client-side Security:
Python#Certificate-Based-Authentication]].



Note on certificate generation

This tutorial does not cover certificate generation. It assumes that all
necessary certificates have already been created and are stored in a
directory called `/ssl_dir`. This directory name is used only for
example purposes.


OpenSSL Versions


The Riak Python client requires that you install OpenSSL 1.0.1g or
later. If you have an earlier version installed, you will receive a
warning along the following lines:


Found OpenSSL 0.9.8za 5 Jun 2014 version, but expected at least OpenSSL 1.0.1g.  Security may not support TLS 1.2.






Python Client Basics


When connecting to Riak using a Python-based client, you typically
instantiate an object from the RiakClient class that then handles all
interactions with Riak. All authentication-related information that
needs to be used by the client object can be passed to the object upon
instantiation by creating a SecurityCreds object.


If you are using Riak Security, all connecting clients should have
access to the same Certificate Authority (CA) used on the server side,
regardless of which [[security source|Managing Security Sources]] you
choose. All clients should also provide a username. The example below
sets up a client object (we’ll simply call it client) that connects to
Riak on localhost and on port 8087 without any security credentials:


from riak import RiakClient

client = RiakClient(host='127.0.0.1', pb_port=8087)



To provide security credentials, we’ll create an object called creds
and specify riakuser as the username. We’ll also point the client to a
CA stored at /ssl_dir/cacertfile.pem.


creds = SecurityCreds(username='riakuser',
                      cacert_file='/ssl_dir/cacertfile.pem')



Now we can specify those credentials when we create our client object.


client = RiakClient(host='127.0.0.1', pb_port=8087, credentials=creds)



This client object is not currently set up to to use any of the
available security sources with the exception of trust-based auth,
provided that the
CIDR [http://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing] from
which the client is connecting has been specified as trusted. More on
specifying trusted CIDRs can be found in [[Trust-based
Authentication|Managing Security Sources#Trust-based-Authentication]].


Note: The examples in the following sections specify certs on the
basis of their filepaths, e.g. /ssl_dir/cacertfile.pem. In addition to
specifying certs by location, you can also provide OpenSSL objects
instead. You can find out how to do so in [[Using OpenSSL
Objects|Client-side Security: Python#Using-OpenSSL-Objects]] below.





Password-based Authentication


To enable our client to use password-based auth, we can use most of the
information from the above, with the exception that we’ll also specify a
password for the client in the creds object from above. We’ll use the
password rosebud here and in the rest of the examples.


creds = SecurityCreds(username='riakuser',
                      cacert_file='/ssl_dir/cacertfile.pem',
                      password='rosebud')






PAM-based Authentication


If you have specified that a specific client be authenticated using
[[PAM|Managing Security Sources#PAM-based-Authentication]], you you will
need to provide a CA as well as the username and password that you
specified when creating the user in Riak. For more, see our
documentation on [[User Management|Authentication and
Authorization#User-Management]].





Certificate-based Authentication


Using certificated-based authentication requires us to specify the
location of a general CA (as with all security sources), a username, a
CA-generated cert, and a private key. We’ll assume that all certs are
stored in /ssl_dir, as in the previous examples.


creds = SecurityCreds(username='riakuser',
                      cacert_file='/ssl_dir/cacertfile.pem',
                      cert_file='/ssl_dir/cert.pem',
                      pkey_file='/ssl_dir/key.pem')






Specifying a Certificate Revocation List


If you are using a CA-generated Certificate Revocation List (CRL), you
can specify its filepath using the crl_file parameter.


creds = SecurityCreds(username='riakuser',
                      # Using the cert information from above
                      crl_file='/ssl_dir/revocation.crl')






Specifying Ciphers


To specify a list of preferred [[security ciphers|Authentication and
Authorization#Security-Ciphers]], you can pass in a colon-delimited
string to the ciphers parameter:


creds = SecurityCreds(username='riakuser',
                      # Using the cert information from above
                      ciphers='X-CIPHER-1:X-CIPHER-2:X-CIPHER-3:ETC')






Using OpenSSL Objects


Whenever you specify certs, you have the option of either passing in
file paths as strings (as in the examples above) or properly created
OpenSSL objects, e.g. objects created using the
pyOpenSSL [https://pyopenssl.readthedocs.org/en/latest/] library. If
you generate OpenSSL objects this way, you should note that they must
be specified differently when creating a SecurityCreds object. The
table below lists the appropriate parameter names for each method, as
well as the pyOpenSSL class to which each cert must belong if you create
OpenSSL objects.


Cert | File path | OpenSSL object | Class
:—-|:———-|:—————|:—–
Certificate Authority (CA) | cacert_file | cacert | OpenSSL.crypto.X509
Private key | key_file | key | OpenSSL.crypto.PKey
CA-generated cert | cert | cert_file | OpenSSL.crypto.X509
CRL | crl | crl_file | OpenSSL.crypto.CRL


If you specify filepaths, the appropriate certs will be loaded and
converted into the appropriate OpenSSL object. The functions used for
this are OpenSSL.crypto.load_privatekey() for the private key and
OpenSSL.crypto.load_certificate for the cert and CA cert.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/mdc/v3/nat.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Multi Data Center Replication v3 With NAT”
project: riak
header: riakee
version: 1.3.2+
document: cookbook
toc: true
audience: intermediate
keywords: [mdc, repl, nat]
moved: {
‘2.0.0-‘: ‘riakee:/cookbooks/Multi-Data-Center-Replication-v3-With-NAT’
}




Riak Enterprise Version 3 Replication supports replication of data on
networks that use static NAT.


This can be used for replicating data over the internet where servers
have both internal and public IP addresses (see the [[Replication SSL
docs|Multi Data Center Replication v3 SSL]] if you replicate data over a
public network).



Requirements


In order for Replication to work on a server configured with NAT, the
NAT addresses must be configured statically.





Configuration


NAT rules can be configured at runtime, from the command line.



		riak-repl nat-map show


Shows the current NAT mapping table





		riak-repl nat-map add <externalip>[:port] <internalip>


Adds a NAT map from the external IP, with an optional port, to an
internal IP. The port number refers to a port that is automatically
mapped to the internal cluster_mgr port number.





		riak-repl nat-map del <externalip>[:port] <internalip>


Deletes a specific NAT map entry.









Applying Changes at Runtime



		Realtime NAT replication changes will be applied once realtime is
stopped and started using the following command:
		riak-repl realtime stop <clustername>


		riak-repl realtime start <clustername>








		Fullsync NAT replication changes will be applied on the next run of a
fullsync, or you can stop and start the current fullsync.
		riak-repl fullsync stop <clustername>


		riak-repl fullsync start <clustername>
















Example



		Cluster_A is the source of replicated data.


		Cluster_B and Cluster_C are the sinks of the replicated data.






Cluster_A Setup


Cluster_A is set up with nodes using the following internal IP
addresses:


Internal IP    | Public IP
—————|——————-
192.168.1.20 | -
192.168.1.21 | -
192.168.1.22 | -
192.168.1.23 | -
192.168.1.24 | -





Cluster_B Setup


A node from Cluster_B will be configured as follows:


Internal IP    | Public IP
—————|——————-
192.168.2.40 | 50.16.238.120:5555
192.168.2.41 | 50.16.238.121:5555
192.168.2.42 | 50.16.238.122:5555
192.168.2.43 | 50.16.238.123:5555
192.168.2.44 | 50.16.238.124:5555


In this example, the cluster_mgr port number is the default of 9080,
while the configured NAT port listens on 5555.





Cluster_C Setup


A node from Cluster_C is set up with static NAT, configured with the
following IP addresses:


Internal IP    | Public IP
—————|——————-
192.168.3.60 | 50.16.238.200:5550
192.168.3.61 | 50.16.238.200:5551
192.168.3.62 | 50.16.238.200:5552
192.168.3.63 | 50.16.238.200:5553
192.168.3.64 | 50.16.238.200:5554


In this example, the cluster_mgr port number is the default of 9080,
while the configured NAT port listens on 5566.


# on any node of Cluster_A
riak-repl clustername Server_A

# on any node of Cluster_B
riak-repl clustername Server_B

# on any node of Cluster_C
riak-repl clustername Server_C

# on 50.16.238.120 of Cluster_B
riak-repl nat-map add 50.16.238.120:5555 192.168.2.40
# on 50.16.238.121 of Cluster_B
riak-repl nat-map add 50.16.238.121:5555 192.168.2.41
# on 50.16.238.122 of Cluster_B
riak-repl nat-map add 50.16.238.122:5555 192.168.2.42
# on 50.16.238.123 of Cluster_B
riak-repl nat-map add 50.16.238.123:5555 192.168.2.43
# on 50.16.238.124 of Cluster_B
riak-repl nat-map add 50.16.238.124:5555 192.168.2.44

# on 192.168.3.60 of Cluster_C
riak-repl nat-map add 50.16.238.200:5550 192.168.3.60
# on 192.168.3.61 of Cluster_C
riak-repl nat-map add 50.16.238.200:5551 192.168.3.61
# on 192.168.3.62 of Cluster_C
riak-repl nat-map add 50.16.238.200:5552 192.168.3.62
# on 192.168.3.63 of Cluster_C
riak-repl nat-map add 50.16.238.200:5553 192.168.3.63
# on 192.168.3.64 of Cluster_C
riak-repl nat-map add 50.16.238.200:5554 192.168.3.64


# Connect replication from Cluster_A to Cluster_B:
# on any node of Cluster_A
riak-repl connect 50.16.238.120:5555
# You can connect to any node in Cluster_B with NAT mapped IP's/ports
# This command only needs to be run *once* for a cluster.

# Connect replication from Cluster_A to Cluster_C:
# on any node of Cluster_A
riak-repl connect 50.16.238.200:5550
# You can connect to any node in Cluster_C with NAT mapped IP's/ports
# This command only needs to be run *once* for a cluster.


# on any node from Cluster_A
riak-repl realtime enable Cluster_B
riak-repl realtime enable Cluster_C

riak-repl realtime start Cluster_B
riak-repl realtime start Cluster_C









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/advanced/client-security/erlang.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Client-side Security: Erlang”
project: riak
version: 2.0.0+
document: tutorial
audience: advanced
keywords: [developers, security, ssl, erlang]




This tutorial shows you how to set up a Riak Erlang client to
authenticate itself when connecting to Riak.


If you are using [[trust-|Managing Security Sources]], [[PAM-|Managing
Security Sources#PAM-based-authentication]], you can use the security
setup described [[below|Client-side Security:
Ruby#Ruby-Client-Basics]]. [[Password|Managing Security
Sources#Password-based-Authentication]]-based authentication is covered
in a [[later section|Client-side Security:
Ruby#Password-based-Authentication]]. If you are using
[[certificate|Managing Security
Sources#Certificate-based-Authentication]]-based authentication, follow
the instructions in the [[section below|Client-side Security:
Ruby#Certificate-Based-Authentication]].



Note on certificate generation

This tutorial does not cover certificate generation. It assumes that all
necessary certificates have already been created and are stored in a
directory called `/ssl_dir`. This directory name is used only for
example purposes.


Erlang Client Basics


When connecting to Riak using an Erlang-based client, you typically use
a process identifier to refer to the client connection. The following
example creates a process identifier (we’ll call it Pid) for a
connection to localhost on port 8087:


{ok, Pid} = riakc_pb_socket:start("127.0.0.1", 8087).



If you are using Riak security, all connecting clients should have
access to the same Certificate Authority (CA) used on the server side,
regardless of which [[security source|Managing Security Sources]] you
choose. In addition, all clients should provide a username. The example
above created a connection to Riak without specifying a username or CA.
That information is specified as a list of options passed to the
start function. We’ll specify those options in a list called
SecurityOptions.


CertDir = "/ssl_dir",
SecurityOptions = [
                   {credentials, "riakuser", ""},
                   {cacertfile, filename:join([CertDir, "cacertfile.pem"])}
                  ],
{ok, Pid} = riakc_pb_socket:start("127.0.0.1", 8087, SecurityOptions).



Please note that you do not need to specify a password if you are not
using password-based authentication. If you are using a different
security source, Riak will ignore the password. You can enter an empty
string (as in the example above) or anything you’d like.


This client is not currently set up to use any of the available security
sources, with the exception of trust-based authentication, provided that
the CIDR [http://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing]
from which the client is connecting has been specified as trusted. More
on specifying trusted CIDRs can be found in [[Trust-based
Authentication|Managing Security Sources#Trust-based-Authentication]].





Password-based Authentication


To enable our client to use password-based auth, we can use most of the
information from the example above, with the exception that we’ll also
specify a password for the client in the SecurityOptions list from
above. We’ll use the password rosebud here and in the rest of the
examples.


CertDir = "/ssl_dir",
SecurityOptions = [
                   {credentials, "riakuser", "rosebud"},
                   {cacertfile, filename:join([CertDir, "cacertfile.pem"])}
                  ],
{ok, Pid} = riakc_pb_socket:start("127.0.0.1", 8087, SecurityOptions).






PAM-based Authentication


If you have specified that a specific client be authenticated using
[[PAM|Managing Security Sources#PAM-based-Authentication]], you you will
need to provide a CA as well as the username and password that you
specified when creating the user in Riak. For more, see our
documentation on [[User Management|Authentication and
Authorization#User-Management]].





Certificate-based Authentication


Using certificate-based authentication requires us to specify the
location of a general CA (as with all security sources), a username, a
CA-generated cert, and a private key. We’ll assume that all certs are
stored in /ssl_dir, as in the previous examples.


CertDir = "/ssl_dir",
SecurityOptions = [
                   {credentials, "riakuser", "rosebud"},
                   {cacertfile, filename:join([CertDir, "cacertfile.pem"])},
                   {certfile, filename:join([CertDir, "cert.pem"])},
                   {keyfile, filename:join([CertDir, "key.pem"])}
                  ],
{ok, Pid} = riakc_pb_socket:start("127.0.0.1", 8087, SecurityOptions).







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/mdc/v3/cascading-writes.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Multi Data Center Replication: Cascading Realtime Writes”
project: riak
header: riakee
version: 1.3.0+
document: cookbook
toc: true
audience: intermediate
keywords: [mdc, repl, replication, realtime, cascading]
moved: {
‘2.0.0-‘: ‘riakee:/cookbooks/Multi-Data-Center-Replication-Cascading-Writes’
}





Introduction


Riak Enterprise includes a feature that cascades realtime writes across
multiple clusters.


Cascading Realtime Writes is enabled by default on new clusters running
Riak Enterprise. It will need to be manually enabled on new clusters.


Cascading realtime requires the {riak_repl, rtq_meta} capability to
function.



Note on cascading tracking

Cascading tracking is a simple list of where an object has been written.
This works well for most common configurations. Larger installations,
however, may have writes cascade to clusters to which other clusters
have already written.

+---+     +---+     +---+
| A | <-> | B | <-> | C |
+---+     +---+     +---+
  ^                   ^
  |                   |
  V                   V
+---+     +---+     +---+
| F | <-> | E | <-> | D |
+---+     +---+     +---+



In the diagram above, a write at cluster A will begin two cascades. One
goes to B, C, D, E, and finally F; the other goes to F, E, D, C, and
finally B. Each cascade will loop around to A again, sending a
replication request even if the same request has already occurred from
the opposite direction, creating 3 extra write requests.


This can be mitigated by disabling cascading in a cluster. If cascading
were disabled on cluster D, a write at A would begin two cascades. One
would go through B, C, and D, the other through F, E, and D. This
reduces the number of extraneous write requests to 1.


A different topology can also prevent extra write requests:


+---+                     +---+
| A |                     | E |
+---+                     +---+
 ^  ^                     ^  ^
 |   \  +---+     +---+  /   |
 |    > | C | <-> | D | <    |
 |   /  +---+     +---+  \   |
 V  V                     V  V
+---+                     +---+
| B |                     | F |
+---+                     +---+



A write at A will cascade to C and B. B will not cascade to C because
A will have already added C to the list of clusters where the write has
occurred. C will then cascade to D. D then cascades to E and F. E and F
see that the other was sent a write request (by D), and so they do not
cascade.





Usage


Riak Enterprise Cascading Writes can be enabled and disabled using the
riak-repl command. Please see the [[Version 3 Operations guide|Multi
Data Center Replication v3 Operations]] for more information.


To show current the settings:


riak-repl realtime cascades


To enable cascading:


riak-repl realtime cascades always


To disable cascading:


riak-repl realtime cascades never






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/taste-of-riak/clojure.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Taste of Riak: Clojure”
project: riak
version: 1.4.0+
document: guide
toc: true
audience: beginner
keywords: [developers, client, clojure]




If you haven’t set up a Riak Node and started it, please visit the
[[Prerequisites|Taste of Riak: Prerequisites]] first.


To try this flavor of Riak, a working installation of Java and
Leiningen [https://github.com/technomancy/leiningen] are required.



Client Setup


Welle [http://clojureriak.info/] is a community-maintained Riak client
library for Clojure.


First, add Welle as a dependency to your project.


[com.novemberain/welle "1.5.0"]



Start a Clojure repl with Leiningen:


$ lein repl



Then, enter the following into the repl:


(ns taste-of-riak.docs.examples
  (:require [clojurewerkz.welle.core    :as wc]
            [clojurewerkz.welle.buckets :as wb]
            [clojurewerkz.welle.kv      :as kv])
  (:import com.basho.riak.client.http.util.Constants))


;; Connects to a Riak node at 127.0.0.1:8098
(wc/connect! "http://127.0.0.1:8098/riak")



If you set up a local Riak cluster using the [[five minute install]] method,
use this code snippet instead:


;; Connects to a Riak node at 127.0.0.1:10018
(wc/connect! "http://127.0.0.1:10018/riak")



We are now ready to start interacting with Riak.





Creating Objects in Riak


First, let’s create a few objects and a bucket to keep them in.


(wb/create "test")
(kv/store "test" "one" 1 :content-type "application/clojure")



In this first example we have stored the integer 1 with the lookup key of
‘one’.  Next let’s store the string “two” as bytes with a matching key.


(kv/store "test" "two" (.getBytes "two"))



That was easy.  Finally, let’s store a bit of JSON.  You will probably
recognize the pattern by now.


(def three {:val 3})
(kv/store "test" "three" three :content-type Constants/CTYPE_JSON_UTF8)






Reading Objects from Riak


Now that we have a few objects stored, let’s retrieve them and make sure they
contain the values we expect.


(:value (first (kv/fetch "test" "one")))
; 1
(:value (first (kv/fetch "test" "one")))
(String. (:value (first (kv/fetch "test" "two"))))
; "two"
(:val (:value (first (kv/fetch "test" "three"))))
; 3



That was easy.  We simply request the objects by key.





Deleting Objects from Riak


As a last step, we’ll demonstrate how to delete data.


(kv/delete "test" "one")






Working with Complex Objects


Since the world is a little more complicated than simple integers and bits of
strings, let’s see how we can work with more complex objects.  Take for
example, this map hash that encapsulates some knowledge about a book.


(def book {:isbn "1111979723",
           :title "Moby Dick",
           :author "Herman Melville",
           :body "Call me Ishmael. Some years ago...",
           :copies_owned 3})



Ok, so we have some information about our Moby Dick collection that we want to
save.  Storing this to Riak should look familiar by now.


(wb/create "books")
(kv/store "books" (:isbn book) book :content-type Constants/CTYPE_JSON_UTF8)



Here we serialized the Clojure map to a JSON value. If we fetch our book back,
we’ll see a Clojure map again:


(:value (first (kv/fetch "books" "1111979723")))
; {:author "Herman Melville", :title "Moby Dick", :copies_owned 3, :isbn "1111979723", :body "Call me Ishmael. Some years ago..."}



As you can see from our examples, Welle can serialize/deserialize values in:



		JSON


		JSON in UTF-8


		Clojure data (that can be read by the Clojure reader)


		Text


		Text in UTF-8





Finally, let’s clean up our mess:


(kv/delete "books" "1111979723")







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/mdc/v3/configuration.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Multi Data Center Replication v3 Configuration”
project: riak
header: riakee
version: 1.3.0+
document: cookbook
toc: true
audience: intermediate
keywords: [mdc, repl, configuration]
moved: {
‘1.4.0-‘: ‘riakee:/cookbooks/Multi-Data-Center-Replication-Configuration-New’,
‘1.4.0-2.0.0’: ‘riakee:/cookbooks/Multi-Data-Center-Replication-v3-Configuration’
}





Note on the cluster_mgr setting

The cluster_mgr setting must be set in order for
version 3 replication to run.

The configuration for Multi-Datacenter (MDC) Replication is kept in the
both the riak_core and riak_repl sections of the app.config
configuration file.


If you are using Riak Enterprise version 2.0, configuration is managed
using the advanced.config files on
each node. The semantics of the advanced.config file are similar to
the formerly used app.config file. For more information and for a list
of configurable parameters, see our documentation on [[Advanced
Configuration|Configuration Files#Advanced-Configuration]].


Here is a sample of the syntax:


{riak_core, [
    %% Every *node* runs one cluster_mgr
    {cluster_mgr, {"0.0.0.0", 9080 }},
    % ...
]},
{riak_repl, [
    %% Pick the correct data_root for your platform
      %% Debian/Centos/RHEL:
    {data_root, "/var/lib/riak/data/riak_repl"},
    %% Solaris:
    %% {data_root, "/opt/riak/data/riak_repl"},
    %% FreeBSD/SmartOS:
    %% {data_root, "/var/db/riak/riak_repl"},
    {max_fssource_cluster, 5},
    {max_fssource_node, 2},
    {max_fssink_node, 2},
    {fullsync_on_connect, false},
    % ...
]}




Settings


Riak MDC configuration is set using the standard Erlang config file
syntax {Setting, Value}. For example, if you wished to set
fullsync_on_connect to false, you would insert this line into the
riak_repl section (appending a comma if you have more settings to
follow):


{fullsync_on_connect, false}



Once your configuration is set, you can verify its correctness by
running the riak command-line tool:


riak chkconfig






riak_repl Settings


Setting | Options | Default | Description
:——-|:——–|:——–|:———–
cluster_mgr | {ip_address, port} | REQUIRED | The cluster manager will listen for connections from remote clusters on this ip_address and port. Every node runs one cluster manager, but only the cluster manager running on the cluster_leader will service requests. This can change as nodes enter and leave the cluster. The value is a combination of an IP address (not hostname) followed by a port number.
max_fssource_cluster | nodes (integer) | 5 | The hard limit on the number of workers which will participate in the source cluster during a fullsync replication. This means that if one has configured fullsync for two different clusters, both with a max_fssource_cluster of 5, 10 fullsync workers can be in progress. Only affects nodes on the source cluster on which this parameter is defined via the configuration file or command line.
max_fssource_node | nodes (integer) | 1 | Limits the number of fullsync workers that will be running on each individual node in a source cluster. This is a hard limit for all fullsyncs enabled; additional fullsync configurations will not increase the number of fullsync workers allowed to run on any node. Only affects nodes on the source cluster on which this parameter is defined via the configuration file or command line.
max_fssink_node | nodes (integer) | 1 | Limits the number of fullsync workers allowed to run on each individual node in a sink cluster.  This is a hard limit for all fullsync sources interacting with the sink cluster. Thus, multiple simultaneous source connections to the sink cluster will have to share the sink nodes number of maximum connections. Only affects nodes on the sink cluster on which this parameter is defined via the configuration file or command line.
fullsync_on_connect | true, false | true | Whether to initiate a fullsync on initial connection from the secondary cluster
data_root | path (string) | data/riak_repl | Path (relative or absolute) to the working directory for the replication process
fullsync_interval | minutes (integer) OR [{sink_cluster, minutes(integer)}, ...] | 360 | A single integer value representing the duration to wait in minutes between fullsyncs, or a list of {"clustername", time_in_minutes} pairs for each sink participating in fullsync replication.
rtq_overload_threshold | length (integer) | 2000 | The maximum length to which the realtime replication queue can grow before new objects are dropped. Dropped objects will need to be replicated with a fullsync.
rtq_overload_recover | length (integer) | 1000 | The length to which the realtime replication queue, in an overload mode, must shrink before new objects are replicated again.
rtq_max_bytes | bytes (integer) | 104857600 | The maximum size to which the realtime replication queue can grow before new objects are dropped. Defaults to 100MB. Dropped objects will need to be replicated with a fullsync.
proxy_get | enabled, disabled | disabled | Enable Riak CS proxy_get and block filter.
rt_heartbeat_interval | seconds (integer) | 15 | A full explanation can be found below.
rt_heartbeat_timeout | seconds (integer) | 15 | A full explanation can be found below.





riak_core Settings


Setting | Options | Default | Description
:——-|:——–|:——–|:———–
keyfile | path (string) | undefined | Fully qualified path to an ssl .pem key file
cacertdir | path (string) | undefined | The cacertdir is a fully-qualified directory containing all the CA certificates needed to verify the CA chain back to the root
certfile | path (string) | undefined | Fully qualified path to a .pem cert file
ssl_depth | depth (integer) | 1 | Set the depth to check for SSL CA certs. See 1.
ssl_enabled | true, false | false | Enable SSL communications
peer_common_name_acl | cert (string) | "*" | Verify an SSL peer’s certificate common name. You can provide an ACL as a list of common name patterns, and you can wildcard the leftmost part of any of the patterns, so *.basho.com would match site3.basho.com but not foo.bar.basho.com or basho.com. See 2.





Heartbeat Settings


There are two realtime-replication-related settings in the riak_repl
section of app.config related to the periodic “heartbeat” that is sent
from the source to the sink cluster to verify the sink cluster’s
liveness. The rt_heartbeat_interval setting determines how often the
heartbeat is sent (in seconds). If a heartbeat is sent and a response is
not received, Riak will wait rt_heartbeat_timeout seconds before
attempting to re-connect to the sink; if any data is received from the
sink, even if it is not heartbeat data, the timer will be reset. Setting
rt_heartbeat_interval to undefined will disable the heartbeat.


One of the consequences of lowering the timeout threshold arises when
connections are working properly but are slow to respond (perhaps due to
heavy load). In this case, shortening the timeout means that Riak may
attempt to re-connect more often that it needs to. On the other hand,
lengthening the timeout will make Riak less sensitive to cases in which
the connection really has been compromised.



		[bookmark: f1]SSL depth is the maximum number of non-self-issued
intermediate certificates that may follow the peer certificate in a valid
certificate chain. If depth is 0, the PEER must be signed by the trusted
ROOT-CA directly; if 1 the path can be PEER, CA, ROOT-CA; if depth is 2
then PEER, CA, CA, ROOT-CA and so on.


		[bookmark: f2]If the ACL is specified and not the special value *,
peers presenting certificates not matching any of the patterns will not be
allowed to connect.
If no ACLs are configured, no checks on the common name are done, except
as described for [[Identical Local and Peer Common Names
|Multi Data Center Replication v3 SSL#Verifying-Peer-Certificates]].









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/taste-of-riak/index.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Taste of Riak: Prerequisites”
project: riak
version: 1.4.0+
document: guide
toc: false
audience: beginner
keywords: [developers, client]
interest: false




Welcome, new Riak developer! This guide will get you started developing
against Riak with minimal fuss.



Installing Riak


The easiest way to get started with Riak is to complete the
[[five-minute install]] process.





Choose Your Programming Language


Basho officially supports a number of open-source [[client libraries]]
for various programming languages and environments. Please select the
language with which you’d like to proceed:



		[image: Java]


		[image: Ruby]


		[image: Python]


		[image: CSharp]


		[image: Node.js]


		[image: Erlang]


		[image: PHP]





Community-supported Client Libraries


Please see our [[client libraries]] page for a listing of
community-supported clients.








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/mdc/v3/operations.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Multi Data Center Replication v3 Operations”
project: riak
header: riakee
version: 1.3.0+
document: cookbook
toc: true
audience: intermediate
keywords: [mdc, repl, operator, bnw]
moved: {
‘1.4.0-‘: ‘riakee:/cookbooks/Multi-Data-Center-Replication-Operations-New’,
‘1.4.0-2.0.0’: ‘riakee:/cookbooks/Multi-Data-Center-Replication-v3-Operations’
}




This document explains how to manage replication with the riak-repl
command. Some of these commands can be set or behavior altered by
setting appropriate [[configuration|Multi Data Center Replication v3
Configuration]] values.


All commands need to be run only once on a single node of a cluster for
the changes to propagate to all other nodes. All changes will persist
across node restarts and will automatically take effect when nodes are
added to the cluster.



Cluster Connectivity



clustername


Set the clustername for all nodes in a Riak cluster.



		Without a parameter, returns the current name of the cluster


		With a parameter, names the current cluster





To set the clustername:



		Syntax: riak-repl clustername <clustername>


		Example: riak-repl clustername Boston





To get the clustername:



		Syntax: riak-repl clustername


		Example: riak-repl clustername








connect


The connect command establishes communications from a source cluster
to a sink cluster of the same ring size. The host:port of the sink
cluster is used for this. The IP and port to connect to can be found in
the app.config of the remote cluster, under riak_core and
cluster_mgr.


The host can be either an IP address



		Syntax: riak-repl connect <ip>:<port>


		Example: riak-repl connect 192.168.2.1:9080





...or a hostname that will resolve to an IP address.



		Syntax: riak-repl connect <host>:<port>


		Example: riak-repl connect Austin:9080








disconnect


Disconnecting a source cluster from a sink cluster.


You may define a host:port combination



		Syntax: riak-repl disconnect <host>:<port>


		Example: riak-repl disconnect 192.168.2.1:9080





...or use the name of the cluster.



		Syntax: riak-repl disconnect <sink_clustername>


		Example: riak-repl disconnect Austin








connections


Display a list of connections between source and sink clusters.



		Syntax: riak-repl connections


		Example: riak-repl connections








clusterstats


Displays current cluster stats using an optional ip:port as well as an
optional protocol-id.


protocol-id can be one of the following:



		cluster_mgr


		rt_repl


		fs_repl





The clusterstats command in use:



		Syntax: riak-repl clusterstats <host>:<port> <protocol-id>


		Example: riak-repl clusterstats 192.168.2.1:9080


		Example: riak-repl clusterstats 192.168.2.1:9080 fs_repl










Realtime Replication Commands



realtime enable


Enable realtime replication from a source cluster to sink clusters.


This will start queuing updates for replication. The cluster will still
require an invocation of realtime start for replication to occur.



		Syntax: riak-repl realtime enable <sink_clustername>


		Example: riak-repl realtime enable Austin








realtime disable


Disable realtime replication from a source cluster to sink clusters.



		Syntax: riak-repl realtime disable <sink_clustername>


		Example: riak-repl realtime disable Austin








realtime start


Start realtime replication connections from a source cluster to sink
clusters. See also realtime enable (above).



		Syntax: riak-repl realtime start <sink_clustername>


		Example: riak-repl realtime start Austin








realtime stop


Stop realtime replication from a source cluster to sink clusters.



		Syntax riak-repl realtime stop <sink_clustername>


		Example riak-repl realtime stop Austin










Fullsync Replication Commands


These behaviors can be altered by using the app.config
fullsync_on_connect parameter. See the [[Configuration Guide|Multi
Data Center Replication v3 Configuration]] for more information.



fullsync enable


Enable fullsync replication from a source cluster to sink clusters. By
default, a fullsync will begin as soon as a connection to the remote
cluster is established.



		Syntax: riak-repl fullsync enable <sink_clustername>


		Example: riak-repl fullsync enable Austin








fullsync disable


Disables fullsync for a cluster.



		Syntax: riak-repl fullsync disable <sink_clustername>


		Example: riak-repl fullsync disable Austin








fullsync start


Starts a fullsync. If the application configuration
fullsync_on_connect is set to false, a fullsync needs to be started
manually. This is also used to trigger a periodic fullsync using a cron
job. While a fullsync is in progress, a start command is ignored and a
message is logged.



		Syntax: riak-repl fullsync start <sink_clustername>


		Example: riak-repl fullsync start Austin








fullsync stop


Stops a fullsync.



		Syntax: riak-repl fullsync stop <sink_clustername>


		Example: riak-repl fullsync stop Austin










Cascading Realtime Writes


See the [[Multi Data Center Replication: Cascading Realtime Writes]]
guide.



realtime cascades


Shows the current cascading realtime setting.



		Syntax: realtime cascades


		Example: riak-repl realtime cascades








realtime cascades always


Enable realtime cascading writes.



		Syntax: realtime cascades always


		Example: riak-repl realtime cascades always








realtime cascades never


Disable realtime cascading writes.



		Syntax: realtime cascades never


		Example: riak-repl realtime cascades never










NAT


Note: See the [[Configuration Guide|Multi Data Center Replication v3
With NAT]] for more information.



nat-map show


Show the current NAT mapping table.



		Syntax: nat-map show


		Example: riak-repl nat-map show








nat-map add


Adds a NAT map from the external IP, with an optional port, to an
internal IP.



		Syntax: nat-map add <externalip>[:port] <internalip>


		Example: riak-repl nat-map add 128.205.106.1:5555 192.168.1.2








nat-map del


Deletes a specific NAT map entry.



		Syntax: nat-map del <externalip>[:port] <internalip>


		Example: riak-repl nat-map del 128.205.106.1:5555 192.168.1.2





NAT changes will be applied once fullsync and/or realtime replication
has been stopped and started.







Riak CS MDC Gets



proxy-get enable


Enable Riak CS proxy_get requests from a sink cluster (if
proxy_get has been enabled in app.config).



		Syntax: proxy-get enable <sink_clustername>


		Example: riak-repl proxy-get enable newyorkbackup








proxy-get disable


Disable Riak CS proxy_get requests from a sink cluster (if
proxy_get has been enabled in app.config).



		Syntax: proxy-get disable <sink_clustername>


		Example: riak-repl proxy-get disable newyorkbackup








add-block-provider-redirect


Provide a redirection to the <to-cluster-id> for proxy_get if the
<from-cluster> is going to be decommissioned.



		Syntax: riak-repl add-block-provider-redirect <from-cluster> <to-cluster>


		Example: riak-repl add-block-provider-redirect "{'dev1@127.0.0.1',{1391,544501,519016}}" "{'dev3@127.0.0.1',{1299,512501,511032}}"








show-block-provider-redirect


Show the mapping for a given cluster-id redirect.



		Syntax: riak-repl show-block-provider-redirect <from-cluster>


		Example: riak-repl show-block-provider-redirect "{'dev1@127.0.0.1',{1391,544501,519016}}"








delete-block-provider-redirect


Delete a existing redirect such that proxy_gets go again to the original
provider cluster id.



		Syntax:* riak-repl delete-block-provider-redirect <from-cluster>


		Example:* riak-repl delete-block-provider-redirect "{'dev1@127.0.0.1', {1391,544501,519016}}"








show-local-cluster-id


Display this cluster’s cluster-id tuple, for use with the
*-block-provider-redirect commands.


Note: A cluster-id is surrounded by double quotes, which need to be
included when passed to *-block-provider-redirect.



		Syntax: riak-repl show-local-cluster-id





		Example:


riak-repl show-local-cluster-id



Possible output:


local cluster id: "{'dev1@127.0.0.1',{1391,544501,519016}}"














riak-repl Status Output


Details about the riak-repl status command can be found under
[[Statistics|Multi Data Center Replication: Statistics]].





Tuning


These tuning values may also be set via the node’s app.config file.
See the [[Configuration Guide|Multi Data Center Replication v3
Configuration]] for more information.



fullsync max_fssource_node


This limits the number of fullsync workers that will be running on each
individual node in a source cluster. This is a hard limit for all
fullsyncs that are enabled. Additional fullsync configurations will
not increase the number of fullsync workers allowed to run on any
node. This only affects nodes on the source cluster on which this
parameter is defined via the configuration file or command line.



		Syntax: riak-repl fullsync max_fssource_node <value>


		Default: 1


		Example: riak-repl fullsync max_fssource_node 2








fullsync max_fssource_cluster


This is the hard limit of fullsync workers that will be running on the
source side of a cluster across all nodes on that cluster for a fullsync
to a sink cluster. This means if one has configured fullsync for two
different clusters, both with a max_fssource_cluster of 5, 10 fullsync
workers can be in progress. Only affects nodes on the source cluster on
which this parameter is defined via the configuration file or the
command line.



		Syntax: riak-repl fullsync max_fssource_cluster <value>


		Default: 5


		Example: riak-repl fullsync max_fssource_cluster 5








fullsync max_fssink_node


This limits the number of fullsync workers allowed to run on each
individual node in a sink cluster. This is a hard limit for each
fullsync source node interacting with a sink node. Thus, multiple
simultaneous source connections to a sink node will have to share the
sink node’s number of maximum connections. Only affects nodes on the
sink cluster on which this parameter is defined via the configuration
file or command line.



		Syntax: riak-repl fullsync max_fssink_node <value>


		Default: 1


		Example: riak-repl fullsync max_fssink_node 5










Mixing Version 2 Replication with Version 3 Replication


Riak Version 2 Replication and Version 3 Replication can be safely used
at the same time. If you choose to move to Version 3 Replication
completely, it is recommended that you disable Version 2 realtime
replication bucket hooks with the riak-repl modes command.



riak-repl modes


modelist is one or both of mode_repl12 (Version 2) or mode_repl13
(Version 3) separated by spaces (without commas).



		Syntax: riak-repl modes <modelist>





		Example:


riak-repl modes mode_repl12 mode_repl13



Possible output:


Current replication modes: [mode_repl12,mode_repl13]









To check the current replication modes:



		Syntax: riak-repl modes





		Example:


riak-repl modes



Possible output:


Current replication modes: [mode_repl12,mode_repl13]















          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/taste-of-riak/ocaml.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Taste of Riak: OCaml”
project: riak
version: 1.4.0+
document: guide
toc: true
audience: intermediate
keywords: [developers, client, ocaml]




If you haven’t set up a Riak Node and started it, please visit the
[[Prerequisites|Taste of Riak: Prerequisites]] first.


To try this flavor of Riak, a working installation of OCaml [http://ocaml.org/] with OPAM [http://opam.ocamlpro.com/doc/Quick_Install.html] is required.



Client Setup


The riak-ocaml-client [http://metadave.github.io/riak-ocaml-client/] is a community-maintained Riak client library for OCaml.


First, download the riak-ocaml-client via OPAM.


$ opam install oasis
$ opam install riak



Agree to download additional dependencies when prompted by OPAM.


Next, download the taste-of-ocaml sample project from Github:


$ git clone git@github.com:basho-labs/taste-of-ocaml.git
$ cd taste-of-ocaml



The src directory contains a single file titled taste_of_riak.ml.


The sample code tries to connect to 127.0.0.1, port 8098 by default. If you set up a local Riak cluster using the [[five minute install]] method,
change the pbip let binding to 10017:


let pbip = 10017 in
...



Let’s compile src/taste_of_riak.ml using the following commands:


$ ./configure
$ make



Running the ./taste_of_riak.byte command should return the following output:


$ ./taste_of_riak.byte
Ping
    Pong
Put: bucket=MyBucket, key = MyKey, value = MyValue
Get: bucket=MyBucket, key = MyKey
    Value = MyValue
Delete: bucket=MyBucket, key = MyKey
Get: bucket=MyBucket, key = MyKey
    Not found






Connecting


To connect to a Riak node via Protocol Buffers, you need to specify the IP address and port number. This value can be found in Riak’s app.config file, under the riak_api section’s pb property.


For example:


    {pb, [ {"127.0.0.1", 10017 } ]}



The riak_connect_with_defaults function takes the IP and port number as parameters.
For example:


let pbhost = "127.0.0.1" in
let pbip = 10017 in
try_lwt
   lwt conn = riak_connect_with_defaults pbhost pbip in
   ...



The Riak OCaml Client uses Lwt [http://ocsigen.org/lwt/manual/] and the Lwt Syntax extension. The table below can give you an idea of how the syntax preprocesses OCaml to easily support Lwt:


Without Lwt           | With Lwt
———————-|———————
let pattern1 = expr1  | lwt pattern1 = expr1
try                   | try_lwt
match expr with       | match_lwt expr with
while expr do         | while_lwt expr do
raise exn             | raise_lwt exn
assert expr            | assert_lwt expr





Storing Data in Riak


Next, we will store some simple data in Riak. Buckets, keys, and values are stored as strings:


let my_bucket = "MyBucket" in
let my_key = "Foo" in
let my_value = "Bar" in
lwt _result = riak_put conn bucket (Some key) value [] in



The last parameter, an empty list in this case, specifies the Riak put options.


For example, to specify the Put_return_body options, use the following:


let put_options = [Put_return_body true] in
lwt _result = riak_put conn bucket (Some key) value put_options in






Fetching Data from Riak


Next, we can fetch data from Riak using a bucket and key. Since the
riak_get function might not find a value at the specified key, you’ll have
to pattern match against the Maybe value returned. If a value exists at the
specified key, you’ll have to pattern match against Maybe as well to
retrieve the actual content at that key.


 lwt obj = riak_get conn bucket key [] in
  match obj with
      | Some o ->
          (match o.obj_value with
              | Some v -> print_endline ("Value = " ^ v);
                          return ()
              | None -> print_endline "No value";
                        return ())
      | None -> print_endline "Not found";
                return ()



Also, note the return () from Lwt at the end of each clause.


To specify options for the get operation:


let get_options = [Get_basic_quorum false; Get_head true] in
lwt obj = riak_get conn bucket key get_options in
...






Deleting Objects from Riak


If you want to delete data from Riak, simply call the riak_del function:


let key = "MyKey" in
let del_options = [] in
lwt _ = riak_del conn bucket key del_options in
    return ()






Next steps


For documentation on all available functions in the Riak OCaml Client, check out the project page [http://metadave.github.io/riak-ocaml-client/] and the bundled test [https://github.com/metadave/riak-ocaml-client/blob/master/test/test.ml].






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/mdc/v3/ssl.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Multi Data Center Replication v3 SSL”
project: riak
header: riakee
version: 1.3.2+
document: cookbook
toc: true
audience: intermediate
keywords: [mdc, repl, ssl]
moved: {
‘2.0.0-‘: ‘riakee:/cookbooks/Multi-Data-Center-Replication-v3-SSL’
}





Features


Riak Multi-Datacenter (MDC) Replication SSL consists of the following
items:



		Encryption of replication data


		SSL certificate chain validation


		SSL common name whitelisting support






Note on cross-internet traffic

As an alternative to Riak Enterprise's built-in SSL capabilities, we
recommend using [stunnel](https://www.stunnel.org/index.html) or a
virtual private network (VPM) for inter-datacenter connections.




SSL Configuration


To configure SSL, you will need to include the following 4 settings in
the riak-core section of [[app.config|Configuration Files#app.config]]:


{riak_core, [
             % ...
             {ssl_enabled, true},
             {certfile, "/full/path/to/site1-cert.pem"},
             {keyfile, "/full/path/to/site1-key.pem"},
             {cacertdir, "/full/path/to/cacertsdir"}
             % ...
            ]}




The cacertsdir is a directory containing all the CA certificates
needed to verify the CA chain back to the root.



Note on configuration

In Version 3 replication, the SSL settings need to be placed in the
riak-core section of app.config as opposed to
the riak-repl section used by Version 2 replication.




Verifying Peer Certificates


Verification of a peer’s certificate common name (CN) is enabled by using
the peer_common_name_acl property in the riak_core section of your
app.config to specify an Access Control List (ACL).


The ACL is a list of one or more patterns, separated by commas. Each
pattern may be either the exact CN of a certificate to allow, or a
wildcard in the form *.some.domain.name. Pattern comparison is
case-insensitive, and a CN matching any of the patterns is allowed to connect.


For example, ["*.corp.com"] would match site3.corp.com but not
foo.bar.corp.com or corp.com. If the ACL were
["*.corp.com", "foo.bar.corp.com"], site3.corp.com and foo.bar.corp.com
would be allowed to connect, but corp.com still would not.


If no ACL (or only the special value "*") is specified, no CN filtering
is performed, except as described below.



Identical Local and Peer Common Names

As a special case supporting the view that a host's CN is a fully-qualified
domain name that uniquely identifies a single network device, if the CNs of
the local and peer certificates are the same, the nodes will *NOT* be allowed
to connect.{{#2.1.0+}}An exception is made when the CN begins with *, on the assumption
that a pool of nodes might all legitimately use a certificate with a CN
like *.dc5.example.com. In this specific case, peers with matching CNs are
allowed to connect, so long as an explicit or implicit ACL allows it.{{/2.1.0+}}


This evaluation supercedes ACL checks, so it cannot be overridden with any
setting of the peer_common_name_acl property.




Examples


The following example will only allow connections from peer certificate
names like db.bashosamplecorp.com and security.bashosamplecorp.com:


{riak_core, [
             % ...
             {peer_common_name_acl, ["db.bashosamplecorp.com", "security.bashosamplecorp.com"]}
             % ...
            ]}




The following example will allow connections from peer certificate names
like foo.bashosamplecorp.com or db.bashosamplecorp.com, but not a
peer certificate name like db.backup.bashosamplecorp.com.


{riak_core, [
             % ...
             {peer_common_name_acl, ["*.bashosamplecorp.com"]}
             % ...
            ]}




This example will match any peer certificate name (and is the default):


{riak_core, [
             % ...
             {peer_common_name_acl, "*"}
             % ...
            ]}









SSL CA Validation


You can adjust the way CA certificates are validated by adding the
following to the riak_repl section of app.config:


{riak_core, [
             % ...
             {ssl_depth, 3} % Sets the depth to 3
             % ...
            ]}




Note: ssl_depth takes an integer parameter.


The depth specifies the maximum number of intermediate certificates that
may follow the peer certificate in a valid certification path. The
intermediate certificates must not be self signed.


The following example depths illustrate this:



		a depth of 0 indicates that the certificate must be signed
directly by a root certificate authority (CA)


		a depth of 1 indicates that the certificate may be signed by at
most 1 intermediate CA’s, followed by a root CA


		a depth of 2 indicates that the certificate may be signed by at
most 2 intermediate CA’s, followed by a root CA








Compatibility


Replication SSL for Version 3 is available in Riak 1.4+.


If SSL is enabled and a connection is made to a Riak Enterprise 1.0 or
1.1 node, the connection will be denied and an error will be logged.



Self-Signed Certificates


Read how to generate your own CA and
keys [http://www.debian-administration.org/articles/618]. Ensure that
you remove the password protection from the keys you generate.








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/taste-of-riak/querying-nodejs.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Taste of Riak: Querying with NodeJS”
project: riak
version: 1.3.1+
document: tutorials
toc: true
audience: beginner
keywords: [developers, client, 2i, search, nodejs]





Node.js Version Setup


For the Node.js version, please download the source from GitHub by either
cloning [https://github.com/basho/taste-of-riak] the source code
repository or downloading the current zip of the master
branch [https://github.com/basho/taste-of-riak/archive/master.zip].
The code for this chapter is in nodejs/Ch02-Schemas-and-Indexes. Be
sure to run npm install in this directory prior to running node ./app.js to run the code.





A Quick Note on Querying and Schemas


Schemas? Yes, we said that correctly: S-C-H-E-M-A-S. It’s not a dirty
word. Even in a key/value store, you will still have a logical database
schema of how all the data relates to other data. This can be as simple
as using the same key across multiple buckets for different types of
data to having fields in your data that are related by name. These
querying methods will introduce you to some ways of laying out your data
in Riak, along with how to query it back.





Denormalization


If you’re coming from a relational database, the easiest way to get your
application’s feet wet with NoSQL is to denormalize your data into
related chunks. For example, with a customer database, you might have
separate tables for customers, addresses, preferences, etc. In Riak,
you can denormalize all that associated data into a single object and
store it into a Customer bucket. You can keep pulling in associated
data until you hit one of the big denormalization walls:



		Size Limits (objects greater than 1MB)


		Shared/Referential Data (data that the object doesn’t “own”)


		Differences in Access Patterns (objects that get read/written once vs.
often)





At one of these points we will have to split the model.





Same Keys, Different Buckets


The simplest way to split up data would be to use the same identity key
across different buckets. A good example of this would be a Customer
object, an Order object, and an OrderSummaries object that keeps
rolled up info about orders such as total, etc. Let’s put some data into
Riak so we can play with it.



		Example: Creating a customer [https://github.com/basho/taste-of-riak/blob/master/nodejs/Ch02-Schemas-and-Indexes/app.js#L24-L33]


		Example: Creating orders and order summaries [https://github.com/basho/taste-of-riak/blob/master/nodejs/Ch02-Schemas-and-Indexes/app.js#L193-L262]





While individual Customer and Order objects don’t change much (or
shouldn’t change), the “Order Summary” object will likely change often.
It will do double duty by acting as an index for all a customer’s
orders, and also holding some relevant data such as the order total,
etc. If we showed this information in our application often, it’s only
one extra request to get all the info.


Example: Fetching by shared key [https://github.com/basho/taste-of-riak/blob/master/nodejs/Ch02-Schemas-and-Indexes/app.js#L78-L96]


Which returns our amalgamated objects:


info: Customer     1: {"id":"1","name":"John Smith","address":"123 Main Street","city":"Columbus","state":"Ohio","zip":"43210","phone":"+1-614-555-5555","createdDate":"2013-10-01 14:30:26"}
info: OrderSummary 1: {"customerId":"1","summaries":[{"orderId":"1","total":415.98,"orderDate":"2013-10-01 14:42:26"},{"orderId":"2","total":359.99,"orderDate":"2013-10-15 16:43:16"},{"orderId":"3","total":74.98,"orderDate":"2013-11-03 17:45:28"}]}



While this pattern is very easy and extremely fast with respect to
queries and complexity, it’s up to the application to know about these
intrinsic relationships.





Secondary Indexes


If you’re coming from an SQL world, Secondary Indexes (2i) are a lot
like SQL indexes. They are a way to quickly look up objects based on a
secondary key, without scanning through the whole dataset. This makes it
very easy to find groups of related data by values, or even ranges of
values. To properly show this off, we will now add some more data to our
application, and add some secondary index entries at the same time.


Example: Adding index data [https://github.com/basho/taste-of-riak/blob/master/nodejs/Ch02-Schemas-and-Indexes/app.js#L98-L141]


As you may have noticed, ordinary key/value data is opaque to 2i, so we
have to add entries to the indexes at the application level. Now let’s
find all of Jane Appleseed’s processed orders, we’ll look up the orders
by searching the SalespersonId integer index for Jane’s id of 9000.


Example: Query for orders where the SalespersonId index is set to 9000 [https://github.com/basho/taste-of-riak/blob/master/nodejs/Ch02-Schemas-and-Indexes/app.js#L143-L159]


Which returns:


Jane's Orders: 1, 3



Jane processed orders 1 and 3. We used an “integer” index to reference
Jane’s ID, next let’s use a “binary” index. Now, let’s say that the VP
of Sales wants to know how many orders came in during October 2013. In
this case, we can exploit 2i’s range queries. Let’s search the
OrderDate binary index for entries between 2013-10-01 and
2013-10-31.


Example: Query for orders where the OrderDate index is between 2013-10-01 and
2013-10-31 [https://github.com/basho/taste-of-riak/blob/master/nodejs/Ch02-Schemas-and-Indexes/app.js#L161-175]


Which returns:


October's Orders: 1, 2



Boom! Easy-peasy. We used 2i’s range feature to search for a range of
values, and demonstrated binary indexes.


So to recap:



		You can use Secondary Indexes to quickly look up an object based on a
secondary id other than the object’s key.


		Indexes can have either Integer or Binary(String) keys


		You can search for specific values, or a range of values


		Riak will return a list of keys that match the index query









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/mdc/v3/scheduling-fullsync.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Multi Data Center Replication: v3 Scheduling Fullsync”
project: riak
header: riakee
version: 1.4.0+
document: cookbook
toc: true
audience: intermediate
keywords: [mdc, repl, schedule, fullsync]
moved: {
‘2.0.0-‘: ‘riakee:/cookbooks/Multi-Data-Center-Replication-v3-Scheduling-Full-Sync’
}




The fullsync_interval parameter can be configured in the riak-repl
section of [[app.config|Configuration Files#app.config]] with either:



		a single integer value representing the duration to wait, in minutes,
between fullsyncs, or


		a list of pairs of the form [{"clustername", time_in_minutes}, {"clustername", time_in_minutes}, ...] pairs for each sink
participating in fullsync replication. Note the commas separating each
pair, and [ ] surrounding the entire list.






Examples


Sharing a fullsync time (in minutes) for all sinks:


{riak_repl, [
    % ...
    {data_root, "/configured/repl/data/root"},
    {fullsync_interval, 90} %% fullsync runs every 90 minutes
    % ...
    ]}



List of multiple sinks with separate times in minutes:


{riak_repl, [
    % ...
    {data_root, "/configured/repl/data/root"},
    % clusters sink_boston + sink_newyork have difference intervals (in minutes)
    {fullsync_interval, [
        {"sink_boston", 120},  %% fullsync to sink_boston with run every 120 minutes
        {"sink_newyork", 90}]} %% fullsync to sink_newyork with run every 90 minutes
  
    ]}



{{#1.4.0+}}





Additional Fullsync Stats


Additional fullsync stats per sink have been added in Riak Enterprise.



		fullsyncs_completed —


 The number of fullsyncs that have been
completed to the specified sink cluster.


		fullsync_start_time —


 The time the current fullsink to the
specified cluster began.


		last_fullsync_duration —


 The duration (in seconds) of the last
completed fullsync.
{{/1.4.0+}}









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/advanced/bucket-types.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Using Bucket Types
project: riak
version: 2.0.0+
document: tutorial
audience: intermediate
keywords: [developers, buckets]




Bucket types allow groups of buckets to share configuration details and
for Riak users to manage bucket properties more efficiently than in the
older configuration system based on [[bucket properties|The
Basics#bucket-properties-and-operations]].



Important note on cluster downgrades

If you upgrade a Riak to version 2.0 or later, you can still downgrade
the cluster to a pre-2.0 version as long as you have not created and
activated a bucket type in the cluster. Once any bucket type has
been created and activated, you can no longer downgrade the cluster to a
pre-2.0 version.


How Bucket Types Work


The older configuration system, based on bucket properties, involves
setting bucket properties for specific buckets either through
[[HTTP|HTTP Set Bucket Properties]] or [[Protocol Buffers|PBC Set Bucket
Properties]]. With this approach, you can take any given bucket and
modify a wide range of properties, from n_val to allow_mult and far
beyond.


Using bucket types also involves dealing with bucket properties, but
with a few crucial differences:



		Bucket types enable you to create bucket configurations and assign
those configurations to as many buckets as you wish, whereas the
previous system required configuration to be set on a per-bucket basis


		Nearly all bucket properties can be updated using bucket types, except the
datatype, consistent, and write_once properties, related to
[[Riak data types|Data Types]], [[strong consistency]], and
[[write-once buckets]] respectively


		Bucket types are more performant than bucket properties because
divergence from Riak’s defaults doesn’t have to be gossiped around the
cluster for every bucket, which means less computational overhead





It is important to note that buckets are not assigned types in the same
way that they are configured when using [[bucket properties|The
Basics#Bucket-Properties-and-Operations]]. You cannot simply take a
bucket my_bucket and assign it a type the way that you would, say,
set allow_mult to false or n_val to 5, because there is no
type parameter contained within the bucket’s properties (i.e.
props).


Instead, bucket types are applied to buckets on the basis of how those
buckets are queried. Queries involving bucket types take the following
form:


GET/PUT/DELETE /types/<type>/buckets/<bucket>/keys/<key>



In the older system, only bucket and key are specified in queries:


GET/PUT/DELETE /buckets/<bucket>/keys/<key>






When to Use Bucket Types


In many respects, bucket types are a major improvement over the older
system of bucket configuration, including the following:



		Bucket types are more flexible because they enable you to define a
bucket configuration and then change it if you need to.


		Bucket types are more reliable because the buckets that bear a given
type only have their properties changed when the type is changed.
Previously, it was possible to change the properties of a bucket only
through client requests.


		Whereas bucket properties can only be altered by clients interacting
with Riak, bucket types are more of an operational concept. The
riak-admin bucket-type interface (discussed in depth below) enables
you to manage bucket configurations on the operations side, without
recourse to Riak clients.


		Some special usecases – [[strong consistency|Managing Strong Consistency]],
[[data types|Using Data Types]], and [[write-once buckets]] – are only
available through bucket properties or bucket types.





For these reasons, we recommend always using bucket types in versions
of Riak 2.0 and later.





Managing Bucket Types Through the Command Line


Bucket types are created, updated, activated, and more through the
riak-admin bucket-type interface.


Below is a full list of available sub-commands:


Command | Action | Form |
:——-|:——-|:—–|
create | Create or modify a bucket type before activation | create <type> <json> |
activate | Activate a bucket type | activate <type> |
list | List all currently available bucket types and their activation status | list |
status | Display the status and properties of a specific bucket type | status <type> |
update | Update a bucket type after activation | update <type> <json> |



Creating a Bucket Type


Creating new bucket types involves using the create <type> <json>
command, where <type> is the name of the type and <json> is a JSON
object of the following form:


{
  "props": {
    "prop1": "val1",
    "prop2": "val2",
    ...
  }
}



Getting started with Riak clients

If you are connecting to Riak using one of Basho's official [[client
libraries]], you can find more information about getting started with your
client in our [[quickstart guide|Five-Minute Install#setting-up-your-riak-
client]].

If creation is successful, you should see the following output:


type_using_defaults created




The `create` command can be run multiple times prior to a bucket type being
activated. Riak will persist only those properties contained in the final call
of the command.

Creating bucket types that assign properties always involves passing
stringified JSON to the create command. One way to do that is to pass
a JSON string directly. The following creates a bucket type
n_equals_1, which sets n_val to 1:


riak-admin bucket-type create n_equals_1 '{"props":{"n_val":1}}'



If you wish, you can also pass in a JSON string through a file, such as
a .json file:


riak-admin bucket-type create from_json_file '`cat props.json`'



Like all bucket types, this type needs to be activated to be usable
within the cluster.





Activating a Bucket Type


Activating a bucket type involves the activate command from the same
bucket-type interface used before:


riak-admin bucket-type activate my_bucket_type



When activation has succeeded, you should see the following output:


my_bucket_type has been activated



A bucket type can be activated only when the type has been propagated to
all running nodes. You can check on the type’s readiness by running
riak-admin bucket-type status <type_name>. The first line of output
will indicate whether or not the type is ready.


In a stable cluster, bucket types should propagate very quickly. If,
however, a cluster is experiencing network partitions or other issues,
you will need to resolve those issues before bucket types can be
activated.





Listing Bucket Types


You can list currently available bucket types using the list command:


riak-admin bucket-type list



This will return a simple list of types along with their current status
(either active or not active). Here is an example console output:


riak-admin bucket-type list



An example response:


type1 (active)
type2 (not active)
type3 (active)






Checking a Type’s Status


You can check on the status—i.e. the configuration details—of a
bucket type using the status <type> command:


riak-admin bucket-type status my_bucket_type



The console will output two things if the type exists:



		Whether or not the type is active


		The bucket properties associated with the type





If you check the status of a currently active type called
my_bucket_type that simply bears a default bucket configuration, the
output will be as follows:


my_bucket_type is active

active: true
allow_mult: true

... other properties ...

w: quorum
young_vclock:20






Updating a Bucket Type


The bucket-type update command functions much like the bucket-type create command. It simply involves specifying the name of the bucket
type that you wish to modify and a JSON object containing the properties
of the type:


riak-admin bucket-type update type_to_update '{"props":{ ... }}'



Immutable Configurations

Any bucket properties associated with a type can be modified after a bucket is
created, with three important exceptions:
		consistent


		datatype


		write_once





If a bucket type entails strong consistency (requiring that consistent be set
to true), is set up as a map, set, or counter, or is defined as a write-once
bucket (requiring write_once be set to true), then this will be true of
the bucket types.


If you need to change one of these properties, it is recommended that
you simply create and activate a new bucket type.








Buckets as Namespaces


In versions of Riak prior to 2.0, all queries are made to a bucket/key
pair, as in the following example read request:


Location myKey = new Location(new Namespace("my_bucket"), "my_key");
FetchValue fetch = new FetchValue.Builder(myKey).build();
client.execute(fetch);



bucket = client.bucket('my_bucket')
bucket.get('my_key')



$location = new Location('my_key', new Bucket('my_bucket'));
(new \Basho\Riak\Command\Builder\FetchObject($riak))
  ->atLocation($location)
  ->build()
  ->execute();



bucket = client.bucket('my_bucket')
bucket.get('my_key')



var id = new RiakObjectId("my_bucket", "my_key");
client.Get(id);



client.fetchValue({ bucket: 'my_bucket', key: 'my_key' }, function (err, rslt) {
});



{ok, Object} = riakc_pb_socket:get(Pid,
                                   <<"my_bucket">>,
                                   <<"my_key">>).



curl http://localhost:8098/buckets/my_bucket/keys/my_key



With the addition of bucket types in Riak 2.0, bucket types can be used
as an additional namespace on top of buckets and keys. The same bucket
name can be associated with completely different data if it used in
accordance with a different type. Thus, the following two requests will
be made to completely different objects, even though the bucket and key
names are the same:


Location key1 =
  new Location(new Namepace("type1", "my_bucket"), "my_key");
Location key2 =
  new Location(new Namepace("type2", "my_bucket"), "my_key");
FetchValue fetch1 = new FetchValue.Builder(key1).build();
FetchValue fetch2 = new FetchValue.Builder(key2).build();
client.execute(fetch1);
client.execute(fetch2);



bucket1 = client.bucket_type('type1').bucket('my_bucket')
bucket2 = client.bucket_type('type2').bucket('my_bucket')
bucket1.get('my_key')
bucket2.get('my_key')



$location1 = new \Basho\Riak\Location('my_key', new Bucket('my_bucket', 'type1'));
$location2 = new Location('my_key', new Bucket('my_bucket', 'type2'));
$builder = new \Basho\Riak\Command\Builder\FetchObject($riak);
$builder->atLocation($location1)
  ->build()
  ->execute();
$builder->atLocation($location2)
  ->build()
  ->execute();



bucket1 = client.bucket_type('type1').bucket('my_bucket')
bucket2 = client.bucket_type('type2').bucket('my_bucket')
bucket1.get('my_key')
bucket2.get('my_key')



var id1 = new RiakObjectId("type1", "my_bucket", "my_key");
var id2 = new RiakObjectId("type2", "my_bucket", "my_key");
var rslt1 = client.Get(id1);
var rslt2 = client.Get(id2);



client.fetchValue({
    bucketType: 'type1', bucket: 'my_bucket', key: 'my_key'
}, function (err, rslt) {
});

client.fetchValue({
    bucketType: 'type2', bucket: 'my_bucket', key: 'my_key'
}, function (err, rslt) {
});



{ok, Obj1} = riakc_pb_socket:get(Pid,
                                 {<<"type1">>, <<"my_bucket">>},
                                 <<"my_key">>),
{ok, Obj2} = riakc_pb_socket:get(Pid,
                                 {<<"type2">>, <<"my_bucket">>},
                                 <<"my_key">>).



curl http://localhost:8098/types/type1/buckets/my_bucket/keys/my_key
curl http://localhost:8098/types/type2/buckets/my_bucket/keys/my_key




Note on object location

In Riak 2.x, all requests must be made to a location specified
by a bucket type, bucket, and key rather than to a bucket/key pair, as
in previous versions.

If requests are made to a bucket/key pair without a specified bucket
type, default will be used in place of a bucket type. The following
queries are thus identical:


Location withDefaultBucketType =
  new Location(new Namespace("default", "my_bucket"), "my_key");
Location noBucketType =
  new Location(new Namespace("my_bucket"), "my_key");
FetchValue fetch1 = new FetchValue.Builder(withDefaultBucketType).build();
FetchValue fetch2 = new FetchValue.Builder(noBucketType).build();
client.execute(fetch1);
client.execute(fetch2);



bucket1 = client.bucket_type('default').bucket('my_bucket')
bucket2 = client.bucket('my_bucket')
bucket1.get('my_key')
bucket2.get('my_key')



$location1 = new \Basho\Riak\Location('my_key', new Bucket('my_bucket', 'default'));
$location2 = new \Basho\Riak\Location('my_key', new Bucket('my_bucket'));
$builder = new \Basho\Riak\Command\Builder\FetchObject($riak);
$builder->atLocation($location1)
  ->build()
  ->execute();
$builder->atLocation($location2)
  ->build()
  ->execute();



bucket1 = client.bucket_type('default').bucket('my_bucket')
bucket2 = client.bucket('my_bucket')
bucket1.get('my_key')
bucket2.get('my_key')



var id1 = new RiakObjectId("default", "my_bucket", "my_key");
var obj1 = new RiakObject(id1, "value", RiakConstants.ContentTypes.TextPlain);
client.Put(obj1);

var id2 = new RiakObjectId("my_bucket", "my_key");
var getRslt = client.Get(id2);

RiakObject obj2 = getRslt.Value;
// Note: obj1.Value and obj2.Value are equal



var obj1 = new Riak.Commands.KV.RiakObject();
obj1.setContentType('text/plain');
obj1.setBucketType('default');
obj1.setBucket('my_bucket');
obj1.setKey('my_key');
obj1.setValue('value');
client.storeValue({ value: obj1 }, function (err, rslt) {
    if (err) {
        throw new Error(err);
    }

    client.fetchValue({
        bucketType: 'default', bucket: 'my_bucket', key: 'my_key'
    }, function (err, rslt) {
        if (err) {
            throw new Error(err);
        }
        var obj2 = rslt.values.shift();
        assert(obj1.value == obj2.value);
    });
});



{ok, Obj1} = riakc_pb_socket:get(Pid,
                                 {<<"default">>, <<"my_bucket">>},
                                 <<"my_key">>),
{ok, Obj2} = riakc_pb_socket:get(Pid,
                                 <<"my_bucket">>,
                                 <<"my_key">>).



curl http://localhost:8098/buckets/my_bucket/keys/my_key
curl http://localhost:8098/types/default/my_bucket/keys/my_key






Default Bucket Properties


Below is a listing of the default bucket properties (i.e. props)
associated with the default bucket type:


{
  "props": {
    "allow_mult": false,
    "basic_quorum": false,
    "big_vclock": 50,
    "chash_keyfun": {
      "fun": "chash_std_keyfun",
      "mod": "riak_core_util"
    },
    "dvv_enabled": false,
    "dw": "quorum",
    "last_write_wins": false,
    "linkfun": {
      "fun": "mapreduce_linkfun",
      "mod": "riak_kv_wm_link_walker"
    },
    "n_val": 3,
    "notfound_ok": true,
    "old_vclock": 86400,
    "postcommit": [],
    "pr": 0,
    "precommit": [],
    "pw": 0,
    "r": "quorum",
    "rw": "quorum",
    "small_vclock": 50,
    "w": "quorum",
    "young_vclock": 20
  }
}






Bucket Types and the allow_mult Setting


Prior to Riak 2.0, Riak created [[siblings|Causal Context#Siblings]] in
the case of conflicting updates only when explicitly instructed to do
so, i.e. when allow_mult is to true. The default allow_mult
setting was false.


In version 2.0, this is changing in a subtle way. Now, there are two
different default settings for allow_mult in play:



		For the default bucket type, allow_mult is set to false by
default, as in previous versions of Riak


		For all newly-created bucket types, the default is now true. It is
possible to set allow_mult to false if you wish to avoid resolving
sibling conflicts, but this needs to be done explicitly.





The consequence is that applications that have previously ignored
conflict resolutions in certain buckets (or all buckets) can continue to
do so. New applications, however, are encouraged to retain and [[resolve
siblings|Conflict Resolution]] with the appropriate application-side
business logic.


To give an example, let’s have a look at the properties associated with
the default bucket type:


riak-admin bucket-type status default | grep allow_mult



The output:


allow_mult: false



Now, let’s create a new bucket type called n_val_of_2, which sets the
n_val to 2 but doesn’t explicitly set allow_mult:


riak-admin bucket-type create n_val_of_2 '{"props":{"n_val":2}}'



When specifying this bucket type’s properties as above, the allow_mult
parameter was not changed. However, if we view the bucket type’s
properties, we can see in the console output that allow_mult is set to
true:


riak-admin bucket-type status n_val_of_2 | grep allow_mult



The output:


allow_mult: true



This is important to bear in mind when using versions of Riak 2.0 and
later any time that you create, activate, and use your own bucket types.
It is still possible to set allow_mult to false in any given bucket
type, but it must be done explicitly. If we wanted to to set
allow_mult to false in our n_val_of_2 bucket type from above, we
would need to create or modify the already existing type as follows:


riak-admin bucket-type update n_val_of_2 '{"props":{"allow_mult":false}}'






Bucket Type Example


Let’s say that you’d like to create a bucket type called
user_account_bucket with a [[pre-commit hook|Using Commit
Hooks#Pre-Commit-Hooks]] called syntax_check and two [[post-commit
hooks|Using Commit Hooks#Post-Commit-Hooks]] called welcome_email and
update_registry. This would involve four steps:



		Creating a JavaScript object containing the appropriate props
settings:


{
  "props": {
    "precommit": ["syntax_check"],
    "postcommit": ["welcome_email", "update_registry"]
  }
}






		Passing that JSON to the bucket-type create command:


riak-admin bucket-type create user_account_bucket '{"props":{"precommit": ["syntax_check"], ... }}'



If creation is successful, the console will return
user_account_bucket created.





		Verifying that the type is ready to be activated:


Once the type is created, you can check whether your new type is
ready to be activated by running:


riak-admin bucket-type status user_account_bucket



If the first line reads user_account_bucket has been created and may be activated, then you can proceed to the next step. If it
reads user_account_bucket has been created and is not ready to activate, then wait a moment and try again. If it still does not
work, then there may be network partition or other issues that need
to be addressed in your cluster.





		Activating the new bucket type:


riak-admin bucket-type activate user_account_bucket



If activation is successful, the console will return
user_account_bucket has been activated. The bucket type is now
ready to be used.











Client Usage Example


If you have created the bucket type no_siblings (with the property
allow_mult set to false) and would like that type to be applied to
the bucket sensitive_user_data, you would need to run operations on
that bucket in accordance with the format above. Here is an example
write:


Location key = new Location("sensitive_user_data")
        .setBucketType("no_siblings")
        .setKey("user19735");
RiakObject obj = new RiakObject()
        .setContentType("application/json")
        .setValue(BinaryValue.create("{ ... user data ... }"));
StoreValue store = new StoreValue.Builder(obj).build();
client.execute(store);



bucket = client.bucket_type('no_siblings').bucket('sensitive_user_data')
obj = Riak::RObject.new(bucket, 'user19735')
obj.content_type = 'application/json'
obj.raw_data = '{ ... user data ... }'
obj.store



(new \Basho\Riak\Command\Builder\StoreObject($riak))
  ->buildJsonObject("{ ... user data ... }")
  ->buildLocation('user19735', 'sensitive_user_data', 'no_siblings')
  ->build()
  ->execute();



bucket = client.bucket_type('no_siblings').bucket('sensitive_user_data')
obj = RiakObject(client, bucket, 'user19735')
obj.content_type = 'application/json'
obj.data = '{ ... user data ... }'
obj.store()



var id = new RiakObjectId("no_siblings", "sensitive_user_data", "user19735");
var obj = new RiakObject(id, "{\"name\":\"Bob\"}");
var rslt = client.Put(obj);



var obj = { name: 'Bob' };
client.storeValue({
    bucketType: 'no_siblings', bucket: 'sensitive_user_data',
    key: 'user19735', value: obj
}, function (err, rslt) {
    if (err) {
        throw new Error(err);
    }
});



Object = riakc_obj:new({<<"no_siblings">>, <<"sensitive_user_data">>},
                       <<"user19735">>,
                       <<"{ ... user data ... }">>,
                       <<"application/json">>),
riakc_pb_socket:put(Pid, Object).



curl -XPUT \
  -H "Content-Type: application/json" \
  -d "{ ... user data ... }" \
  http://localhost:8098/types/no_siblings/buckets/sensitive_user_data/keys/user19735



In this example, the bucket sensitive_user_data bears the
configuration established by the no_siblings bucket type, and it bears
that configuration on the basis of the query’s structure. This is
because buckets act as a [[separate namespace|Using Bucket
Types#buckets-as-namespaces]] in Riak, in addition to [[buckets]] and
[[keys|Keys and Objects]].


Let’s say that we’re using Riak to store internet memes. We’ve been
using a bucket called current_memes using the bucket type
no_siblings (from above). At a certain point, we decide that our
application needs to use a new bucket called old_memes to store memes
that have gone woefully out of fashion, but that bucket also needs to
bear the type no_siblings.


The following request seeks to add the meme “all your base are belong to
us” to the old_memes bucket. If the bucket type no_siblings has been
created and activated, the request will ensure that the old_memes
bucket inherits all of the properties from the type no_siblings:


Location allYourBaseKey =
  new Location(new Namespace("no_siblings", "old_memes"), "all_your_base");
RiakObject obj = new RiakObject()
        .setContentType("text/plain")
        .setValue(BinaryValue.create("all your base are belong to us"));
StoreValue store = new StoreValue.Builder(obj).build();
client.execute(store);



bucket = client.bucket_type('no_siblings').bucket('old_memes')
obj = Riak::RObject.new(bucket, 'all_your_base')
obj.content_type = 'text/plain'
obj.raw_data = 'all your base are belong to us'
obj.store



(new \Basho\Riak\Command\Builder\StoreObject($riak))
  ->buildObject("all your base are belong to us", ['Content-Type' => 'text/plain'])
  ->buildLocation('user19735', 'sensitive_user_data', 'no_siblings')
  ->build()
  ->execute();



bucket = client.bucket_type('no_siblings').bucket('old_memes')
obj = RiakObject(client, bucket, 'all_your_base')
obj.content_type = 'text/plain'
obj.data = 'all your base are belong to us'
obj.store()



var id = new RiakObjectId("no_siblings", "old_memes", "all_your_base");
var obj = new RiakObject(id, "all your base are belong to us",
    RiakConstants.ContentTypes.TextPlain);
var rslt = client.Put(obj);



var obj = new Riak.Commands.KV.RiakObject();
obj.setContentType('text/plain');
obj.setBucketType('no_siblings');
obj.setBucket('old_memes');
obj.setKey('all_your_base');
obj.setValue('all your base are belong to us');
client.storeValue({ value: obj }, function (err, rslt) {
    if (err) {
        throw new Error(err);
    }
});



Object = riakc_obj:new({<<"no_siblings">>, <<"old_memes">>},
                       <<"all_your_base">>,
                       <<"all your base are belong to us">>,
                       <<"text/plain">>),
riakc_pb_socket:put(Pid, Object).



curl -XPUT \
  -H "Content-Type: text/plain" \
  -d "all your base are belong to us" \
  http://localhost:8098/types/no_siblings/buckets/old_memes/keys/all_your_base



This query would both create the bucket old_memes and ensure that the
configuration contained in the no_siblings bucket type is applied to
the bucket all at once.


If we wished, we could also store store both old and new memes in
buckets with different types. We could use the no_siblings bucket from
above if we didn’t want to deal with siblings, vclocks, and the like,
and we could use a siblings_allowed bucket type (with all of the
default properties except allow_mult set to true). This would give
use four bucket type/bucket pairs:



		no_siblings / old_memes


		no_siblings / new_memes


		siblings_allowed / old_memes


		siblings_allowed / new_memes





All four of these pairs are isolated keyspaces. The key favorite_meme
could hold different values in all four bucket type/bucket spaces.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/mdc/per-bucket.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Multi Data Center Replication: Per Bucket”
project: riak
header: riakee
version: 1.1.0+
document: cookbook
toc: true
audience: intermediate
keywords: [mdc, repl, bucket]
moved: {
‘2.0.0-‘: ‘riakee:/cookbooks/Multi-Data-Center-Replication-Pre-Bucket’
}




To enable or disable replication per bucket, you can use the repl
bucket property.


Some changes have occurred between 1.1 and 1.2.


These repl values are available in Riak Enterprise version 1.1 and
above:



		true — Enable replication (realtime + fullsync)


		false — Disable replication (realtime + fullsync)





These option values are only available in Riak Enterprise version 1.2
and above:



		realtime — Replication only occurs in realtime for this bucket


		fullsync — Replication only occurs during a fullsync operation


		both — Replication occurs in realtime and during fullsync






Example of Disabling


curl -v -XPUT http://127.0.0.1:8091/riak/my_bucket \
  -H "Content-Type: application/json" \
  -d '{"props":{"repl":false}}'






Example of Enabling


curl -v -XPUT http://127.0.0.1:8091/riak/my_bucket \
  -H "Content-Type: application/json" \
  -d '{"props":{"repl":true}}'






How Bucket Properties Work in Riak Enterprise


When using Multi-Datacenter Replication, each bucket’s write properties
are derived from the bucket’s properties in the destination cluster. If
the bucket doesn’t exist, the default properties of the destination
cluster are used.


It’s important to note that this goes for properties such as backend.
If the bucket doesn’t exist in the destination cluster, Riak will create
it with the default backend and not with the backend used in the
source cluster.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/advanced/commit-hooks.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Advanced Commit Hooks
project: riak
version: 1.1.0+
document: guide
toc: true
audience: advanced
keywords: [developers, commit-hooks, beam]
moved: {
‘1.4.0-‘: ‘/cookbooks/Erlang-Named-Functions’
}




Riak supports the use of Erlang named functions in compiled modules for pre-commit hooks, post-commit hooks, and MapReduce operations. This cookbook
explains the process for using your own named functions, including module
compilation, configuration, and installation steps with simple examples
detailed for each use case.



Pre-Commit Hook Example


For the pre-commit hook example, we’ll define a function to validate the JSON content of a key’s value before writing the key and value to the bucket that the pre-commit hook is installed into.


Here is our example pre-commit validate_json module and its corresponding validate function:


-module(validate_json).
-export([validate/1]).

validate(Object) ->
  try
    mochijson2:decode(riak_object:get_value(Object)),
    Object
  catch
    throw:invalid_utf8 ->
      {fail, "Invalid JSON: Illegal UTF-8 character"};
    error:Error ->
      {fail, "Invalid JSON: " ++ binary_to_list(list_to_binary(io_lib:format("~p", [Error])))}
  end.



Save this file as validate_json.erl and proceed to compiling the module.


Note on the Erlang Compiler
You
must use the Erlang compiler (erlc) associated with the Riak
installation or the version of Erlang used when compiling Riak from source.
For packaged Riak installations, you can consult Table 1 below for the default location of Riak's erlc for each supported platform. If you compiled from source, use the erlc from the Erlang version you used to compile Riak.
Table 1 — Erlang compiler executable location for packaged Riak installations on supported platforms


Operating System | Path |
:—————-|:—–|
CentOS & RHEL Linux | /usr/lib64/riak/erts-5.9.1/bin/erlc |
Debian & Ubuntu Linux | /usr/lib/riak/erts-5.9.1/bin/erlc |
FreeBSD | /usr/local/lib/riak/erts-5.9.1/bin/erlc |
SmartOS | /opt/local/lib/riak/erts-5.9.1/bin/erlc |
Solaris 10 | /opt/riak/lib/erts-5.9.1/bin/erlc |


Compiling the module is a straightforward process.


erlc validate_json.erl



Next, you’ll need to define a path from which compiled modules can be stored and loaded. For our example we’ll use a temporary directory, /tmp/beams, but you should choose a directory for production functions based on your own requirements and in such a way that they’ll be available where and when they are needed.


Note

Ensure that the directory chosen above can be read by the riak user.

Successful compilation will result in a new .beam file, validate_json.beam.


Send this file to your operator, or read about [[installing custom code]]
on your Riak nodes.


Once Riak is restarted, all that remains is to install the pre-commit hook into the target bucket(s) on which you wish it to operate. In this example, we have just one bucket, named messages, into which we’re going to install our
validate pre-commit function.


You can use Riak’s HTTP interface and the curl command line utility to install your named functions into into the relevant bucket(s). For our example, we’ll install the validate_json module with its validate function into our messages bucket, like this:


curl -XPUT \
  -H "Content-Type: application/json" \
  -d '{"props":{"precommit":[{"mod": "validate_json", "fun": "validate"}]}}' \
  http://127.0.0.1:8098/buckets/messages/props



Check that the bucket has your pre-commit hook listed in its properties:


curl http://localhost:8098/buckets/messages/props | jsonpp



The output should look like this:


{
  "props": {
    "allow_mult": false,
    "basic_quorum": false,
    "big_vclock": 50,
    "chash_keyfun": {
      "fun": "chash_std_keyfun",
      "mod": "riak_core_util"
    },
    "dw": "quorum",
    "last_write_wins": false,
    "linkfun": {
      "fun": "mapreduce_linkfun",
      "mod": "riak_kv_wm_link_walker"
    },
    "n_val": 3,
    "name": "messages",
    "notfound_ok": true,
    "old_vclock": 86400,
    "postcommit": [],
    "pr": 0,
    "precommit": [
      {
        "mod": "validate_json",
        "fun": "validate"
      }
    ],
    "pw": 0,
    "r": "quorum",
    "rw": "quorum",
    "small_vclock": 50,
    "w": "quorum",
    "young_vclock": 20
  }
}



You can see that precommit is indeed set to our validate_json module and validate function. Now you can test the pre-commit hook function by putting some objects with JSON values, including some with invalid JSON.


curl -XPUT \
  -H "Content-Type: application/json" \
  -d @msg3.json \
  localhost:8098/buckets/messages/keys/1        



The response when msg3.json contains invalid JSON:


Invalid JSON: {case_clause,{{const,<<"authorName">>},{decoder,null,160,1,161,comma}}}






Post-Commit Hook Example


For the post-commit example, we’ll define a simple function to log the object values to console.log after they are successfully written to Riak.


Here is our example post-commit function:


-module(log_object).
-export([log/1]).

log(Object) ->
  error_logger:info_msg("OBJECT: ~p~n",[Object]).



Save this file as log_object.erl and proceed to compiling the module.


Note on the Erlang Compiler
You
must use the Erlang compiler (erlc) associated with the Riak installation or the version of Erlang used when compiling Riak from source.
For packaged Riak installations, you can consult Table 1 above for the default location of Riak's erlc for each supported platform. If you compiled from source, use the erlc from the Erlang version you used to compile Riak.
Compiling the module is straightforward:


erlc log_object.erl



Next, you’ll need to define a path from which compiled modules can be stored
and loaded.


Just like pre-commit hooks, send this file to your operator or read about [[installing custom code]] on your Riak nodes.


Once Riak is restarted, all that remains is to install the post-commit hook on the target bucket(s) on which you wish it to operate. In this example, we have just one bucket, named updates, into which we’re going to install our log function.


You can use Riak’s HTTP interface and the curl command line utility to
install your named functions into into the relevant buckets. For our example,
we’ll install the log_object module and its log function into our messages bucket, like this:


curl -XPUT \
  -H "Content-Type: application/json" \
  -d '{"props":{"postcommit":[{"mod": "log_object", "fun": "log"}]}}' \
  http://127.0.0.1:8098/buckets/updates/props



Check that the bucket has your post-commit hook listed in its properties.


curl localhost:8098/buckets/updates/props | jsonpp



The output should look like this:


{
  "props": {
    "allow_mult": false,
    "basic_quorum": false,
    "big_vclock": 50,
    "chash_keyfun": {
      "fun": "chash_std_keyfun",
      "mod": "riak_core_util"
    },
    "dw": "quorum",
    "last_write_wins": false,
    "linkfun": {
      "fun": "mapreduce_linkfun",
      "mod": "riak_kv_wm_link_walker"
    },
    "n_val": 3,
    "name": "updates",
    "notfound_ok": true,
    "old_vclock": 86400,
    "postcommit": [
      {
        "fun": "log",
        "mod": "log_object"
      }
    ],
    "pr": 0,
    "precommit": [],
    "pw": 0,
    "r": "quorum",
    "rw": "quorum",
    "small_vclock": 50,
    "w": "quorum",
    "young_vclock": 20
  }
}



You can see that postcommit is indeed set to our log_object module and log function. Now you can test the post-commit function by posting an object and viewing console.log.


curl -XPUT \
  -H "Content-Type: application/json" \
  -d @msg2.json \
  localhost:8098/buckets/updates/keys/2



You can see the logged value of the object by viewing console.log.


2012-12-10 13:14:37.840 [info] <0.2101.0> OBJECT: {r_object,<<"updates">>,<<"2">>,[{r_content,{dict,6,16,16,8,80,48,{[],[],[],
[],[],[],[],[],[],[],[],[],[],[],[],[]},{{[],[],[[<<"Links">>]],[],[],[],[],
[],[],[],[[<<"content-type">>,97,112,112,108,105,99,97,116,105,111,110,47,
106,115,111,110],[<<"X-Riak-VTag">>,52,114,79,84,75,73,90,73,83,105,49,101,
12,53,87,103,106,110,56,71,114,83]],[[<<"index">>]],[],
[[<<"X-Riak-Last-Modified">>|{1355,163277,837883}]],[],
[[<<"X-Riak-Meta">>]]}}},<<"{    \"id\": 1,    \"jsonrpc\": \"2.0\",
\"total\": 1,    \"result\": [        {            \"id\": 1,
\"author\": \"foo@example.com\",            \"authorName\": \"Foo Bar\",
\"text\": \"Home of the example cocktail\"        }
]}">>}],[{<<35,9,254,249,80,193,17,247>>,{1,63522382477}}],{dict,1,16,16,8,
80,48,{[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[]},{{[],[],[],[],[],[],
[],[],[],[],[],[],[],[],[[clean|true]],[]}}},undefined}







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/mdc/statistics.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Multi Data Center Replication: Statistics”
project: riak
header: riakee
version: 1.3.0+
document: cookbook
toc: true
audience: intermediate
keywords: [mdc, repl, operator, bnw]
moved: {
‘1.4.0-‘: ‘riakee:/cookbooks/Multi-Data-Center-Replication-Status’,
‘1.4.0-2.0.0’: ‘riakee:/cookbooks/Multi-Data-Center-Replication-Statistics’
}




The following definitions describe the output of riak-repl status.
Both Version 2 and Version 3 Replication statistics can be obtained
using the riak-repl status command.


There are two things that you should note:



		Many of these statistics will appear only on the current
leader node


		The counts for all statistics will be reset to 0 upon restarting Riak
Riak Enterprise unless otherwise noted





{{1.3.0+}}


Field | Description
:—–|:———-
cluster_leader | Which node is the current leader of the cluster
connected_clusters | A list of all sink clusters to which this source is connected



Performance


The riak-repl status command should not be executed more than once a
minute, as statistics are recalculated every time the command is
executed, and some statistics require network communication between
nodes. This performance note also applies to the HTTP /riak-repl/stats
endpoint.





Realtime Replication Statistics


Statistics for both the source or sink sides of realtime replication.
These values can be found under either sources.source_stats or
sinks.sink_stats.


Field | Description
——|————
realtime_enabled {{1.3.0+}} | A list of all realtime sinks that are enabled
realtime_started {{1.3.0+}} | A list of all realtime sinks that are started
rt_dirty | The number of errors detected that can prevent objects from being replicated via realtime. These include errors on the source or sink connection, or realtime queue overload resulting in objects being dropped from the queue. This value will persist across restarts until a fullsync is complete.
rt_sink_errors | A sink error has been detected on the source node. This value will be reset to 0 after a node restarts.
rt_sink_connected_to.source_drops |  The number of dropped put transfers from the perspective of the sink cluster
rt_source_errors | A source error has been detected on the source node. This value will be reset to 0 after a node restarts.


Field | Description
——|————
rt_source_connected_to | The name of the sink cluster to which the source cluster is connected
rt_sink_connected_to | The name of the source cluster to which the sink cluster is connected
connected | If true, then the source is connected to a sink (or vice versa)
objects | The number of realtime replication objects that have been successfully transmitted to the sink cluster
sent_seq | The last realtime queue sequence number that has been transmitted
acked_seq | The last realtime queue sequence number that has been acknowledged
expect_seq | The next realtime queue sequence number that is expected
hb_rtt  {{1.3.2+}} | Realtime replication heartbeat round-trip time in milliseconds, recorded on the replication source
hb_last {{1.3.2+}} | {MegaSeconds, Seconds, MicroSeconds} since a heartbeat message was received on the realtime sink


These values are under realtime_queue_stats.


Field | Description
——|————
bytes | The size in bytes of all objects currently in the realtime queue
consumers | A list of source consumers of the realtime queue
consumers.<clustername>.drops | The number of dropped realtime sync put transfers per sink cluster, from the perspective of the source cluster (“dropped” in this context meaning either that the outgoing data queue was full or that there was a connection error)
drops | The number of objects dropped from the realtime queue as the result of the queue being full or other errors
errs | The number of errors while pushing/popping from the realtime queue
overload_drops | The number of put transfers that have been dropped due to an overload of the message queue of the Erlang process responsible for processing outgoing transfers
pending | The number of objects waiting to be sent to the sink cluster
sinkclustername | A consumer of the realtime queue
unacked | The number of objects waiting to be acknowledged by a queue consumer





Fullsync Replication Statistics


Field | Description
——|————
fullsync_enabled {{1.3.0+}} | A list of all sinks that are enabled
fullsync_running {{1.3.0+}} | A list of all sinks that are running
server_fullsyncs | The number of fullsync operations that have occurred since the server was started
fullsyncs_completed | The number of fullsyncs that have been completed to the specified sink cluster.
fullsync_start_time | The time the current fullsink to the specified cluster began.
last_fullsync_duration| The duration (in seconds) of the last completed fullsync.


If this cluster is acting as a source, the fullsync_coordinator field returns a list of {<sink_clustername>:<fullsync_stats>}. If this cluster is acting as a sink, the fullsync_coordinator_srv field returns a list of {<LocalIP:Port>:<fullsync_coordinator_srv_stats>}.


Those fields are described in the following tables.


Field | Description
——|————
cluster | The name of the sink cluster
queued | The number of partitions that are waiting for an available process
in_progress | The number of partitions that are being synced
starting | The number of partitions connecting to remote cluster
successful_exits | The number of partitions successfully synced. When completed, this will be the same number as total number of partitions in the ring.
error_exits | If a sync failed or was aborted, the partition will be queued again and try again later
running_stats | [{<PID>, <stats>},…] Any running sync processes are listed here, and described in the table below
socket | See Socket Statistics
fullsync_suggested | Realtime replication errors occurred on these nodes, a fullsync is suggested
fullsync_suggested_during_fs | Realtime replication errors occurred on these nodes while a fullsync is already in progress. A fullsync is suggested after the current fullsync completes. These value will be moved to the fullsync_suggested value when the current fullsync completes.
socket | {peername: <RemoteIP:Port>, sockname: <LocalIP:Port>}


The running_stats field contains the following fields.


Field | Description
——|————
node | The local cluster source node currently participating in fullsync replication
site | The name of the sink cluster. Warning: This will be renamed in future versions of Riak.
strategy | The strategy that fulfills fullsync replication. In previous versions of replication, different values could be configured. This value could be changed depending on your replication needs.
fullsync_worker | The Erlang process id of the fullsync worker.
socket | See Socket Statistics
state | The current state of fullsync replication. This can be used by Basho support to identify replication issues.

		wait_for_partition

		build_keylist

		wait_keylist

		diff_bloom

		diff_keylist




fullsync | The partition that is currently being synchronized with the sink cluster
partition_start | Elapsed time in seconds since the fullsync partition started replication to a sink
stage_start | Elapsed time in seconds since the state started running on the source
get_pool_size | The number of workers that are used to read data from Riak during a fullsync





Socket Statistics


Many sections of the status output include a socket section. A reading is taken once every 10 seconds, and the last 7 readings are stored.


Field | Description
——|————
peername | <ip:port> The address and port for the other end of a connection
recv_avg | The average size of packets in bytes received to the socket
recv_cnt | The number of packets received by the socket
recv_dvi | The average packet size deviation in bytes received by the socket
recv_kbps | Socket kilobits/second received
recv_max | Size of the largest packet in bytes received to the socket
send_cnt | Number of packets sent from the socket
send_kbps | Socket kilobits/second sent
send_pend | The number of bytes in the Erlang VM to be sent over the socket
sockname | <host:port> The address and port for “this end” of the connection





Version 2 Replication Statistics


The following definitions describe the output of riak-repl status.
Please note that many of these statistics will only appear on the
current leader node.


Note: All counts will be reset to 0 upon restarting Riak Enterprise.


Field | Description
——|————
listener_[nodeid] | Defines a replication listener (primary) that is running on node [nodeid]
[sitename]_ips | Defines a replication skin
client_bytes_recv | The total number of bytes the client has received since the server has been started
client_bytes_sent | The total number of bytes sent to all connected secondaries
client_connect_errors | The number of TCP/IP connection errors
client_connects | A count of the number of sink connections made to this node.
client_redirect | If a client connects to a non-leader node, it will be redirected to a leader node
client_rx_kbps | A snapshot of the sink received kilobits/second taken once a minute. The past 8 snapshots are stored in this list. Newest snapshots appear on the left side of the list.
client_tx_kbps | A snapshot of the sink sent kilobits/second taken once a minute. The past 8 snapshots are stored in this list. Newest snapshots appear on the left side of the list.
elections_elected | If the replication leader node becomes unresponsive or unavailable, a new leader node in the cluster will be elected
elections_leader_changed | The number of times a Riak node has surrendered leadership
objects_dropped_no_clients | If the realtime replication work queue is full and there are no clients to receive objects, then objects will be dropped from the queue. These objects will be synchronized during a fullsync operation.
objects_dropped_no_leader | If a sink cannot connect to a leader, objects will be dropped during realtime replication
objects_forwarded | The number of Riak objects forwarded to the leader the participate in replication. Please note that this value will only be accurate on a non-leader node.
objects_sent | The number of objects sent via realtime replication
server_bytes_recv | The total number of bytes the primary has received
server_bytes_sent | The total number of bytes the primary has sent
server_connect_errors | The number of primary to sink connection errors
server_connects | The number of times the primary connects to the client sink
server_rx_kbps | A snapshot of the primary received kilobits/second taken once a minute. The past 8 snapshots are stored in this list. Newest snapshots appear on the left side of the list
server_tx_kbps | A snapshot of the primary sent kilobits/second taken once a minute. The past 8 snapshots are stored in this list. Newest snapshots appear on the left side of the list.
leader | Which node is the current leader of the cluster for Version 2 Replication
local_leader_message_queue_len | The length of the object queue on the leader
local_leader_heap_size | The amount of memory the leader is using
client_stats | See Client Statistics
server_stats | See Server Statistics





Client Statistics


Field | Description
——|————
node | A unique ID for the Riak node that the sink in running on
site | The connected site (sink) name. Warning: This will be renamed in a future version of Riak.
strategy | A replication strategy defines an implementation of the Riak Replication protocol. Valid values: keylist, syncv1.
fullsync_worker | The Erlang process ID of the fullsync worker
waiting_to_retry | The primaries currently waiting to retry replication after a failure
connected | A list of connected clients

		connected The IP address and port of a connected sink

		cluster_name The name of the connected sink

		connecting The PID, IP address, and port of a client currently establishing a connection




state | State shows what the current replication strategy is currently processing. The following definitions appear in the status output if keylist strategy is being used. They can be used by Basho support to identify replication issues.		request_partition

		wait_for_fullsync

		send_keylist

		wait_ack









Server Statistics


Field | Description
——|————
node | A unique ID for the Riak node that the source is running on
site | The connected site (sink) name configured with. Warning: This will be renamed in a future version of Riak.
strategy | A replication strategy defines an implementation of the Riak Replication protocol. Valid values: keylist, syncv1.
fullsync_worker | The Erlang process ID of the fullsync worker
bounded_queue | See Bounded Queue
state | State shows what the current replication strategy is currently processing. The following definitions appear in the status output if keylist strategy is being used. They can be used by Basho support to identify replication issues.

		wait_for_partition

		build_keylist

		wait_keylist

		diff_bloom

		diff_keylist




message_queue_len | The number of Erlang messages that are waiting to be processed by the server





Bounded Queue


The bounded queue is responsible for holding objects that are waiting to
participate in realtime replication. Please see the [[Riak Enterprise
MDC Replication Configuration (version 2)|Multi Data Center Replication:
Configuration]] or [[Riak Enterprise MDC Replication Configuration
(version 3)|Multi-Data-Center Replication v3 Configuration]] guides for
more information.


Field | Description
——|————
queue_pid | The Erlang process ID of the bounded queue
dropped_count | The number of objects that failed to be enqueued in the bounded queue due to the queue being full. These objects will be replicated during the next fullsync operation.
queue_length | The number of Riak objects currently in the bounded queue
queue_byte_size | The size of all objects currently in the queue
queue_max_size| The number of bytes the queue can hold before objects are dropped. These objects will be replicated during the next fullsync operation.
queue_percentage | The percentage of the queue that is full
queue_pending | The current count of “in-flight” objects we’ve sent that the client has not acknowledged
queue_max_pending | The maximum number of objects that can be “in flight” before we refuse to send any more.





Accessing Replication Web-Based Statistics


These stats can be accessed via the command line with the following
command:


curl -q http://127.0.0.1:8098/riak-repl/stats



A simple way to view formatted statistics is to use a command such as:


curl -q http://127.0.0.1:8098/riak-repl/stats | jsonpp







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/advanced/cluster-metadata.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Cluster Metadata
project: riak
version: 2.0.0+
document: guide
toc: true
audience: advanced
keywords: [developers, advanced, cluster-metadata]




Cluster metadata is a subsystem inside of Riak that enables systems
built on top of
riak_core [https://github.com/basho/riak_core/blob/develop/src/riak_core_metadata.erl]
to work with information that is stored cluster wide and can be read
without blocking on communication over the network.


One notable example of a subsystem of Riak relying on cluster metadata
is Riak’s [[bucket types|Using Bucket Types]] feature. This feature
requires that a particular form of key/value pairs, namely bucket type
names (the key) and their associated bucket properties (the value), be
asynchronously broadcast to all nodes in a Riak cluster.


Though it is different in crucial respects,
etcd [https://coreos.com/docs/cluster-management/setup/getting-started-with-etcd/]
is a roughly analogous cluster metadata key/value store developed for
use in CoreOS [https://coreos.com/] clusters.



How Cluster Metadata Works


Cluster metadata is different from other Riak data in two essential
respects:



		Cluster metadata is intended only for internal Riak applications that
require metadata shared on a system-wide basis. Regular stored data,
on the other hand, is intended for use outside of Riak.


		Because it is intended for use only by applications internal to Riak,
cluster metadata can be accessed only internally, via the Erlang
interface provided by the
riak_core_metadata [https://github.com/basho/riak_core/blob/develop/src/riak_core_metadata.erl]
module; it cannot be accessed externally via HTTP or Protocol Buffers.





The storage system backing cluster metadata is a simple key/value store
that is capable of asynchronously replicating information to all nodes
in a cluster when it is stored or modified. Writes require
acknowledgment from only a single node (equivalent to w=1 in normal
Riak), while reads return values only from the local node (equivalent to
r=1). All updates are eventually consistent and propagated to all
nodes, including nodes that join the cluster after the update has
already reached all nodes in the previous set of members.


All cluster metadata is eventually stored both in memory and on disk,
but it should be noted that reads are only from memory, while writes are
made both to memory and to disk. Logical clocks, namely [[dotted version
vectors|Causal Context#Dotted-Version-Vectors]], are used in place of
[[vector clocks|Causal Context#Vector-Clocks]] or timestamps to resolve
value conflicts. Values stored as cluster metadata are opaque Erlang
terms addressed by both prefix and a key.





Erlang Code Interface


If you’d like to use cluster metadata for an internal Riak application,
the Erlang interface is defined in the
riak_core_metadata [https://github.com/basho/riak_core/blob/develop/src/riak_core_metadata.erl]
module, which allows you to perform a variety of cluster metadata
operations, including retrieving, modifying, and deleting metadata and
iterating through metadata keys.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/mdc/v2/architecture.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Multi Data Center Replication: Architecture”
project: riak
header: riakee
version: 1.0.0+
document: cookbook
toc: true
audience: intermediate
keywords: [mdc, repl]
moved: {
‘2.0.0-‘: ‘riakee:/cookbooks/Multi-Data-Center-Replication-Architecture’
}




This document provides a basic overview of the architecture undergirding
Riak Enterprise’s Multi-Datacenter Replication capabilities.



How Replication Works


When Multi-Datacenter Replication is implemented, one Riak cluster acts
as a primary cluster. The primary cluster handles replication
requests from one or more secondary clusters (generally located in
datacenters in other regions or countries). If the datacenter with the
primary cluster goes down, a secondary cluster can take over as the
primary cluster. In this sense, Riak’s multi-datacenter capabilities are
masterless.


Multi-Datacenter Replication has two primary modes of operation:
fullsync and realtime. In fullsync mode, a complete
synchronization occurs between primary and secondary cluster(s); in
realtime mode, continual, incremental synchronization occurs, i.e.
replication is triggered by new updates.


Fullsync is performed upon initial connection of a secondary cluster,
and then periodically thereafter (every 360 minutes is the default, but
this can be modified). Fullsync is also triggered if the TCP connection
between primary and secondary cluster is severed and then recovered.


Both fullsync and realtime mode are described in detail below.
But first, a few key concepts.





Concepts



Listener Nodes


Listeners, also called servers, are Riak nodes in the primary
cluster that listen on an external IP address for replication requests.
Any node in a Riak cluster can participate as a listener. Adding more
nodes will increase the fault tolerance of the replication process in
the event of individual node failures. If a listener node goes down,
another node can take its place.





Site Nodes


Site nodes, also called clients, are Riak nodes on a secondary
cluster that connect to listener nodes and send replication initiation
requests. Site nodes are paired with a listener node when started.





Leadership


Only one node in each cluster will serve as the lead site (client) or
listener (server) node. Riak replication uses a leadership-election
protocol to determine which node in the cluster will participate in
replication. If a site connects to a node in the primary cluster that is
not the leader, it will be redirected to the listener node that is
currently the leader.







Fullsync Replication


Riak Enterprise performs the following steps during fullsync
replication, as illustrated in the Figure below.



		A TCP connection is established between the primary and secondary
clusters


		The site node in the secondary cluster initiates fullsync replication
with the primary node by sending a message to the listener node in
the primary cluster


		The site and listener nodes iterate through each [[vnode|Riak
Glossary#vnode]] in their respective clusters and compute a hash for
each key’s object value. The site node on the secondary cluster sends
its complete list of key/hash pairs to the listener node in the
primary cluster. The listener node then sequentially compares its
key/hash pairs with the primary cluster’s pairs, identifying any
missing objects or updates needed in the secondary cluster.


		The listener node streams the missing objects/updates to the
secondary cluster.


		The secondary cluster replicates the updates within the cluster to
achieve the new object values, completing the fullsync cycle







[image: MDC Fullsync]







Realtime Replication


Riak Enterprise performs the following steps during realtime
replication, as illustrated in the Figure below.



		The secondary cluster establishes a TCP connection to the primary


		Realtime replication of a key/object is initiated when an update is
sent from a client to the primary cluster


		The primary cluster replicates the object locally


		The listener node on the primary cluster streams an update to the
secondary cluster


		The site node within the secondary cluster receives and replicates
the update







[image: MDC Realtime]







Restrictions


It is important to note that both clusters must have certain attributes
in common for Multi-Datacenter Replication to work. If you are using
either fullsync or realtime replication, both clusters must have the
same [[ring size|Clusters#The-Ring]]; if you are using fullsync
replication, every bucket’s [[n_val|Replication Properties#N-Value-and-Replication]] must be the same in both the
source and sink cluster.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/advanced/write-once.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Write-Once Buckets
project: riak
version: 2.1.0+
document: tutorial
audience: intermediate
keywords: [developers, buckets]




Riak 2.1.0 introduces the concept of write-once buckets, buckets whose entries
are intended to be written exactly once and never updated or overwritten.
Buckets of this type circumvent the normal “coordinated PUT” path, which would
otherwise result in a read on the coordinating vnode before the write. Avoiding
coordinated PUTs results in higher throughput and lower PUT latency, though at
the cost of different semantics in the degenerate case of sibling resolution.



Configuration


When the new write_once [[bucket type|Using Bucket Types]] parameter is set to
true, buckets of type will treat all key/value entries as semantically “write
once;” once written, entries should not be modified or overwritten by the user.


The write_once property is a boolean property applied to a bucket type and may
only be set at bucket creation time. Once a bucket type has been set with this
property and activated, the write_once property may not be modified.


The write_once property is incompatible with [[Riak data
types|Using Data Types]] and [[strong consistency|Using Strong Consistency]],
This means that if you attempt to create a bucket type with the write_once
property set to true, any attempt to set the datatype parameter or to set
the consistent parameter to true will fail.


The write_once property may not be set on the default bucket type, and may not
be set on individual buckets. If you set the lww or allow_mult parameters on
a write-once bucket type, those settings will be ignored, as sibling values are
disallowed by default.


The following example shows how to configure a bucket type with the write_once
property:


riak-admin bucket-type create my-bucket-type '{"props": {"write_once": true}}'
# my-bucket-type created

riak-admin bucket-type activate my-bucket-type
# my-bucket-type has been activated

riak-admin bucket-type status my-bucket-type
# my-bucket-type is active
...
write_once: true
...






Quorum


The write path used by write-once buckets supports the w, pw, and dw
configuration values. However, if dw is specified, then the value of w is
taken to be the maximum of the w and dw values. For example, for an n_val
of 3, if dw is set to all, then w will be 3.


This write additionally supports the sloppy_quorum property. If set to
false, only primary nodes will be selected for calculation of write quorum
nodes.





Runtime


The write-once path circumvents the normal coordinated PUT code path, and
instead sends write requests directly to all [[vnodes]] (or vnode proxies) in
the effective preference list for the write operation.


In place of the put_fsm used in the normal path, we introduce a collection of
new intermediate worker processes (implementing gen_server behavior). The role
of these intermediate processes is to dispatch put requests to vnode(proxie)s in
the preflist and to aggregate replies. Unlike the put_fsm, the write-once
workers are long-lived for the lifecycle of the riak_kv application. They are
therefore stateful and store request state in a state-local dictionary.


The relationship between the riak_client, write-once workers, and vnode
proxies is illustrated in the following diagram:




[image: Write Once]







Siblings


As mentioned, entries in write-once buckets are intended to be written only
once—users who are not abusing the semantics of the bucket type should not be
updating or over-writing entries in buckets of this type. However, it is
possible for users to misuse the API, accidentally or otherwise, which might
result in incomparable entries for the same key.


In the case of siblings, write-once buckets will resolve the conflict by
choosing the “least” entry, where sibling ordering is based on a deterministic
SHA-1 hash of the objects. While this algorithm is repeatable and deterministic
at the database level, it will have the appearance to the user of “random write
wins.”





Handoff


The write-once path supports handoff scenarios, such that if a handoff occurs
during PUTs in a write-once bucket, the values that have been written will be
handed off to the newly added Riak node.





Asynchronous Writes


For backends that support asynchronous writes, the write-once path will dispatch
a write request to the backend and handle the response asynchronously. This
behavior allows the vnode to free itself for other work instead of waiting on
the write response from the backend.


At the time of writing, the only backend that supports asynchronous writes is
LevelDB. Riak will automatically fall back to synchronous writes with all other
backends.



Note on the `multi` backend

The [[Multi]] backend does not support asynchronous writes. Therefore, if
LevelDB is used with the Multi backend, it will be used in synchronous mode.





          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/mdc/comparison.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Multi Data Center Replication: Comparison”
project: riak
header: riakee
version: 1.3.0+
document: cookbook
toc: true
audience: intermediate
keywords: [mdc, repl]
moved: {
‘2.0.0-‘: ‘riakee:/cookbooks/Multi-Data-Center-Replication-Comparison’
}




This document is a systematic comparison of [[Version 2|Multi Data
Center Replication: Architecture]] and [[Version 3|Multi Data Center
Replication v3 Architecture]] of Riak Enterprise’s Multi-Datacenter
Replication capabilities.



Important note on mixing versions

If you are installing Riak Enterprise anew, you should use version 3
replication. Under no circumstances should you mix version 2 and version
3 replication. This comparison is meant only to list improvements
introduced in version 3.


Version 2



		Version 2 replication relies upon the twin concepts of listeners
and sites. Listeners are the sources of replication data, while
sites are the destination of replication data. Sites and listeners are
manually configured on each node in a cluster. This can be a burden to
the administrator as clusters become larger.


		A single connection tied to the cluster leader manages all
replication communications. This can cause performance problems on the
leader and is a bottleneck for realtime and fullsync replication data.


		Connections are established from site to listener. This can be
confusing for firewall administrators.


		The realtime replication queue will be lost if the replication
connection breaks, even if it’s re-established. Reconciling data in
this situation would require manual intervention using either of the
following:
		a fullsync


		another Riak write to the key/value on the listener, thus
re-queueing the object








		Riak CS MDC proxy_get connections can only request data from a
single leader node






When to use version 2 replication



		If you are running clusters below version 1.3.0 of Riak Enterprise,
version 2 replication is the only method of replication available.


		In the Riak 1.3 series, version 3 replication was provided as a
technology preview and did not have feature parity with version 2.
This was provided in the Riak 1.4 series.










Version 3



		Version 3 replication uses the twin concepts of sources and
sinks. A source is considered the primary provider of replication
data, whereas a sink is the destination of replication data.


		Establishing replication connections between clusters has been
greatly simplified. A single riak-repl connect command needs to be
issued from a source cluster to a sink cluster. IP and port
information of all nodes that can participate in replication on both
source and sink clusters are exchanged by the replication cluster
manager. The replication cluster manager also tracks nodes joining
and leaving the cluster dynamically.


		If the source has M nodes, and the sink has N nodes, there will be M
realtime connections. Connections aren’t tied to a leader node as they
are with version 2 replication.


		Communications for realtime, fullsync, and proxy_get operations are
multiplexed over the same connection for each node participating in
replication. This reduces the amount of firewall configuration on both
sources and sinks.


		A fullsync coordinator runs on a leader of the source cluster. The
coordinator assigns work across nodes in the sources cluster in an
optimized fashion.


		Realtime replication establishes a bounded queue on each source node
that is shared between all sinks. This queue requires consumers to
acknowledge objects when they have been replicated. Dropped TCP
connections won’t drop objects from the queue.


		If a node in the source cluster is shut down via the command line, a
realtime replication queue is migrated to other running nodes in the
source cluster.


		Network statistics are kept per socket.


		Fullsyncs between clusters can be tuned to control the maximum number
of workers that will run on a source node, a sink node, and across the
entire source cluster. This allows for limiting impact on the cluster
and dialing in fullsync performance.


		Version 3 is able to take advantage of [[Active Anti-Entropy]] (AAE)
technology, which can greatly improve fullsync performance.


		Riak CS MDC proxy_get connections will be distributed across the
source cluster (as CS blocks are requested from the sink cluster in
this scenario).









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/advanced/search.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Search Details
project: riak
version: 1.0.0+
document: guide
toc: true
audience: advanced
keywords: [developers, search, kv]
moved: {
‘1.4.0-‘: ‘/tutorials/querying/Riak-Search’
}





Note on Search 2.0 vs. Legacy Search

This document refers to the new Riak Search 2.0 with
[[Solr|http://lucene.apache.org/solr/]] integration (codenamed
Yokozuna). For information about the deprecated Riak Search, visit [[the
old Using Riak Search
docs|http://docs.basho.com/riak/1.4.10/dev/using/search/]].

The project that implements Riak Search is codenamed Yokozuna. This is a
more detailed overview of the concepts and reasons behind the design of
Yokozuna, for those interested. If you’re simply looking to use Riak
Search, you should check out the [[Using Search]] document.


[image: Yokozuna]



Riak Search is Erlang


In Erlang OTP, an “application” is a group of modules and Erlang
processes which together perform a specific task. The word application
is confusing because most people think of an application as an entire
program such as Emacs or Photoshop. But Riak Search is just a sub-system
in Riak itself. Erlang applications are often stand-alone, but Riak
Search is more like an appendage of Riak. It requires other subsystems
like Riak Core and KV, but also extends their functionality by providing
search capabilities for KV data.


The purpose of Riak Search is to bring more sophisticated and robust
query and search support to Riak. Many people consider Lucene and
programs built on top of it, such as Solr, as the standard for
open-source search. There are many successful applications built on
Lucene/Solr, and it sets the standard for the feature set that
developers and users expect.  Meanwhile, Riak has a great story as a
highly-available, distributed key/value store. Riak Search takes
advantage of the fact that Riak already knows how to do the distributed
bits, combining its feature set with that of Solr, taking advantage of
the strengths of each.


Riak Search is a mediator between Riak and Solr. There is nothing
stopping a user from deploying these two programs separately, but this
would leave the user responsible for the glue between them. That glue
can be tricky to write. It requires dealing with monitoring, querying,
indexing, and dissemination of information.


Unlike Solr by itself, Riak Search knows how to do all of the following:



		Listen for changes in key/value (KV) data and to make the appropriate
changes to indexes that live in Solr. It also knows how to take a user
query on any node and convert it to a Solr distributed search, which
will correctly cover the entire index without overlap in replicas.


		Take index creation commands and disseminate that information across
the cluster.


		Communicate and monitor the Solr OS process.








Solr/JVM OS Process


Every node in a Riak [[cluster|Clusters]] has a corresponding operating
system (OS) process running a JVM which hosts Solr on the Jetty
application server. This OS process is a child of the Erlang OS process
running Riak.


Riak Search has a gen_server process which monitors the JVM OS
process. The code for this server is in yz_solr_proc. When the JVM
process crashes, this server crashes, causing its supervisor to restart
it.


If there is more than 1 restart in 45 seconds, the entire Riak node will
be shut down. If Riak Search is enabled and Solr cannot function for
some reason, the Riak node needs to go down so that the user will notice
and take corrective action.


Conversely, the JVM process monitors the Riak process. If for any reason
Riak goes down hard (e.g. a segfault) the JVM process will also exit.
This double monitoring along with the crash semantics means that neither
process may exist without the other. They are either both up or both
down.


All other communication between Riak Search and Solr is performed via
HTTP, including querying, indexing, and administration commands.  The
ibrowse Erlang HTTP client is used to manage these communications as
both it and the Jetty container hosting Solr pool HTTP connections,
allowing for reuse. Moreover, since there is no gen_server involved in
this communication, there’s no serialization point to bottleneck.





Indexes


An index, stored as a set of files on disk, is a logical namespace that
contains index entries for objects. Each such index maintains its own
set of files on disk—a critical difference from Riak KV, in which a
bucket is a purely logical entity and not physically disjoint at all. A
Solr index requires significantly less disk space than the corresponding
legacy Riak Search index, depending on the Solr schema used.


Indexes may be associated with zero or more buckets. At creation time,
however, each index has no associated buckets—unlike the legacy Riak
Search, indexes in the new Riak Search do not implicitly create bucket
associations, meaning that this must be done as a separate configuration
step.


To associate a bucket with an index, the bucket property search_index must
be set to the name of the index you wish to associate. Conversely, in
order to disassociate a bucket you use the sentinel value
_dont_index_.


Many buckets can be associated with the same index. This is useful for
logically partitioning data into different KV buckets which are of the
same type of data, for example if a user wanted to store event objects
but logically partition them in KV by using a date as the bucket name.


A bucket cannot be associated with many indexes—the search_index
property must be a single name, not a list.


See the [[main Search doc|Using Search#Simple-Setup]] for details on
creating an index.





Extractors


There is a tension between Riak KV and Solr when it comes to data. Riak
KV treats object values as mostly opaque, and while KV does maintain an
associated content type, it is simply treated as metadata to be returned
to the user to provide context for interpreting the returned object.
Otherwise, the user wouldn’t know what type of data it is!


Solr, on the other hand, wants semi-structured data, more specifically a
flat collection of field-value pairs. “Flat” here means that a field’s
value cannot be a nested structure of field-value pairs; the values are
treated as-is (non-composite is another way to say it).


Because of this mismatch between KV and Solr, Riak Search must act as a
mediator between the two, meaning it must have a way to inspect a KV
object and create a structure which Solr can ingest for indexing. In
Solr this structure is called a document. This task of creating a
Solr document from a Riak object is the job of the extractor. To
perform this task two things must be considered.


Note: This isn’t quite right, the fields created by the extractor
are only a subset of the fields created. Special fields needed for
Yokozuna to properly query data and tagging fields are also created.
This call happens inside yz_doc:make_doc.



		Does an extractor exist to map the content-type of the object to a
Solr document?


		If so, how is the object’s value mapped from one to the other?
For example, the value may be application/json which contains
nested objects. This must somehow be transformed into a flat
structure.





The first question is answered by the extractor mapping. By default
Yokozuna ships with extractors for several common data types. Below is a
table of this default mapping:


Content Type | Erlang Module
:————|:————-
application/json | yz_json_extractor
application/xml  | yz_xml_extractor
text/plain       | yz_text_extractor
text/xml         | yz_xml_extractor
N/A                | yz_noop_extractor


The answer to the second question is a function of the implementation
of the extractor module. Every extractor must conform to the
following Erlang specification:


-spec(ObjectValue::binary(), Options::proplist()) -> fields() | {error, term()}.
-type field_name() :: atom() | binary().
-type field_value() :: binary().
-type fields() :: [{field_name(), field_value()}]



The value of the object is passed along with options specific to each
extractor. Assuming the extractor correctly parses the value it will
return a list of fields, which are name-value pairs.


The text extractor is the simplest one. By default it will use the
object’s value verbatim and associate if with the field name text.
For example, an object with the value “How much wood could a woodchuck
chuck if a woodchuck could chuck wood?” would result in the following
fields list.


[{text, <<"How much wood could a woodchuck chuck if a woodchuck could chuck wood?">>}]



An object with the content type application/json is a little trickier.
JSON can be nested arbitrarily. That is, the key of a top-level object
can have an object as a value, and this object can have another object
nested inside, an so on. Yokozuna’s JSON extractor must have some method
of converting this arbitrary nesting into a flat list. It does this by
concatenating nested object fields with a separator. The default
separator is .. An example should make this more clear.


Below is JSON that represents a person, what city they are from and what
cities they have traveled to.


{
  "name": "ryan",
  "info": {
    "city": "Baltimore",
    "visited": ["Boston", "New York", "San Francisco"]
  }
}



Below is the field list that would be created by the JSON extract.


[{<<"info.visited">>,<<"San Francisco">>},
 {<<"info.visited">>,<<"New York">>},
 {<<"info.visited">>,<<"Boston">>},
 {<<"info.city">>,<<"Baltimore">>},
 {<<"name">>,<<"ryan">>}]



Some key points to notice.



		Nested objects have their field names concatenated to form a field
name. The default field separator is .. This can be modified.


		Any array causes field names to repeat.  This will require that your
schema defines this field as multi-valued.





The XML extractor works in very similar fashion to the JSON extractor
except it also has element attributes to worry about. To see the
document created for an object, without actually writing the object, you
can use the extract HTTP endpoint. This will do a dry-run extraction and
return the document structure as application/json.


curl -XPUT http://localhost:8098/search/extract \
     -H 'Content-Type: application/json' \
     --data-binary @object.json






Schemas


Every index must have a schema, which is a collection of field names and
types. For each document stored, every field must have a matching name
in the schema, used to determine the field’s type, which in turn
determines how a field’s value will be indexed.


Currently, Yokozuna makes no attempts to hide any details of the Solr
schema: a user creates a schema for Yokozuna just as she would for Solr.
Here is the general structure of a schema.


<?xml version="1.0" encoding="UTF-8" ?>
<schema name="my-schema" version="1.5">
  <fields>
    <!-- field definitions go here -->
  </fields>

  <!-- DO NOT CHANGE THIS -->
  <uniqueKey>_yz_id</uniqueKey>

  <types>
    <!-- field type definitions go here -->
  </types>
</schema>



The <fields> element is where the field name, type, and overriding
options are declared. Here is an example of a field for indexing dates.


<field name="created" type="date" indexed="true" stored="true"/>



The corresponding date type is declared under <types> like so.


<fieldType name="date" class="solr.TrieDateField" precisionStep="0" positionIncrementGap="0"/>



You can also find more information on to how customize your own [[search
schema]].


Yokozuna comes bundled with a default
schema [https://github.com/basho/yokozuna/blob/develop/priv/default_schema.xml]
called _yz_default. This is an extremely general schema which makes
heavy use of dynamic fields—it is intended for development and
testing. In production, a schema should be tailored to the data being
indexed.





Active Anti-Entropy (AAE)


[[Active Anti-Entropy]] (AAE) is the process of discovering and
correcting entropy (divergence) between the data stored in Riak’s
key-value backend and the indexes stored in Solr. The impetus for AAE is
that failures come in all shapes and sizes—disk failure, dropped
messages, network partitions, timeouts, overflowing queues, segment
faults, power outages, etc. Failures range from obvious to invisible.
Failure prevention is fraught with failure, as well. How do you prevent
your prevention system from failing? You don’t. Code for detection, not
prevention. That is the purpose of AAE.


Constantly reading and re-indexing every object in Riak could be quite
expensive. To minimize the overall cost of detection AAE make use of
hashtrees. Every partition has a pair of hashtrees; one for KV and
another for Yokozuna. As data is written the hashtrees are updated in
real-time.


Each tree stores the hash of the object. Periodically a partition is
selected and the pair of hashtrees is exchanged. First the root hashes
are compared. If equal then there is no more work to do. You could have
millions of keys in one partition and verifying they all agree takes
the same time as comparing two hashes. If they don’t match then the
root’s children are checked and this process continues until the
individual discrepancies are found. If either side is missing a key or
the hashes for a key do not match then repair is invoked on that key.
Repair converges the KV data and its indexes, removing the entropy.


Since failure is inevitable, and absolute prevention impossible, the
hashtrees themselves may contain some entropy. For example, what if the
root hashes agree but a divergence exists in the actual data?  Simple,
you assume you can never fully trust the hashtrees so periodically you
expire them. When expired, a tree is completely destroyed and the
re-built from scratch. This requires folding all data for a partition,
which can be expensive and take some time. For this reason, by default,
expiration occurs after one week.


For an in-depth look at Riak’s AAE process, watch Joseph Blomstedt’s
screencast [http://coffee.jtuple.com/video/AAE.html].





Analysis & Analyzers


Analysis is the process of breaking apart (analyzing) text into a
stream of tokens. Solr allows many different methods of analysis,
an important fact because different field values may represent
different types of data. For data like unique identifiers, dates, and
categories you want to index the value verbatim—it shouldn’t be
analyzed at all. For text like product summaries, or a blog post,
you want to split the value into individual words so that they may be
queried individually. You may also want to remove common words,
lowercase words, or perform stemming. This is the process of
analysis.


Solr provides many different field types which analyze data in different
ways, and custom analyzer chains may be built by stringing together XML
in the schema file, allowing custom analysis for each field. For more
information on analysis, see [[Search Schema]].





Tagging


Tagging is the process of adding field-value pairs to be indexed via
Riak object metadata. It is useful in two scenarios.



		The object being stored is opaque but your application has metadata
about it that should be indexed, for example storing an image with
location or category metadata.


		The object being stored is not opaque, but additional indexes must
be added without modifying the object’s value.





See
Tagging [https://github.com/basho/yokozuna/blob/develop/docs/TAGGING.md]
for more information.





Coverage


Yokozuna uses doc-based partitioning. This means that all index
entries for a given Riak Object are co-located on the same physical
machine. To query the entire index all partitions must be contacted.
Adjacent partitions keep replicas of the same object. Replication allows
the entire index to be considered by only contacting a subset of the
partitions. The process of finding a covering set of partitions is known
as coverage.


Each partition in the coverage plan has an owning node. Thus a plan can
be thought of as a unique set of nodes along with a covering set of
partitions. Yokozuna treats the node list as physical hostnames and
passes them to Solr’s distributed search via the shards parameter.
Partitions, on the other hand, are treated logically in Yokozuna. All
partitions for a given node are stored in the same index; unlike KV
which uses partition as a physical separation. To properly filter out
overlapping replicas the partition data from the cover plan is passed to
Solr via the filter query (fq) parameter.


Calculating a coverage plan is handled by Riak Core. It can be a very
expensive operation as much computation is done symbolically, and the
process amounts to a knapsack problem. The larger the ring the more
expensive. Yokozuna takes advantage of the fact that it has no physical
partitions by computing a coverage plan asynchronously every few
seconds, caching the plan for query use. In the case of node failure or
ownership change this could mean a delay between cluster state and the
cached plan. This is, however, a good trade-off given the performance
benefits, especially since even without caching there is a race, albeit
one with a smaller window.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/mdc/v2/hooks.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Multi Data Center Replication: Hooks”
project: riak
header: riakee
version: 1.2.0+
document: cookbook
toc: true
audience: advanced
keywords: [operator, troubleshooting]
moved: {
‘2.0.0-‘: ‘riakee:/cookbooks/Multi-Data-Center-Replication-Hooks’
}




This document is a guide to developing extensions for Riak Enterprise’s
Multi-Datacenter Replication feature.



Replication Hooks


Riak allows applications to register replication hooks to control
either of the following:



		when extra objects need to be replicated along with the current object


		when an object should not be replicated.





To register a hook, you must call the following function in an
application-specific Erlang module, where MyMod is to be replaced
with the name of your custom module:


riak_core:register([{repl_helper, MyMod}]).






Implementing a Sample Replication Hook


The following is a simple replication hook that will log when an object
is received via replication. For more information about the functions in
the sample, see the [[Replication Hook API|Multi Data Center
Replication: Hooks#Replication-Hook-API]] section below.


Here is the relevant Erlang code:


%% Riak Enterprise MDC replication hook sample
 
-module(riak_repl_hook_sample).
-export([register/0]).
-export([recv/1, send/2, send_realtime/2]).
 
register() ->
    riak_core:wait_for_service(riak_repl),
    lager:log(info, self(),
              "Automatically registering ~p hook with riak_core",
              [?MODULE_STRING]),
    riak_core:register([{repl_helper, ?MODULE}]),
    case lists:member({undefined,?MODULE},
                      app_helper:get_env(riak_core,repl_helper, [])) of
      true ->
            lager:log(info, self(),
                  "Successfully registered ~p hook with riak_core",
                  [?MODULE_STRING]);
        false ->
            lager:log(info, self(),
                  "Failed to register ~p hook with riak_core",
                  [?MODULE_STRING])
    end,
    ok.
 
recv(Object) ->
    % This is a BLOCKING function.
    % Longer-running processes should be handled asynchronously.
    lager:log(info, self(), "Called recv(~p)", [riak_object:key(Object)]),
    ok.
    
send_realtime(_Object, _RiakClient) ->
    % Do Nothing function -- These hooks are called in predictable
    % but complex ways especially as the number of replication 
    % sites (Version 2 Replication) or sinks (Version 3 Replication)
    % increase.  
    ok.
 
send(_Object, _RiakClient) ->
    % Do Nothing function -- These hooks are called in predictable
    % but complex ways especially as the number of replication 
    % sites (Version 2 Replication) or sinks (Version 3 Replication)
    % increase.  
    ok.



Save the above code as riak_replication_hook_sample.erl.


To install the sample hook, compile riak_replication_hook_sample.erl.



Note on the Erlang compiler

You must use the Erlang compiler
erlc
associated with the Riak installation or the version of Erlang used when
compiling Riak from source. For packaged Riak installations, you can
consult Table 1 (below) for the default location of
Riak’s erlc for each supported platform. If you compiled
from source, use the erlc from the Erlang version you used
to compile Riak.

Distribution | Path
:————|:—-
CentOS & RHEL Linux | /usr/lib64/riak/erts-5.9.1/bin/erlc |
Debian & Ubuntu Linux | /usr/lib/riak/erts-5.9.1/bin/erlc |
FreeBSD | /usr/local/lib/riak/erts-5.9.1/bin/erlc |
SmartOS | /opt/local/lib/riak/erts-5.9.1/bin/erlc
Solaris 10 | /opt/riak/lib/erts-5.9.1/bin/erlc


Table 1: Erlang compiler executable location for packaged Riak
installations on supported platforms


Once you have determined the location of the Erlang compiler, e.g. on
Ubuntu, compiling is as simple as:


/usr/lib/riak/erts-5.9.1/bin/erlc riak_replication_hook_sample.erl



This will create a riak_replication_hook_sample.beam file in the same
directory as the corresponding .erl file. Copy this .beam file into
the subdirectory where you want to store the custom hook:


cp riak_replication_hook_sample.beam /path/to/replication/hook



Add a -pa argument to your vm.args file to specify the path where
your compiled .beam file lives:


-pa /path/to/replication/hook



Finally, add a -run argument to your vm.args file to register the
hook:


-run riak_repl_hook_sample register






Replication Hook API


A replication hook must implement the following functions:



send_realtime/2


(riak_object, RiakClient) -> ok | cancel | [riak_object]



This hook controls whether an object [https://github.com/basho/riak_kv/blob/master/src/riak_object.erl]
replicated in realtime should be sent. To send this object, return ok;
to prevent the object from being sent, return cancel. You can also
return a list of Riak objects to be replicated immediately before the
current object. This is useful when you have an object that refers to
other objects, e.g. a chunked file, and want to ensure that all of the
dependency objects are replicated before the dependent object.





send/2


(riak_object, RiakClient) -> ok | cancel | [riak_object]



This hook is used in fullsync replication. To send this
object [https://github.com/basho/riak_kv/blob/master/src/riak_object.erl],
return ok; to prevent the object from being sent, return cancel. You
can also return a list of Riak objects to be replicated immediately
before the current object. This is useful for when you have an object
that refers to other objects, e.g. a chunked file, and want ensure that
all the  dependency objects are replicated before the dependent object.





recv/1


(riak_object) -> ok | cancel



When an object [https://github.com/basho/riak_kv/blob/master/src/riak_object.erl]
is received by the client site, this hook is run. You can use it to
update metadata or to deny the object.








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/advanced/search-schema.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Search Schema
project: riak
version: 0.14.0+
document: cookbook
toc: true
audience: intermediate
keywords: [search, schema]
moved: {
‘1.4.0-‘: ‘/cookbooks/Riak-Search—Schema’
}





Note on Search 2.0 vs. Legacy Search

This document refers to the new Riak Search 2.0 with
[[Solr|http://lucene.apache.org/solr/]] integration (codenamed
Yokozuna). For information about the deprecated Riak Search, visit [[the
old Using Riak Search
docs|http://docs.basho.com/riak/1.4.10/dev/using/search/]].

Riak Search is built for ease of use, allowing you to write values into
Riak and query for values using Solr. Riak Search does a lot of work
under the hood to convert your values—plain text, JSON, XML, [[Riak
Data Types|Using Data Types]], and [[more|Custom Search
Extractors]]—into something that can be indexed and searched later.
Nonetheless, you must still instruct Riak/Solr how to index a value. Are
you providing and array of strings? An integer? A date? Is your text in
English or Russian? You can provide such instructions to Riak Search by
defining a Solr schema.



The Default Schema


Riak Search comes bundled with a default schema named _yz_default. The
default schema covers a wide range of possible field types. You can find
the default schema on
GitHub [https://raw.github.com/basho/yokozuna/develop/priv/default_schema.xml].
While using the default schema provides an easy path to starting
development, we recommend that you define your own schema in production.
Take note of dynamicField name="*", which is a catch-all index for any
value. Sufficiently sized objects can potentially take up tremendous
amounts of disk space, so pay special attention to those indexes.





Custom Schemas


We’ll show you how you can create custom schemas by way of example.
Let’s say that you have already created a schema named cartoons in a
file named cartoons.xml. This would register the custom schema in Riak
Search:


import org.apache.commons.io.FileUtils;

File xml = new File("cartoons.xml");
String xmlString = FileUtils.readFileToString(xml);
YokozunaSchema schema = new YokozunaSchema("cartoons", xmlString);
StoreSchema storeSchemaOp = new StoreSchema.Builder(schema).build();
client.execute(storeSchemaOp);



schema_data = File.read("cartoons.xml")
client.create_search_schema("cartoons", schema_data)



(new \Basho\Riak\Command\Builder\Search\StoreSchema($riak))
  ->withName('users')
  ->withSchemaFile('path/to/file.xml')
  ->build()
  ->execute();



xml_file = open('cartoons.xml', 'r')
schema_data = xml_file.read()
client.create_search_schema('cartoons', schema_data)
xml_file.close()



var xml = File.ReadAllText("cartoons.xml");
var schema = new SearchSchema("cartoons", xml);
var rslt = client.PutSearchSchema(schema);



var fs = require('fs');

fs.readFile('cartoons.xml', function (err, data) {
    if (err) {
        throw new Error(err);
    }

    var schemaXml = data.toString('utf8'));

    var options = {
        schemaName: 'blog_post_schema',
        schema: schemaXml
    };

    client.storeSchema(options, function (err, rslt) {
        if (err) {
            throw new Error(err);
        }
    });
});



{ok, SchemaData} = file:read_file("cartoons.xml"),
riakc_pb_socket:create_search_schema(Pid, <<"cartoons">>, SchemaData).



curl -XPUT http://localhost:8098/search/schema/cartoons \
     -H 'Content-Type:application/xml' \
     --data-binary @cartoons.xml






Creating a Custom Schema


The first step in creating a custom schema is to define exactly what
fields you must index. Part of that step is understanding how Riak
Search extractors function.



Extractors


In Riak Search, extractors are modules responsible for pulling out a
list of fields and values from a Riak object. How this is achieved
depends on the object’s content type, but the two common cases are JSON
and XML, which operate similarly. Our examples here will use JSON.


The following JSON object represents the character
Lion-o [http://en.wikipedia.org/wiki/List_of_ThunderCats_characters#Lion-O]
from the cartoon Thundercats. He has a name and age, he’s the team
leader, and he has a list of aliases in other languages.


{
  "name":"Lion-o",
  "age":30,
  "leader":true,
  "aliases":[
    {"name":"León-O", "desc_es":"Señor de los ThunderCats"},
    {"name":"Starlion", "desc_fr":"Le jeune seigneur des Cosmocats"},
  ]
}



The extractor will flatten the above objects into a list of field/value
pairs. Nested objects will be separated with a dot (.) and arrays will
simply repeat the fields. The above object will be extracted to the
following list of Solr document fields.


name=Lion-o
age=30
leader=true
aliases.name=León-O
aliases.desc_es=Señor de los ThunderCats
aliases.name=Starlion
aliases.desc_fr=Le jeune seigneur des Cosmocats



This means that our schema should handle name, age, leader,
aliases.name (a dot is a valid field character), and
aliases.desc_* which is a description in the given language of the
suffix (Spanish and French).





Required Schema Fields


Solr schemas can be very complex, containing many types and analyzers.
Refer to the Solr 4.7 reference
guide [http://archive.apache.org/dist/lucene/solr/ref-guide/apache-solr-ref-guide-4.7.pdf]
for a complete list. You should be aware, however, that there are a few
fields that are required by Riak Search in order to properly distribute
an object across a [[cluster|Clusters]]. These fields are all prefixed
with _yz, which stands for
Yokozuna [https://github.com/basho/yokozuna], the original code name
for Riak Search.


Below is a bare minimum skeleton Solr Schema. It won’t do much for you
other than allow Riak Search to properly manage your stored objects.


<?xml version="1.0" encoding="UTF-8" ?>
<schema name="schedule" version="1.5">
 <fields>

   <!-- All of these fields are required by Riak Search -->
   <field name="_yz_id"   type="_yz_str" indexed="true" stored="true"  multiValued="false" required="true"/>
   <field name="_yz_ed"   type="_yz_str" indexed="true" stored="false" multiValued="false"/>
   <field name="_yz_pn"   type="_yz_str" indexed="true" stored="false" multiValued="false"/>
   <field name="_yz_fpn"  type="_yz_str" indexed="true" stored="false" multiValued="false"/>
   <field name="_yz_vtag" type="_yz_str" indexed="true" stored="false" multiValued="false"/>
   <field name="_yz_rk"   type="_yz_str" indexed="true" stored="true"  multiValued="false"/>
   <field name="_yz_rt"   type="_yz_str" indexed="true" stored="true"  multiValued="false"/>
   <field name="_yz_rb"   type="_yz_str" indexed="true" stored="true"  multiValued="false"/>
   <field name="_yz_err"  type="_yz_str" indexed="true" stored="false" multiValued="false"/>
 </fields>

 <uniqueKey>_yz_id</uniqueKey>

 <types>
    <!-- YZ String: Used for non-analyzed fields -->
    <fieldType name="_yz_str" class="solr.StrField" sortMissingLast="true" />
 </types>
</schema>



If you’re missing any of the above fields, Riak Search will reject your
custom schema. The value for <uniqueKey> must be _yz_id.


In the table below, you’ll find a description of the various required
fields. You’ll rarely need to use any fields other than _yz_rt (bucket
type), _yz_rb (bucket) and _yz_rk (Riak key). On occasion, _yz_err
can be helpful if you suspect that your extractors are failing.
Malformed JSON or XML will cause Riak Search to index a key and set
_yz_err to 1, allowing you to reindex with proper values later.


Field   | Name | Description
:——-|:—–|:———–
_yz_id  | ID | Unique identifier of this Solr document
_yz_ed  | Entropy Data | Data related to [[active anti-entropy]]
_yz_pn  | Partition Number | Used as a filter query parameter to remove duplicate replicas across nodes
_yz_fpn | First Partition Number | The first partition in this doc’s preflist, used for further filtering on overlapping partitions
_yz_vtag| VTag | If there is a sibling, use vtag to differentiate them
_yz_rk  | Riak Key | The key of the Riak object this doc corresponds to
_yz_rt  | Riak Bucket Type | The bucket type of the Riak object this doc corresponds to
_yz_rb  | Riak Bucket | The bucket of the Riak object this doc corresponds to
_yz_err | Error Flag | indicating if this doc is the product of a failed object extraction





Defining Fields


With your required fields known and the skeleton schema elements in
place, it’s time to add your own fields. Since you know your object
structure, you need to map the name and type of each field (a string,
integer, boolean, etc).


When creating fields you can either create specific fields via the
field element or an asterisk (*) wildcard field via dynamicField.
Any field that matches a specific field name will win, and if not, it
will attempt to match a dynamic field pattern.


Besides a field type, you also must decide if a value is to be
indexed (usually true) and stored. When a value is stored that
means that you can get the value back as a result of a query, but it
also doubles the storage of the field (once in Riak, again in Solr). If
a single Riak object can have more than one copy of the same matching
field, you also must set multiValued to true.


<?xml version="1.0" encoding="UTF-8" ?>
<schema name="schedule" version="1.0">
 <fields>
   <field name="name"   type="string"  indexed="true" stored="true" />
   <field name="age"    type="int"     indexed="true" stored="false" />
   <field name="leader" type="boolean" indexed="true" stored="false" />
   <field name="aliases.name" type="string" indexed="true" stored="true" multiValued="true" />
   <dynamicField name="*_es" type="text_es" indexed="true" stored="true" multiValued="true" />
   <dynamicField name="*_fr" type="text_fr" indexed="true" stored="true" multiValued="true" />

   <!-- All of these fields are required by Riak Search -->
   <field name="_yz_id"   type="_yz_str" indexed="true" stored="true"  multiValued="false" required="true"/>
   <field name="_yz_ed"   type="_yz_str" indexed="true" stored="false" multiValued="false"/>
   <field name="_yz_pn"   type="_yz_str" indexed="true" stored="false" multiValued="false"/>
   <field name="_yz_fpn"  type="_yz_str" indexed="true" stored="false" multiValued="false"/>
   <field name="_yz_vtag" type="_yz_str" indexed="true" stored="false" multiValued="false"/>
   <field name="_yz_rk"   type="_yz_str" indexed="true" stored="true"  multiValued="false"/>
   <field name="_yz_rt"   type="_yz_str" indexed="true" stored="true"  multiValued="false"/>
   <field name="_yz_rb"   type="_yz_str" indexed="true" stored="true"  multiValued="false"/>
   <field name="_yz_err"  type="_yz_str" indexed="true" stored="false" multiValued="false"/>
 </fields>

 <uniqueKey>_yz_id</uniqueKey>



Next, take note of the types you used in the fields and ensure that each
of the field types are defined as a fieldType under the types
element. Basic types such as string, boolean, int have matching
Solr classes. There are dozens more types, including many kinds of
number (float, tdouble, random), date fields, and even
geolocation types.


Besides simple field types, you can also customize analyzers for
different languages. In our example, we mapped any field that ends with
*_es to Spanish, and *_de to German.


 <types>
   <!-- YZ String: Used for non-analyzed fields -->
   <fieldType name="_yz_str" class="solr.StrField" sortMissingLast="true" />

   <fieldType name="string" class="solr.StrField" sortMissingLast="true" />
   <fieldType name="boolean" class="solr.BoolField" sortMissingLast="true"/>
   <fieldType name="int" class="solr.TrieIntField" precisionStep="0" positionIncrementGap="0"/>

   <!-- Spanish -->
   <fieldType name="text_es" class="solr.TextField" positionIncrementGap="100">
     <analyzer>
       <tokenizer class="solr.StandardTokenizerFactory"/>
       <filter class="solr.LowerCaseFilterFactory"/>
       <filter class="solr.StopFilterFactory" ignoreCase="true" words="lang/stopwords_es.txt" format="snowball" />
       <filter class="solr.SpanishLightStemFilterFactory"/>
       <!-- more aggressive: <filter class="solr.SnowballPorterFilterFactory" language="Spanish"/> -->
     </analyzer>
   </fieldType>

   <!-- German -->
   <fieldType name="text_de" class="solr.TextField" positionIncrementGap="100">
     <analyzer>
       <tokenizer class="solr.StandardTokenizerFactory"/>
       <filter class="solr.LowerCaseFilterFactory"/>
       <filter class="solr.StopFilterFactory" ignoreCase="true" words="lang/stopwords_de.txt" format="snowball" />
       <filter class="solr.GermanNormalizationFilterFactory"/>
       <filter class="solr.GermanLightStemFilterFactory"/>
       <!-- less aggressive: <filter class="solr.GermanMinimalStemFilterFactory"/> -->
       <!-- more aggressive: <filter class="solr.SnowballPorterFilterFactory" language="German2"/> -->
     </analyzer>
   </fieldType>
 </types>
</schema>






“Catch-All” Field


Without a catch-all field, an exception will be thrown if data is
provided to index without a corresponding <field> element. The
following is the catch-all field from the default Yokozuna schema and
can be used in a custom schema as well.


<dynamicField name="*" type="ignored"  />



The following is required to be a child of the types element in the
schema:


<fieldtype name="ignored" stored="false" indexed="false" multiValued="true" class="solr.StrField" />






Dates


The format of strings that represents a date/time is important as Solr
only understands ISO8601 UTC date/time
values [http://lucene.apache.org/solr/4_6_1/solr-core/org/apache/solr/schema/DateField.html].
An example of a correctly formatted date/time string is
1995-12-31T23:59:59Z. If you provide an incorrectly formatted
date/time value, an exception similar to this will be logged to
solr.log:


2014-02-27 21:30:00,372 [ERROR] <qtp1481681868-421>@SolrException.java:108 org.apache.solr.common.SolrException: Invalid Date String:'Thu Feb 27 21:29:59 +0000 2014'
        at org.apache.solr.schema.DateField.parseMath(DateField.java:182)
        at org.apache.solr.schema.TrieField.createField(TrieField.java:611)
        at org.apache.solr.schema.TrieField.createFields(TrieField.java:650)
        at org.apache.solr.schema.TrieDateField.createFields(TrieDateField.java:157)
        at org.apache.solr.update.DocumentBuilder.addField(DocumentBuilder.java:47)
        ...
        ...
        ...








Field Properties By Use Case


Sometimes it can be tricky to decide whether a value should be stored,
or whether multiValued is allowed. This handy table from the Solr
documentation [https://cwiki.apache.org/confluence/display/solr/Field+Properties+by+Use+Case]
may help you pick field properties.


An entry of true or false in the table indicates that the option
must be set to the given value for the use case to function correctly.
If no entry is provided, the setting of that attribute has no impact on
the case.





		Use Case
		indexed
		stored
		multiValued
		omitNorms
		termVectors
		termPositions






		search within field
		true
		
		
		
		
		




		retrieve contents
		
		true
		
		
		
		




		use as unique key
		true
		
		false
		
		
		




		sort on field
		true
		
		false
		true[[1|Search Schema#notes]]
		
		




		use field boosts[[5|Search Schema#notes]]
		
		
		
		false
		
		




		document boosts affect searches within field
		
		
		
		false
		
		




		highlighting
		true[[4|Search Schema#notes]]
		true
		
		
		[[2|Search Schema#notes]]
		true[[3|Search Schema#notes]]




		faceting[[5|Search Schema#notes]]
		true
		
		
		
		
		




		add multiple values, maintaining order
		
		
		true
		
		
		




		field length affects doc score
		
		
		
		false
		
		




		MoreLikeThis[[5|Search Schema#notes]]
		
		
		
		
		true[[6|Search Schema#notes]]
		





{analyzer_factory, {erlang, text_analyzers, noop_analyzer_factory}}}







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/mdc/v2/quick-start.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Multi Data Center Replication v2 Quick Start”
project: riak
header: riakee
version: 1.2.0+
document: cookbook
toc: true
audience: intermediate
keywords: [mdc, repl, bnw]
moved: {
‘2.0.0-‘: ‘riakee:/cookbooks/Multi-Data-Center-Replication-v2-Quick-Start’
}




The Riak Multi-Datacenter Replication Quick Start will walk you through
the process of configuring Riak’s version 2 Replication to perform
replication between two sample Riak clusters in separate networks. This
guide will also cover bidirectional replication, which is accomplished
by setting up unidirectional replication in both directions between the
clusters.



Prerequisites


This Guide assumes that you have completed the following steps:



		Installing Riak Enterprise [http://basho.com/riak-enterprise/]


		[[Performing system tuning|System Performance Tuning]]


		[[Reviewing configuration|Multi Data Center Replication:
Configuration]]








Scenario


Configure Riak MDC to perform replication, given the following
three-node Riak Enterprise clusters:



Cluster 1


Name  | IP          | Node name
:—–|:————|:—————-
node1 | 172.16.1.11 | riak@172.16.1.11
node2 | 172.16.1.12 | riak@172.16.1.12
node3 | 172.16.1.13 | riak@172.16.1.13





Cluster 2


Name  | IP          | Node name
:—–|————-|—————–
node4 | 192.168.1.21 | riak@192.168.1.21
node5 | 192.168.1.22 | riak@192.168.1.22
node6 | 192.168.1.23 | riak@192.168.1.23


Note: The addresses used in these example clusters are contrived,
non-routable addresses. In real-world applications, however, these
addresses would need to be routable over the public Internet.







Set Up Cluster1 →


 Cluster2 Replication



Set Up the Listeners on Cluster1 (Source cluster)


On a node in Cluster1, node1 for example, identify the nodes that will
be listening to connections from replication clients with riak-repl add-listener <nodename> <listen_ip> <port> for each node that will be
listening for replication clients.


riak-repl add-listener riak@172.16.1.11 172.16.1.11 9010
riak-repl add-listener riak@172.16.1.12 172.16.1.12 9010
riak-repl add-listener riak@172.16.1.13 172.16.1.13 9010  






Set Up the Site on Cluster2 (Site cluster)


On a node in Cluster2, node4 for example, inform the replication
clients where the Source Listeners are located with riak-repl add-site <ipaddr> <port> <sitename>. Use the IP address(es) and port(s) you
configured in the earlier step. For sitename enter Cluster1.


riak-repl add-site 172.16.1.11 9010 Cluster1



Note: While a Listener needs to be added to each node, only a single
Site needs to be added on the Site cluster. Once connected to the Source
cluster, it will get the locations of the rest of the Listeners in the
Source cluster.





Verify the Replication Configuration


Verify the replication configuration using riak-repl status on both a
Cluster1 node and a Cluster2 node. A full description of the riak-repl status command’s output can be found in the documentation for
riak-repl‘s [[status output|Multi Data Center Replication:
Operations#riak-repl-status-output]].


On the Cluster1 node, verify that there are listener_<nodename>s for
each listening node, and that leader and server_stats are populated.
They should look similar to the following:


listener_riak@172.16.1.11: "172.16.1.11:9010"
listener_riak@172.16.1.12: "172.16.1.12:9010"
listener_riak@172.16.1.13: "172.16.1.13:9010"
leader: 'riak@172.16.1.11'
server_stats: [{<8051.3939.0>,
               {message_queue_len,0},
               {status,[{site,"Cluster2"},
                        {strategy,riak_repl_keylist_server},
                        {fullsync_worker,<8051.3940.0>},
                        {dropped_count,0},
                        {queue_length,0},
                        {queue_byte_size,0},
                        {state,wait_for_partition}]}}]



On the Cluster2 node, verify that Cluster1_ips, leader, and
client_stats are populated. They should look similar to the following:


Cluster1_ips: "172.16.1.11:9010, 172.16.1.12:9010, 172.16.1.13:9010"
leader: 'riak@192.168.1.21'
client_stats: [{<8051.3902.0>,
               {message_queue_len,0},
               {status,[{site,"Cluster1"},
                        {strategy,riak_repl_keylist_client},
                        {fullsync_worker,<8051.3909.0>},
                        {put_pool_size,5},
                        {connected,"172.16.1.11",9010},
                        {state,wait_for_fullsync}]}}]






Testing Realtime Replication


That’s all there is to it! When PUT requests are coordinated by
Cluster1, these operations will be replicated to Cluster2.


You can use the following example script to verify that PUT operations
sent to Cluster1 are being replicated to Cluster2:


#!/bin/bash

VALUE=`date`
CLUSTER_1_IP=172.16.1.11
CLUSTER_2_IP=192.168.1.21
 
curl -s -X PUT -d "${VALUE}" http://${CLUSTER_1_IP}:8098/riak/replCheck/c1

CHECKPUT_C1=`curl -s http://${CLUSTER_1_IP}:8098/riak/replCheck/c1`

if [ "${VALUE}" = "${CHECKPUT_C1}" ]; then
  echo "C1 PUT Successful"
else
  echo "C1 PUT Failed"
  exit 1
fi

CHECKREPL_C1_TO_C2=`curl -s http://${CLUSTER_2_IP}:8098/riak/replCheck/c1`

if [ "${VALUE}" = "${CHECKREPL_C1_TO_C2}" ]; then
  echo "C1 to C2 consistent"
else
  echo "C1 to C2 inconsistent
        C1:${CHECKPUT_C1}
        C2:${CHECKREPL_C1_TO_C2}"
  exit 1
fi

exit 0



You will have to change some of the above variables for your own
environment, such as IP addresses or ports.


If you run this script and things are working as expected, you will get
the following output:


C1 PUT Successful
C1 to C2 consistent








Set Up Cluster2 →


 Cluster1 Replication



About Bidirectional Replication


Multi-Datacenter support can also be configured to replicate in both
directions, ensuring eventual consistency between your two datacenters.
Setting up bidirectional replication is as simple as repeating the steps
above in the other direction, i.e. from Cluster2 to Cluster1.





Set Up the Listeners on Cluster2 (Source cluster)


On a node in Cluster2, node4 for example, identify the nodes that will
be listening to connections from replication clients with riak-repl add-listener <nodename> <listen_ip> <port> for each node that will be
listening for replication clients.


riak-repl add-listener riak@192.168.1.21 192.168.1.21 9010
riak-repl add-listener riak@192.168.1.22 192.168.1.22 9010
riak-repl add-listener riak@192.168.1.23 192.168.1.23 9010






Set Up the Site on Cluster1 (Site cluster)


On a node in Cluster1, node1 for example, inform the replication
clients where the Source Listeners are with riak-repl add-site <ipaddr> <port> <sitename>. Use the IP address(es) and port(s) you configured in
the earlier step. For sitename enter Cluster2.


riak-repl add-site 192.168.1.21 9010 Cluster2






Verify the Replication Configuration


Verify the replication configuration using riak-repl status on a
Cluster1 node and a Cluster2 node. A full description of the riak-repl status command’s output can be found in the documentation for
riak-repl‘s [[status output|Multi Data Center Replication:
Operations#riak-repl-status-output]].


On the Cluster1 node, verify that Cluster2_ips, leader, and
client_stats are populated. They should look similar to the following:


Cluster2_ips: "192.168.1.21:9010, 192.168.1.22:9010, 192.168.1.23:9010"
leader: 'riak@172.16.1.11'
client_stats: [{<8051.3902.0>,
               {message_queue_len,0},
               {status,[{site,"Cluster2"},
                        {strategy,riak_repl_keylist_client},
                        {fullsync_worker,<8051.3909.0>},
                        {put_pool_size,5},
                        {connected,"192.168.1.21",9010},
                        {state,wait_for_fullsync}]}}]



On the Cluster2 node, verify that there are listener entries for each
listening node, and that leader and server_stats are populated. They
should look similar to the following:


listener_riak@192.168.1.21: "192.168.1.21:9010"
listener_riak@192.168.1.22: "192.168.1.22:9010"
listener_riak@192.168.1.23: "192.168.1.23:9010"
leader: 'riak@192.168.1.21'
server_stats: [{<8051.3939.0>,
               {message_queue_len,0},
               {status,[{site,"Cluster1"},
                        {strategy,riak_repl_keylist_server},
                        {fullsync_worker,<8051.3940.0>},
                        {dropped_count,0},
                        {queue_length,0},
                        {queue_byte_size,0},
                        {state,wait_for_partition}]}}]






Testing Realtime Replication


You can use the following script to perform PUTs and GETs on both
sides of the replication and verify that those changes are replicated to
the other side.


#!/bin/bash

VALUE=`date`
CLUSTER_1_IP=172.16.1.11
CLUSTER_2_IP=192.168.1.21
 
curl -s -X PUT -d "${VALUE}" http://${CLUSTER_1_IP}:8098/riak/replCheck/c1

CHECKPUT_C1=`curl -s http://${CLUSTER_1_IP}:8098/riak/replCheck/c1`

if [ "${VALUE}" = "${CHECKPUT_C1}" ]; then
  echo "C1 PUT Successful"
else
  echo "C1 PUT Failed"
  exit 1
fi

curl -s -X PUT -d "${VALUE}" http://${CLUSTER_2_IP}:8098/riak/replCheck/c2
CHECKPUT_C2=`curl -s http://${CLUSTER_2_IP}:8098/riak/replCheck/c2`

if [ "${VALUE}" = "${CHECKPUT_C2}" ]; then
  echo "C2 PUT Successful"
else
  echo "C2 PUT Failed"
  exit 1
fi

CHECKREPL_C1_TO_C2=`curl -s http://${CLUSTER_2_IP}:8098/riak/replCheck/c1`
CHECKREPL_C2_TO_C1=`curl -s http://${CLUSTER_1_IP}:8098/riak/replCheck/c2`

if [ "${VALUE}" = "${CHECKREPL_C1_TO_C2}" ]; then
  echo "C1 to C2 consistent"
else
  echo "C1 to C2 inconsistent
        C1:${CHECKPUT_C1}
        C2:${CHECKREPL_C1_TO_C2}"
  exit 1
fi

if [ "${VALUE}" = "${CHECKREPL_C2_TO_C1}" ]; then
  echo "C2 to C1 consistent"
else
  echo "C2 to C1 inconsistent
        C2:${CHECKPUT_C2}
        C1:${CHECKREPL_C2_TO_C1}"
  exit 1
fi

exit 0



You will have to change some of the above variables for your own
environment, such as IP addresses or ports.


If you run this script and things are working as expected, you will get
the following output:


C1 PUT Successful
C2 PUT Successful
C1 to C2 consistent
C2 to C1 consistent








Fullsync


During realtime replication, operations coordinated by the Source
cluster will be replicated to the Site cluster. Riak Objects are placed
in a queue on the Source cluster and streamed to the Site cluster. When
the queue is full due to high traffic or a bulk loading operation, some
objects will be dropped from replication. These dropped objects can be
sent to the Site cluster by running a fullsync operation. The settings
for the realtime replication queue and their explanations are available
in the [[configuration|Multi Data Center Replication: Configuration]]
documentation.



Initiating a fullsync


To start a fullsync operation, issue the following command on your
leader node:


riak-repl start-fullsync



A fullsync operation may also be cancelled. If a partition is in
progress, synchronization will stop after that partition completes.
During cancellation, riak-repl status will show ‘cancelled’ in the
status.


riak-repl cancel-fullsync



Fullsync operations may also be paused, resumed, or scheduled for
certain times using cron jobs. A complete list of fullsync commands is
available in the [[MDC Operations|Multi Data Center Replication:
Operations#Operations]] documentation.








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/advanced/mapreduce.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Advanced MapReduce
project: riak
version: 1.0.0+
document: guide
toc: true
audience: advanced
keywords: [developers, mapreduce]
moved: {
‘1.4.0-‘: ‘/references/appendices/MapReduce-Implementation’
}





Use MapReduce sparingly

In Riak, MapReduce is the primary method for non-primary-key-based
querying. Although useful for a limited range of purposes, such as batch
processing jobs, MapReduce operations can be very computationally
expensive, sometimes to the extent that they can degrade performance in
production clusters operating under load. Thus, we recommend running
MapReduce operations in a controlled, rate-limited fashion and never for
realtime querying purposes.

MapReduce, the data processing paradigm popularized by
Google [http://research.google.com/archive/mapreduce.html], is provided
by Riak to aggregate results as background batch processes.



MapReduce


In Riak, MapReduce is one of the primary methods for
non-primary-key-based querying in Riak, alongside
[[secondary indexes|Using Secondary Indexes]].  Riak allows you to
run MapReduce jobs using Erlang or JavaScript, but JavaScript support
is deprecated as of Riak 2.0, so this document covers Erlang exclusively.



Why Do We Use MapReduce for Querying Riak?


Key/value stores like Riak generally do not offer the kinds of complex
querying capabilities found in other data storage systems, such as
relational databases. MapReduce enables you to perform powerful queries
over the data stored in Riak but should be used with caution.


The main goal of MapReduce is to spread the processing of a query across
many systems to take advantage of parallel processing power. This is
generally done by dividing the query into several steps, i.e. dividing
the dataset into several chunks and then running those step/chunk pairs
on separate physical hosts. Riak’s MapReduce has an additional goal:
increasing data locality. When processing a large dataset, it’s often
much more efficient to take the computation to the data than it is to
bring the data to the computation.


“Map” and “Reduce” are phases in the query process. Map functions take
one piece of data as input and produce zero or more results as output.
If you’re familiar with mapping over a
list [http://hackage.haskell.org/package/base-4.7.0.0/docs/Prelude.html#v:map]
in functional programming languages, you’re already familiar with the
“Map” steps in a MapReduce query.







MapReduce caveats


MapReduce should generally be treated as a fallback rather than a
standard part of an application. There are often ways to model data
such that dynamic queries become single key retrievals, which are
dramatically faster and more reliable in Riak, and tools such as Riak
Search and 2i are simpler to use and may place less strain on a
cluster.



R=1


One consequence of Riak’s processing model is that MapReduce queries
have an effective R value of 1. The queries are distributed
to a representative sample of the cluster where the data is expected to
be found, and if one server lacks a copy of data it’s supposed to have,
a MapReduce job will not attempt to look for it elsewhere.


For more on the value of R, see our documentation on [[replication
properties]].





Key lists


Asking Riak to generate a list of all keys in a production environment
is generally a bad idea. It’s an expensive operation.


Attempting to constrain that operation to a bucket (e.g.,
mapred_bucket as used below) does not help because Riak must still
pull all keys from storage to determine which ones are in the
specified bucket.


If at all possible, run MapReduce against a list of known keys.





Code distribution


As we’ll discuss in this document, the functions invoked from Erlang
MapReduce must be available on all servers in the cluster unless
using the client library from an Erlang shell.





Security restrictions


If Riak 2.0’s security functionality is enabled, there are two restrictions on MapReduce that come into play:



		The riak_kv.mapreduce permission must be granted to the user (or
via the user’s groups)


		Other than the module riak_kv_mapreduce, any Erlang modules
distributed with Riak will not be accessible to custom MapReduce
code unless made available via the add_path mechanism documented
in [[Installing Custom Code]].










How Riak’s MapReduce Queries Are Specified


MapReduce queries in Riak have two components: (1) a list of inputs and
(2) a list of “steps,” or “phases.”


Each element of the input list is an object location, as specified by
[[bucket type|Using Bucket Types]], bucket, and key. This location may
also be annotated with “key-data,” which will be passed as an
argument to a map function when evaluated on the object stored under
that bucket-key pair.


Each element of the phases list is a description of a map function, a
reduce function, or a link function. The description includes where to
find the code for the phase function (for map and reduce phases), static
data passed to the function every time it is executed during that phase,
and a flag indicating whether or not to include the results of that
phase in the final output of the query.


The phase list describes the chain of operations through which each
input will flow. That is, the initial inputs will be fed to the first
phase in the list and the output of that phase will be fed as input to
the next phase in the list. This stream will continue through the final
phase.





How Phases Work



Map Phase


The input list to a map phase must be a list of (possibly annotated)
bucket-key pairs. For each pair, Riak will send the request to evaluate
the map function to the partition that is responsible for storing the
data for that bucket-key. The [[vnode|Vnodes]] hosting that partition
will look up the object stored under that bucket-key and evaluate the
map function with the object as an argument. The other arguments to the
function will be the annotation, if any is included, with the
bucket-key, and the static data for the phase, as specified in the
query.



Tombstones

Be aware that most Riak clusters will retain deleted objects for some
period of time (3 seconds by default), and the MapReduce framework does
not conceal these from submitted jobs. These tombstones can be
recognized and filtered out by looking for X-Riak-Deleted
in the object metadata with a value of true.




Reduce Phase


Reduce phases accept any list of data as input, and produce any list of
data as output. They also receive a phase-static value, specified in the
query definition.


The most important thing to understand is that the function defining the
reduce phase may be evaluated multiple times, and the input of later
evaluations will include the output of earlier evaluations.


For example, a reduce phase may implement the
set-union
function. In that case, the first set of inputs might be [1,2,2,3],
and the output would be [1,2,3]. When the phase receives more inputs,
say [3,4,5], the function will be called with the concatenation of the
two lists: [1,2,3,3,4,5].


Other systems refer to the second application of the reduce function as
a “re-reduce.” There are at least a few reduce-query implementation
strategies that work with Riak’s model.


One strategy is to implement the phase preceding the reduce phase such
that its output is “the same shape” as the output of the reduce phase.
This is how the examples in this document are written, and the way that
we have found produces the cleanest code.


An alternative strategy is to make the output of a reduce phase
recognizable such that it can be extracted from the input list on
subsequent applications. For example, if inputs from the preceding phase
are numbers, outputs from the reduce phase could be objects or strings.
This would allow the function to find the previous result and apply new
inputs to it.





How a Link Phase Works in Riak


Link phases find links matching patterns specified in the query
definition. The patterns specify which buckets and tags links must have.


“Following a link” means adding it to the output list of this phase. The
output of this phase is often most useful as input to a map phase or to
another reduce phase.







Invoking MapReduce


To illustrate some key ideas, we’ll define a simple module that
implements a map function to return the key value pairs contained in a
bucket and use it in a MapReduce query via Riak’s HTTP API.


Here is our example MapReduce function:


-module(mr_example).

-export([get_keys/3]).

% Returns bucket and key pairs from a map phase
get_keys(Value,_Keydata,_Arg) ->
  [{riak_object:bucket(Value),riak_object:key(Value)}].



Save this file as mr_example.erl and proceed to compiling the module.



Note on the Erlang Compiler

You must use the Erlang compiler (erlc) associated with the
Riak installation or the version of Erlang used when compiling Riak from
source.
Compiling the module is a straightforward process:


erlc mr_example.erl



Successful compilation will result in a new .beam file, mr_example.beam.


Send this file to your operator, or read about
[[installing custom code]] on your Riak nodes. Once your file has been
installed, all that remains is to try the custom function in a
MapReduce query. For example, let’s return keys contained within a
bucket named messages (please pick a bucket which contains keys in
your environment).


curl -XPOST localhost:8098/mapred \
  -H 'Content-Type: application/json'   \
  -d '{"inputs":"messages","query":[{"map":{"language":"erlang","module":"mr_example","function":"get_keys"}}]}'



The result should be a JSON map of bucket and key names expressed as key/value pairs.



Be sure to install the MapReduce function as described above on all of
the nodes in your cluster to ensure proper operation.




Phase functions


MapReduce phase functions have the same properties, arguments, and
return values whether you write them in Javascript or Erlang.



Map phase functions


Map functions take three arguments (in Erlang, arity-3 is required).
Those arguments are:



		Value: the value found at a key.  This will be a Riak object, which
in Erlang is defined and manipulated by the riak_object module.
In Javascript, a Riak object looks like this:





```
{
 "bucket":BucketAsString,
 "key":KeyAsString,
 "vclock":VclockAsString,
 "values":[
           {
            "metadata":{
                        "X-Riak-VTag":VtagAsString,
                        "X-Riak-Last-Modified":LastModAsString,
                        "Links":[...List of link objects],
                        ...other metadata...
                       },
            "data":ObjectData
           },
           ...other metadata/data values (siblings)...
          ]
}
```




		KeyData : key data that was submitted with the inputs to the query or phase.


		Arg : a static argument for the entire phase that was submitted with the query.





A map phase should produce a list of results. You will see errors if
the output of your map function is not a list.  Return the empty list if
your map function chooses not to produce output. If your map phase is
followed by another map phase, the output of the function must be
compatible with the input to a map phase - a list of bucket-key pairs or
bucket-key-keydata triples.



Map function examples


These map functions return the value (data) of the object being mapped:


fun(Value, _KeyData, _Arg) ->
    [riak_object:get_value(Value)]
end.



These map functions filter their inputs based on the arg and return bucket-key pairs for a subsequent map phase:


fun(Value, _KeyData, Arg) ->
  Key = riak_object:key(Value),
  Bucket = riak_object:bucket(Value),
  case erlang:byte_size(Key) of
    L when L > Arg ->
      [{Bucket,Key}];
    _ -> []
  end
end.








Reduce phase functions


Reduce functions take two arguments. Those arguments are:



		ValueList: the list of values produced by the preceding phase in the MapReduce query.


		Arg : a static argument for the entire phase that was submitted with the query.





A reduce function should produce a list of values, but it must also be
true that the function is commutative, associative, and idempotent. That
is, if the input list [a,b,c,d] is valid for a given F, then all of
the following must produce the same result:


  F([a,b,c,d])
  F([a,d] ++ F([c,b]))
  F([F([a]),F([c]),F([b]),F([d])])




Reduce function examples


These reduce functions assume the values in the input are numbers and
sum them:


fun(ValueList, _Arg) ->
  [lists:foldl(fun erlang:'+'/2, 0, List)]
end.



These reduce functions sort their inputs:


fun(ValueList, _Arg) ->
  lists:sort(ValueList)
end.










MapReduce Examples


Riak supports describing MapReduce queries in Erlang syntax through the
Protocol Buffers API. This section demonstrates how to do so using the
Erlang client.



Distributing Erlang MapReduce Code

Any modules and functions you use in your Erlang MapReduce calls must be
available on all nodes in the cluster. You can add them in Erlang
applications by specifying the -pz option in
[[vm.args|Configuration Files]] or by adding the path to the
add_paths setting in your app.config
configuration file.


Erlang Example


Before running some MapReduce queries, let’s create some objects to
run them on.  Unlike the first example when we compiled
mr_example.erl and distributed it across the cluster, this time
we’ll use the
Erlang client library [https://github.com/basho/riak-erlang-client]
and shell.


1> {ok, Client} = riakc_pb_socket:start("127.0.0.1", 8087).
2> Mine = riakc_obj:new(<<"groceries">>, <<"mine">>,
                        term_to_binary(["eggs", "bacon"])).
3> Yours = riakc_obj:new(<<"groceries">>, <<"yours">>,
                         term_to_binary(["bread", "bacon"])).
4> riakc_pb_socket:put(Client, Yours, [{w, 1}]).
5> riakc_pb_socket:put(Client, Mine, [{w, 1}]).



Now that we have a client and some data, let’s run a query and count how
many occurrences of groceries.


6> Count = fun(G, undefined, none) ->
             [dict:from_list([{I, 1}
              || I <- binary_to_term(riak_object:get_value(G))])]
           end.
7> Merge = fun(Gcounts, none) ->
             [lists:foldl(fun(G, Acc) ->
                            dict:merge(fun(_, X, Y) -> X+Y end,
                                       G, Acc)
                          end,
                          dict:new(),
                          Gcounts)]
           end.
8> {ok, [{1, [R]}]} = riakc_pb_socket:mapred(
                         Client,
                         [{<<"groceries">>, <<"mine">>},
                          {<<"groceries">>, <<"yours">>}],
                         [{map, {qfun, Count}, none, false},
                          {reduce, {qfun, Merge}, none, true}]).
9> L = dict:to_list(R).




Riak Object Representations

Note how the riak_object module is used in the MapReduce
function but the riakc_obj module is used on the client.
Riak objects are represented differently internally to the cluster than
they are externally.

Given the lists of groceries we created, the sequence of commands above
would result in L being bound to [{"bread",1},{"eggs",1},{"bacon",2}].





Erlang Query Syntax


riakc_pb_socket:mapred/3 takes a client and two lists as arguments.
The first list contains bucket-key pairs.  The second list contains
the phases of the query.


riakc_pb_socket:mapred_bucket/3 replaces the first list of
bucket-key pairs with the name of a bucket; see the warnings above
about using this in a production environment.



Inputs


The mapred/3 input objects are given as a list of tuples in the
format {Bucket, Key} or {{Bucket, Key}, KeyData}. Bucket and
Key should be binaries, and KeyData can be any Erlang term.  The
former form is equivalent to {{Bucket,Key},undefined}.





Query


The query is given as a list of map, reduce and link phases. Map and
reduce phases are each expressed as tuples in the following form:


{Type, FunTerm, Arg, Keep}



Type is an atom, either map or reduce. Arg is a static argument
(any Erlang term) to pass to each execution of the phase. Keep is
either true or false and determines whether results from the phase
will be included in the final value of the query.  Riak assumes that the
final phase will return results.


FunTerm is a reference to the function that the phase will execute and
takes any of the following forms:



		{modfun, Module, Function} where Module and Function are atoms
that name an Erlang function in a specific module


		{qfun,Fun} where Fun is a callable fun term (closure or anonymous
function)


		{jsfun,Name} where Name is a binary that, when evaluated in
Javascript, points to a built-in Javascript function


		{jsanon, Source} where Source is a binary that, when evaluated in
Javascript is an anonymous function


		{jsanon, {Bucket, Key}} where the object at {Bucket, Key} contains
the source for an anonymous Javascript function






qfun Note

Using `qfun` in compiled applications can be a fragile
operation. Please keep the following points in mind.
		The module in which the function is defined must be present and
exactly the same version on both the client and Riak nodes.


		Any modules and functions used by this function (or any function in
the resulting call stack) must also be present on the Riak nodes.





Errors about failures to ensure both 1 and 2 are often surprising,
usually seen as opaque missing-function or function-clause
errors. Especially in the case of differing module versions, this can be
difficult to diagnose without expecting the issue and knowing of
Module:info/0.


When using the Erlang shell, anonymous MapReduce functions can be
defined and sent to Riak instead of deploying them to all servers in
advance, but condition #2 above still holds.



Link phases are expressed in the following form:


{link, Bucket, Tag, Keep}



Bucket is either a binary name of a bucket to match, or the atom _,
which matches any bucket. Tag is either a binary tag to match, or the
atom _, which matches any tag. Keep has the same meaning as in map
and reduce phases.



There is a small group of prebuilt Erlang MapReduce functions available
with Riak. Check them out [on
GitHub](https://github.com/basho/riak_kv/blob/master/src/riak_kv_mapreduce.erl).








Bigger Data Examples



Loading Data


This Erlang script will load historical stock-price data for Google
(ticker symbol “GOOG”) into your existing Riak cluster so we can use it.
Paste the code below into a file called load_data.erl inside the dev
directory (or download it below).


#!/usr/bin/env escript
%% -*- erlang -*-
main([]) ->
    io:format("Requires one argument: filename with the CSV data~n");
main([Filename]) ->
    {ok, Data} = file:read_file(Filename),
    Lines = tl(re:split(Data, "\r?\n", [{return, binary},trim])),
    lists:foreach(fun(L) -> LS = re:split(L, ","), format_and_insert(LS) end, Lines).

format_and_insert(Line) ->
    JSON = io_lib:format("{\"Date\":\"~s\",\"Open\":~s,\"High\":~s,\"Low\":~s,\"Close\":~s,\"Volume\":~s,\"Adj. Close\":~s}", Line),
    Command = io_lib:format("curl -XPUT http://127.0.0.1:8098/buckets/goog/keys/~s -d '~s' -H 'content-type: application/json'", [hd(Line),JSON]),
    io:format("Inserting: ~s~n", [hd(Line)]),
    os:cmd(Command).



Make the script executable:


chmod +x load_data.erl



Download the CSV file of stock data linked below and place it in the
dev directory where we’ve been working.



		goog.csv [https://github.com/basho/basho_docs/raw/master/source/data/goog.csv] — Google historical stock data


		load_stocks.rb [https://github.com/basho/basho_docs/raw/master/source/data/load_stocks.rb] — Alternative script in Ruby to load the data


		load_data.erl [https://github.com/basho/basho_docs/raw/master/source/data/load_data.erl] — Erlang script to load data (as shown in snippet)





Now load the data into Riak.


./load_data.erl goog.csv






Map only: find the days on which the high was over $600.00


From the Erlang shell with the client library loaded, let’s define a
function which will check each value in our goog bucket to see if
the stock’s high for the day was above $600.


> HighFun = fun(O, _, LowVal) ->
>   {struct, Map} = mochijson2:decode(riak_object:get_value(O)),
>   High = proplists:get_value(<<"High">>, Map, -1.0),
>   case High > LowVal of
>      true -> [riak_object:key(O)];
>      false -> []
> end end.
#Fun<erl_eval.18.80484245>



Now we’ll use mapred_bucket/3 to send that function to the cluster.


> riakc_pb_socket:mapred_bucket(Riak, <<"goog">>, [{map, {qfun, HighFun}, 600, true}]).
    {ok,[{0,
      [<<"2007-11-29">>,<<"2008-01-02">>,<<"2008-01-17">>,
       <<"2010-01-08">>,<<"2007-12-05">>,<<"2007-10-24">>,
       <<"2007-10-26">>,<<"2007-10-11">>,<<"2007-11-09">>,
       <<"2007-12-06">>,<<"2007-12-19">>,<<"2007-11-01">>,
       <<"2007-11-07">>,<<"2007-11-16">>,<<"2009-12-28">>,
       <<"2007-12-26">>,<<"2007-11-05">>,<<"2008-01-16">>,
       <<"2007-11-13">>,<<"2007-11-08">>,<<"2007-12-07">>,
       <<"2008-01-"...>>,<<"2007"...>>,<<...>>|...]}]}




Map only: find the days on which the close is lower than open


This example is slightly more complicated: instead of comparing a
single field against a fixed value, we’re looking for days when the
stock declined.


> CloseLowerFun = fun(O, _, _) ->
>    {struct, Map} = mochijson2:decode(riak_object:get_value(O)),
>    Close = proplists:get_value(<<"Close">>, Map, -1.0),
>    Open = proplists:get_value(<<"Open">>, Map, -2.0),
>    case Close < Open of
>       true -> [riak_object:key(O)];
>       false -> []
> end end.
#Fun<erl_eval.18.80484245>

> riakc_pb_socket:mapred_bucket(Riak, <<"goog">>, [{map, {qfun, CloseLowerFun}, none, true}]).
{ok,[{0,
      [<<"2008-05-13">>,<<"2008-12-19">>,<<"2009-06-10">>,
       <<"2006-07-06">>,<<"2006-07-07">>,<<"2009-02-25">>,
       <<"2009-07-17">>,<<"2005-10-05">>,<<"2006-08-18">>,
       <<"2008-10-30">>,<<"2009-06-18">>,<<"2006-10-26">>,
       <<"2008-01-17">>,<<"2010-04-16">>,<<"2007-06-29">>,
       <<"2005-12-12">>,<<"2008-08-20">>,<<"2007-03-30">>,
       <<"2006-07-20">>,<<"2006-10-24">>,<<"2006-05-26">>,
       <<"2007-02-"...>>,<<"2008"...>>,<<...>>|...]}]}






Map and Reduce: find the maximum daily variance in price by month


Here things start to get tricky. We’ll use map to determine each day’s
rise or fall, and our reduce phase will identify each month’s largest
variance.


DailyMap = fun(O, _, _) ->
   {struct, Map} = mochijson2:decode(riak_object:get_value(O)),
   Date = binary_to_list(proplists:get_value(<<"Date">>, Map, "0000-00-00")),
   High = proplists:get_value(<<"High">>, Map, 0.0),
   Low = proplists:get_value(<<"Low">>, Map, 0.0),
   Month = string:substr(Date, 1, 7),
   [{Month, abs(High - Low)}]
end.

MonthReduce = fun(List, _) ->
    {Highs, _} = lists:foldl(
      fun({Month, _Value}=Item, {Accum, PrevMonth}) ->
              case Month of
                  PrevMonth ->
                      %% Highest value is always first in the list, so
                      %% skip over this one
                      {Accum, PrevMonth};
                  _ ->
                      {[Item] ++ Accum, Month}
              end
      end,
      {[], ""},
      List),
    Highs
    end.
> riakc_pb_socket:mapred_bucket(Riak, <<"goog">>, [{map, {qfun, DailyMap}, none, false}, {reduce, {qfun, MonthReduce}, none, true}]).
{ok,[{1,
      [{"2010-02",10.099999999999909},
       {"2006-02",11.420000000000016},
       {"2004-08",8.100000000000009},
       {"2008-08",14.490000000000009},
       {"2006-05",11.829999999999984},
       {"2005-10",4.539999999999964},
       {"2006-06",7.300000000000011},
       {"2008-06",9.690000000000055},
       {"2006-03",11.770000000000039},
       {"2006-12",4.880000000000052},
       {"2005-09",9.050000000000011},
       {"2008-03",15.829999999999984},
       {"2008-09",14.889999999999986},
       {"2010-04",9.149999999999977},
       {"2008-06",14.909999999999968},
       {"2008-05",13.960000000000036},
       {"2005-05",2.780000000000001},
       {"2005-07",6.680000000000007},
       {"2008-10",21.390000000000043},
       {"2009-09",4.180000000000007},
       {"2006-08",8.319999999999993},
       {"2007-08",5.990000000000009},
       {[...],...},
       {...}|...]}]}






A MapReduce Challenge


Here is a scenario involving the data you already have loaded.


MapReduce Challenge: Find the largest day for each month in terms of
dollars traded, and subsequently the largest overall day.


Hint: You will need at least one each of map and reduce phases.









Streaming MapReduce


Because Riak distributes the map phases across the cluster to increase
data locality, you can gain access to the results of those individual
computations as they finish via streaming.  Streaming can be very
helpful when getting access to results from a high latency MapReduce job
that only contains map phases.  Streaming of results from reduce phases
isn’t as useful, but if your map phases return data (keep: true), they
will be returned to the client even if the reduce phases haven’t
executed. This will let you use streaming with a reduce phase to collect
the results of the map phases while the jobs are run and then get the
result to the reduce phase at the end.



Streaming via the HTTP API


You can enable streaming with MapReduce jobs submitted to the /mapred
resource by adding ?chunked=true to the url. The response will be sent
using HTTP 1.1 chunked transfer encoding with Content-Type: multipart/mixed.
Be aware that if you are streaming a set of serialized objects (like
JSON objects), the chunks are not guaranteed to be separated along the
same boundaries that your serialized objects are. For example, a chunk
may end in the middle of a string representing a JSON object, so you
will need to decode and parse your responses appropriately in the
client.





Streaming via the Erlang API


You can use streaming with Erlang via the Riak local client or the
Erlang Protocol Buffers API.  In either case, you will provide the call
to mapred_stream with a Pid that will receive the streaming results.


For examples, see:



		MapReduce localstream.erl{{1.3.0-}}


		MapReduce pbstream.erl










Troubleshooting MapReduce, illustrated


The most important advice: when developing Erlang MapReduce against
Riak, prototype against a development environment using the Erlang
shell. The shell allows for rapid feedback and iteration; once code
needs to be deployed to a server for production use, changing it is
more time-consuming.



Module not in path


$ curl -XPOST localhost:8098/mapred \
>   -H 'Content-Type: application/json'   \
>   -d '{"inputs":"messages","query":[{"map":{"language":"erlang","module":"mr_example","function":"get_keys"}}]}'

{"phase":0,"error":"invalid module named in PhaseSpec function:\n must be a valid module name (failed to load mr_example: nofile)"}






Node in process of starting


$ curl -XPOST localhost:8098/mapred   -H 'Content-Type: application/json'     -d '{"inputs":"messages","query":[{"map":{"language":"erlang","module":"mr_example","function":"get_keys"}}]}'

<html><head><title>500 Internal Server Error</title></head><body><h1>Internal Server Error</h1>The server encountered an error while processing this request:<br><pre>{error,{error,function_clause,
              [{chashbin,itr_value,
                         [done],
                         [{file,"src/chashbin.erl"},{line,139}]},
               {chashbin,itr_next_while,2,
                         [{file,"src/chashbin.erl"},{line,183}]},
...






Erlang errors


> riakc_pb_socket:mapred_bucket(Riak, <<"goog">>, [{map, {qfun, DailyFun}, none, true}]).
{error,<<"{\"phase\":0,\"error\":\"function_clause\",\"input\":\"{ok,{r_object,<<\\\"goog\\\">>,<<\\\"2009-06-10\\\">>,[{r_content,{dic"...>>}



The Erlang shell truncates error messages; when using MapReduce, typically the information you need is buried more deeply within the stack.


We can get a longer error message this way:


> {error, ErrorMsg} = riakc_pb_socket:mapred_bucket(Riak, <<"goog">>, [{map, {qfun, DailyFun}, none, true}]).
{error,<<"{\"phase\":0,\"error\":\"function_clause\",\"input\":\"{ok,{r_object,<<\\\"goog\\\">>,<<\\\"2009-06-10\\\">>,[{r_content,{dic"...>>}

> io:format("~p~n", [ErrorMsg]).
<<"{\"phase\":0,\"error\":\"function_clause\",\"input\":\"{ok,{r_object,<<\\\"goog\\\">>,<<\\\"2009-06-10\\\">>,[{r_content,{dict,6,16,16,8,80,48,{[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[]},{{[],[],[[<<\\\"Links\\\">>]],[],[],[],[],[],[],[],[[<<\\\"content-type\\\">>,97,112,112,108,105,99,97,116,105,111,110,47,106,115,111,110],[<<\\\"X-Riak-VTag\\\">>,55,87,101,79,53,120,65,121,50,67,49,77,72,104,54,100,89,65,67,74,55,70]],[[<<\\\"index\\\">>]],[],[[<<\\\"X-Riak-Last-Modified\\\">>|{1405,709865,48668}]],[],[[<<\\\"X-Riak-Meta\\\">>]]}}},<<\\\"{\\\\\\\"Date\\\\\\\":\\\\\\\"2009-06-10\\\\\\\",\\\\\\\"Open\\\\\\\":436.23,\\\\\\\"High\\\\\\\":437.89,\\\\\\\"L...\\\">>}],...},...}\",\"type\":\"error\",\"stack\":\"[{string,substr,[\\\"2009-06-10\\\",0,7],[{file,\\\"string.erl\\\"},{line,207}]},{erl_eval,do_apply,6,[{file,\\\"erl_eval.erl\\\"},{line,573}]},{erl_eval,expr,5,[{file,\\\"erl_eval.erl\\\"},{line,364}]},{erl_eval,exprs,5,[{file,\\\"erl_eval.erl\\\"},{line,118}]},{riak_kv_mrc_map,map,3,[{file,\\\"src/riak_kv_mrc_map.erl\\\"},{line,172}]},{riak_kv_mrc_map,process,3,[{file,\\\"src/riak_kv_mrc_map.erl\\\"},{line,144}]},{riak_pipe_vnode_worker,process_input,3,[{file,\\\"src/riak_pipe_vnode_worker.erl\\\"},{line,446}]},{riak_pipe_vnode_worker,wait_for_input,...}]\"}">>



Still truncated, but this provides enough context to see the problem:
string,substr,[\\\"2009-06-10\\\",0,7]. Erlang’s string:substr
function starts indexing strings at 1, not 0.





Exceptional tip


When experimenting with MapReduce from the Erlang shell, it is helpful
to avoid breaking the connection to Riak when an exception is trapped
by the shell. Use catch_exception:


> catch_exception(true).
false









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/mdc/v2/configuration.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Multi Data Center Replication: Configuration”
project: riak
header: riakee
version: 1.0.0+
document: cookbook
toc: true
audience: intermediate
keywords: [mdc, repl, configuration]
moved: {
‘2.0.0-‘: ‘riakee:/cookbooks/Multi-Data-Center-Replication-Configuration’
}




Riak Enterprise’s Multi-Datacenter Replication capabilities offer a
variety of configurable parameters.



File


The configuration for replication is kept in the riak_repl section of
each node’s app.config. That section looks like this:


{riak_repl, [
             {fullsync_on_connect, true},
             {fullsync_interval, 360},
             % Debian/Centos/RHEL:
             {data_root, "/var/lib/riak/data/riak_repl"},
             % Solaris:
             % {data_root, "/opt/riak/data/riak_repl"},
             % FreeBSD/SmartOS:
             % {data_root, "/var/db/riak/riak_repl"},
             {queue_size, 104857600},
             {server_max_pending, 5},
             {client_ack_frequency, 5}
            ]}






Usage


These settings are configured using the standard Erlang config file
syntax, i.e. {Setting, Value}. For example, if you wished to set
ssl_enabled to true, you would insert the following line into the
riak_repl section (appending a comma if you have more settings to
follow):


{riak_repl, [
             % Other configs
             {ssl_enabled, true},
             % Other configs
            ]}






Settings


Once your configuration is set, you can verify its correctness by
running the following command:


riak chkconfig



The output from this command will point you to syntactical and other
errors in your configuration files.


A full list of configurable parameters can be found in the sections
below.





Fullsync Settings


Setting | Options | Default | Description
:——-|:——–|:——–|:———–
fullsync_on_connect | true, false | true | Whether or not to initiate a fullsync on initial connection from the secondary cluster
fullsync_strategies | {{#2.0.0-}}keylist, syncv1{{/2.0.0-}} {{#2.0.0+}}keylist{{/2.0.0+}} | {{#2.0.0-}}[keylist, syncv1]{{/2.0.0-}} {{#2.0.0+}}[keylist]{{/2.0.0+}} | A list of fullsync strategies to be used by replication.
Note: Please contact Basho support for more information.
fullsync_interval   | mins (integer), disabled | 360 | How often to initiate a fullsync of data, in minutes. This is measured from the completion of one fullsync operation to the initiation of the next. This setting only applies to the primary cluster (listener). To disable fullsync, set fullsync_interval to disabled and fullsync_on_connect to false.**





SSL Settings


Setting | Options | Default | Description
:——-|:——–|:——–|:———–
ssl_enabled | true, false | false | Enable SSL communications
keyfile | path (string) | undefined | Fully qualified path to an SSL .pem key file
cacertdir | path (string) | undefined | The cacertdir is a fully-qualified directory containing all the CA certificates needed to verify the CA chain back to the root
certfile | path (string) | undefined | Fully qualified path to a .pem cert file
ssl_depth | depth (integer) | 1 | Set the depth to check for SSL CA certs. See 1.
peer_common_name_acl | cert (string) | "*" | Verify an SSL peer’s certificate common name. You can provide an ACL as a list of common name patterns, and you can wildcard the leftmost part of any of the patterns, so *.basho.com would match site3.basho.com but not foo.bar.basho.com or basho.com. See 4.





Queue, Object, and Batch Settings


Setting | Options | Default | Description
:——-|:——–|:——–|:———–
data_root | path (string) | data/riak_repl | Path (relative or absolute) to the working directory for the replication process
queue_size | bytes (integer) | 104857600 (100 MiB) | The size of the replication queue in bytes before the replication leader will drop requests. If requests are dropped, a fullsync will be required. Information about dropped requests is available using the riak-repl status command
server_max_pending | max (integer) | 5 | The maximum number of objects the leader will wait to get an acknowledgment from, from the remote location, before queuing the request
vnode_gets | true, false | true | If true, repl will do a direct get against the vnode, rather than use a GET finite state machine
shuffle_ring | true, false | true| If true, the ring is shuffled randomly. If false, the ring is traversed in order. Useful when a sync is restarted to reduce the chance of syncing the same partitions.
diff_batch_size | objects (integer) | 100 | Defines how many fullsync objects to send before waiting for an acknowledgment from the client site





Client Settings


Setting | Options | Default | Description
:——-|:——–|:——–|:———–
client_ack_frequency | freq (integer) | 5 | The number of requests a leader will handle before sending an acknowledgment to the remote cluster
client_connect_timeout | ms (integer) | 15000 | The number of milliseconds to wait before a client connection timeout occurs
client_retry_timeout | ms (integer) | 30000 | The number of milliseconds to wait before trying to connect after a retry has occurred





Buffer Settings


Setting | Options | Default | Description
:——-|:——–|:——–|:———–
sndbuf | bytes (integer) | OS dependent | The buffer size for the listener (server) socket measured in bytes
recbuf | bytes (integer) | OS dependent | The buffer size for the site (client) socket measured in bytes





Worker Settings


Setting | Options | Default | Description
:——-|:——–|:——–|:———–
max_get_workers | max (integer) | 100 | The maximum number of get workers spawned for fullsync. Every time a replication difference is found, a GET will be performed to get the actual object to send. See 2.
max_put_workers | max (integer) | 100 | The maximum number of put workers spawned for fullsync. Every time a replication difference is found, a GET will be performed to get the actual object to send. See 3.
min_get_workers | min (integer) | 5 | The minimum number of get workers spawned for fullsync. Every time a replication difference is found, a GET will be performed to get the actual object to send. See 2.
min_put_workers | min (integer) | 5 | The minimum number of put workers spawned for fullsync. Every time a replication difference is found, a GET will be performed to get the actual object to send. See 3.



		[bookmark: f1]SSL depth is the maximum number of non-self-issued
intermediate certificates that may follow the peer certificate in a valid
certificate chain. If depth is 0, the PEER must be signed by the trusted
ROOT-CA directly; if 1 the path can be PEER, CA, ROOT-CA; if depth is 2
then PEER, CA, CA, ROOT-CA and so on.


		[bookmark: f2]Each get worker spawns 2 processes, one for the work and
one for the get FSM (an Erlang finite state machine implementation for GET
requests). Be sure that you don’t run over the maximum number of allowed
processes in an Erlang VM (check vm.args for a +P property).


		[bookmark: f3]Each put worker spawns 2 processes, one for the work, and
one for the put FSM (an Erlang finite state machine implementation for PUT
requests). Be sure that you don’t run over the maximum number of allowed
processes in an Erlang VM (check vm.args for a +P property).


		[bookmark: f4]If the ACL is specified and not the special value *,
peers presenting certificates not matching any of the patterns will not be
allowed to connect.
If no ACLs are configured, no checks on the common name are done, except
as described for [[Identical Local and Peer Common Names
|Multi Data Center Replication: SSL#Verifying-Peer-Certificates]].









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/advanced/community-projects.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Community Projects
project: riak
version: 0.10.0+
document: reference
toc: true
index: true
audience: intermediate
keywords: [client, drivers]
moved: {
‘1.4.0-‘: ‘/references/Community-Developed-Libraries-and-Projects’
}





Monitoring, Management, and GUI Tools



		riak_node (for Munin) [https://github.com/munin-monitoring/contrib/blob/master/plugins/riak/riak_node] — Munin plugin for monitoring GET and PUT traffic


		riak_memory (for Munin) [https://github.com/munin-monitoring/contrib/blob/master/plugins/riak/riak_memory] — Munin plugin for monitoring memory allocation


		Nagios Plugins for Riak [https://github.com/xb95/nagios-plugins]


		Riak-Console [https://github.com/lucaspiller/riak-console] — An interactive command line interface to Riak


		Rekon [https://github.com/basho/rekon] — Riak Node Data Browser


		Gmond Python Modules for Riak [http://github.com/jnewland/gmond_python_modules/tree/master/riak] — Ganglia Module for connecting to Riak


		riak-admin [https://github.com/pentium10/riak-admin] — Admin panel written in PHP (supports delete bucket via keys stream)


		riak-admin [http://bitbucket.org/harmen/riak-admin/] — A Java program with GUI to browse and update a Riak database


		Riak Admin [http://github.com/frank06/riak-admin] — A Futon-like web interface for Riak


		riak-session-manager [https://github.com/jbrisbin/riak-session-manager] — A Riak-backed Tomcat Session Manager


		app-karyn [https://github.com/tempire/app-karyn] — Simple command line utility for working with Riak objects


		Briak [http://github.com/johnthethird/Briak] — A Sinatra-based web front-end browser for Riak


		riak_stats [https://gist.github.com/4064937] — A shell script to ship riak-admin statistics to [[Librato|https://metrics.librato.com/]]


		riak_graphite_stats [https://gist.github.com/4064990] — A shell script to ship riak-admin statistics to [[Graphite|http://graphite.wikidot.com/]]








Backup Tools



		Brackup [http://code.google.com/p/brackup/] — A modern net-based backup system that supports de-duplication, intelligent chunking, and GPG [http://en.wikipedia.org/wiki/GNU_Privacy_Guard]-based-encryption








riak_core



		Misultin riak_core Vnode Dispatcher [https://github.com/jbrisbin/misultin-riak-core-vnode-dispatcher] — An example of how to dispatch a web request into a riak_core vnode


		ecnty [https://github.com/benmmurphy/ecnty] — Partitioned counter based on Riak Core


		rebar_riak_core [https://github.com/websterclay/rebar_riak_core] — Rebar templates for generating riak_core applications


		Try Try Try [https://github.com/rzezeski/try-try-try/] — Ryan Zezeski’s working blog that explores many aspects of riak_core (this is an amazing resource)


		riak_zab [https://github.com/jtuple/riak_zab] — An extension for riak_core that provides totally ordered atomic broadcast capabilities


		riak_zab_example [https://github.com/jtuple/riak_zab_example] — An example application that allows you to build a multi-node cluster using riak_zab








Riak and RabbitMQ



		Riak/RabbitMQ Commit Hook [https://github.com/jbrisbin/riak-rabbitmq-commit-hooks] — A post-commit hook that sends entries into a RabbitMQ broker using the Erlang AMQP client


		riak-exchange [https://github.com/jbrisbin/riak-exchange] — Custom RabbitMQ exchange type for sticking messages in Riak


		rabbit_riak_queue [https://github.com/jbrisbin/rabbit_riak_queue] — Riak-backed RabbitMQ persistent queue implementation


		msg_store_bitcask_index [https://github.com/videlalvaro/msg_store_bitcask_index] — RabbitMQ message store index with Bitcask Backend


		RabbitMQ riak_core Vnode Dispatcher [https://github.com/jbrisbin/rabbitmq-riak_core-vnode-dispatcher] — An example of how to dispatch a web request into a riak_core Vnode








lager



		Lager AMQP Backend [https://github.com/jbrisbin/lager_amqp_backend] — AMQP RabbitMQ Lager backend








Install and Configure



		Scalarium-Riak [https://github.com/roidrage/scalarium-riak] — Riak Cookbooks for Scalarium Platform


		Riak Chef Recipe [https://github.com/basho/riak-chef-cookbook] — Vanilla Chef Recipe for installing and configuring Riak


		Custom Chef Recipe for running Riak on the Engine Yard AppCloud [https://github.com/engineyard/ey-cloud-recipes/tree/master/cookbooks/riak]


		RiakAWS [http://github.com/roder/riakaws] — A simple way to deploy a Riak cluster in the Amazon Cloud


		Cloudsoft-Riak [https://github.com/cloudsoft/amp-basho] — Tested and optimized Riak blueprints for developing and deploying applications faster.


		Using Nginx as a front-end for Riak [http://rigelgroupllc.com/wp/blog/using-nginx-as-a-front-end-for-riak]


		Sample HA Proxy Configuration for Protocol Buffers Interface [http://lists.basho.com/pipermail/riak-users_lists.basho.com/2011-May/004387.html] (courtesy of Scott M. Likens)


		Sample HA Proxy Configuration for Protocol Buffers Interface [http://lists.basho.com/pipermail/riak-users_lists.basho.com/2011-May/004388.html] (courtesy of Bob Feldbauer)


		Storing Apache Logs in Riak via Fluentd [http://docs.fluentd.org/articles/apache-to-riak]








Other Tools and Projects



		riak_mapreduce_utils [http://github.com/whitenode/riak_mapreduce_utils] — A library of mapreduce utility functions developed in Erlang


		riakbloom [http://github.com/whitenode/riakbloom] — A solution allowing Bloom filters to be created and used in MapReduce jobs


		Qi4j Riak EntityStore [http://qi4j.org/extension-es-riak.html] — Qi4j EntityStore service backed by a Riak bucket


		ldapjs-riak [https://github.com/mcavage/node-ldapjs-riak] — A Riak backend for ldapjs [http://ldapjs.org]


		otto [https://github.com/ncode/otto] — S3 Clone built on top of Cyclone with support for Riak


		Riaktivity [https://github.com/roidrage/riaktivity] — A Ruby library for storing timelines in Riak


		Timak [https://github.com/bretthoerner/timak] — A Python library for storing timelines (activity streams) in Riak


		Statebox_Riak [https://github.com/mochi/statebox_riak] — Convenience library that makes it easier to use Statebox [https://github.com/mochi/statebox] with Riak. There is a great blog post from the Mochi Team about how this is used in production here [http://labs.mochimedia.com/archive/2011/05/08/statebox/].


		bitcask-ruby [https://github.com/aphyr/bitcask-ruby] — An interface to the Bitcask storage system


		Riak BTree Backend [https://github.com/krestenkrab/riak_btree_backend] — Backend for Riak/KV based on couch_btree*


		Riak Link Index [https://github.com/krestenkrab/riak_link_index] — Simple Indexer for Riak based on Links


		rack-rekon [https://github.com/seomoz/rack-rekon] — A Rack application to serve [[Rekon|https://github.com/adamhunter/rekon/]]


		ring-session-riak [https://github.com/ossareh/ring-session-riak] — A Riak implementation for Ring Session


		Riak to CSV Export [https://github.com/bradfordw/riak_csv] — A simple way to export your Riak buckets to CSV files


		Couch to Riak [http://github.com/mattsta/couchdb/tree/couch_file-to-riak]


		Chimera [http://github.com/benmyles/chimera] — An object mapper for Riak and Redis


		Riak_Redis Backend [http://github.com/cstar/riak_redis_backend]


		Riak Homebrew Formula [http://github.com/roidrage/homebrew]


		Riak-fuse — A FUSE Driver for Riak [http://github.com/johnthethird/riak-fuse]


		riakfuse [http://github.com/crucially/riakfuse] — A distributed filesystem that uses Riak as its backend store


		ebot [http://www.redaelli.org/matteo-blog/projects/ebot/] — A scalable web crawler that supports Riak as a backend


		riak-jscouch [https://github.com/jimpick/riak-jscouch] — JSCouch examples done with Riak


		riak_tokyo_cabinet [http://github.com/jebu/riak_tokyo_cabinet] — A Tokyo Cabinet backend for Riak


		Logstash Riak Output [http://logstash.net/docs/1.1.9/outputs/riak] — An output plugin for Logstash


		Fluentd plugin for Riak [http://github.com/kuenishi/fluent-plugin-riak] — An output plugin for Fluentd [http://fluentd.org]








Sample Applications


This a collection of sample applications built on Riak and Riak Core.



Riak



		yakriak [http://github.com/seancribbs/yakriak] — Riak-powered Ajax-polling chatroom


		riaktant [https://github.com/basho/riaktant] — A full-blown NodejS app that stores and makes syslog messages searchable in Riak Search


		selusuh [https://github.com/OJ/selusuh] — Riak application that presents JSON slide decks (thanks, OJ [http://twitter.com/thecolonial]!)


		Rekon [https://github.com/adamhunter/rekon] — A Riak data browser, built as a totally self-contained Riak application


		Slideblast [https://github.com/rustyio/SlideBlast] — Share and control slide presentation for the web


		riak_php_app [http://github.com/schofield/riak_php_app] — A small PHP app that shows some basic usage of the Riak PHP library


		riak-url-shortener [http://github.com/seancribbs/riak-url-shortener] — A small Ruby app (with Sinatra) that creates short URLs and stores them in Riak


		wriaki [https://github.com/basho/wriaki] — A wiki app backed by Riak


		riagi [https://github.com/basho/riagi] — A simple imgur.com clone built using Riak, Django, and Riak Search








Riak Core


Riak Core (or riak_core as it’s written in the code) is the distributed systems framework that underpins Riak. For more general information on Riak Core, start with this blog post [http://blog.basho.com/2011/04/12/Where-To-Start-With-Riak-Core/].



		riak_id [https://github.com/seancribbs/riak_id] — A clone of Twitter’s Snowflake, built on riak_core


		basho_banjo [https://github.com/rustyio/BashoBanjo] — An application that uses Riak Core to play distributed music


		riak_zab [https://github.com/jtuple/riak_zab] — An implementation of the Zookeeper protocol on top of Riak Core


		try-try-try [https://github.com/rzezeski/try-try-try] — Ryan Zezeski’s working blog that takes an in-depth look at various aspects of riak_core (and walks you through building an application called “RTS”)











          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/mdc/v2/nat.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Multi Data Center Replication: With NAT”
project: riak
header: riakee
version: 1.2.0+
document: cookbook
toc: true
audience: intermediate
keywords: [mdc, repl, nat]
moved: {
‘2.0.0-‘: ‘riakee:/cookbooks/Multi-Data-Center-Replication-With-NAT’
}




Riak Enterprise supports replication of data on networks that use static
NAT. This capability can be used for replicating data over the internet
where servers have both internal and public IP addresses (see [[Riak
REPL SSL|Multi Data Center Replication: SSL]] if you replicate data over
a public network).



Requirements


In order for Multi-Datacenter Replication to work on a server configured
with NAT, the NAT addresses must be configured statically.





Example


Imagine the following scenario:



		Server A is the source of replicated data


		Servers B and C would like to be clients of the replicated data





Server A is set up with static NAT, configured for IP addresses:



		192.168.1.10 (internal) and 50.16.238.123 (public)





Server A replication will listen on:



		the internal IP address 192.168.1.10, port 9010


		the public IP address 50.16.238.123, port 9011





Server B is set up with a single public IP address: 50.16.238.200



		Server B replication will connect as a client to the public IP
address 50.16.238.123, port 9011





Server C is set up with a single internal IP address: 192.168.1.20



		Server C replication will connect as a client to the internal IP
address of 192.168.1.10, port 9010





Configure a listener on Server A:


riak-repl add-nat-listener riak@192.168.1.10 192.168.1.10 9010 50.16.238.123 9011



Configure a site (client) on Server B:


riak-repl add-site 50.16.238.123 9011 server_a_to_b



Configure a site (client) on Server C:


riak-repl add-site 192.168.1.10 9010 server_a_to_c







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/advanced/2i.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Advanced Secondary Indexes
project: riak
version: 1.0.0+
document: guide
toc: true
audience: advanced
keywords: [developers, 2i]
moved: {
‘1.4.0-‘: ‘/tutorials/querying/Secondary-Indexes’
}





Note: Riak Search preferred for querying

If you're interested in non-primary-key-based querying in Riak, i.e. if
you're looking to go beyond straightforward K/V operations, we now
recommend [[Riak Search|Using Search]] rather than secondary indexes for
a variety of reasons. Riak Search has a far more capacious querying API
and can be used with all of Riak's storage backends.

This document provides implementation and other details for Riak’s
[[secondary indexes|Using Secondary Indexes]] (2i) feature.



How It Works


Secondary indexes use document-based partitioning, a system where
indexes reside with each document, local to the [[vnode|Vnodes]]. This
system is also a local index. Secondary indexes are a list of key/value
pairs that are similar to HTTP headers. At write time, objects are
tagged with index entries consisting of key/value metadata. This
metadata can be queried to retrieve the matching keys.


[image: Secondary Index]


Indexes reside on multiple machines. Since indexes for an object are
stored on the same partition as the object itself, query-time
performance issues might arise. When issuing a query, the system must
read from a “covering” set of partitions and then merge the results.
The system looks at how many replicas of data are stored—the N value
or n_val—and determines the minimum number of partitions that it
must examine (1 / n_val) to retrieve a full set of results, also
taking into account any offline nodes.


An application can modify the indexes for an object by reading an
object, adding or removing index entries, and then writing the object.
Finally, an object is automatically removed from all indexes when it is
deleted. The object’s value and its indexes should be thought of as a
single unit. There is no way to alter the indexes of an object
independently from the value of an object, and vice versa. Indexing is
atomic, and is updated in real time when writing an object. This means
that an object will be present in future index queries as soon as the
write operation completes.


Riak stores 3 replicas of all objects by default, although this can be
changed [[using bucket types]], which manage buckets’ [[replication
properties]]. The system is capable of generating a full set of results
from one third of the system’s partitions as long as it chooses the
right set of partitions. The query is sent to each partition, the index
data is read, and a list of keys is generated and then sent back to the
requesting node.



Note on 2i and strong consistency

Secondary indexes do not currently work with the [[strong consistency]]
feature introduced in Riak version 2.0. If you store objects in
[[strongly consistent buckets|Using Strong
Consistency#Creating-a-Strongly-Consistent-Bucket-Type]] and attach
secondary index metadata to those objects, you can still perform
strongly consistent operations on those objects but the secondary
indexes will be ignored.





          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/mdc/v2/operations.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Multi Data Center Replication: Operations”
project: riak
header: riakee
version: 1.0.0+
document: cookbook
toc: true
audience: intermediate
keywords: [mdc, repl, operator]
moved: {
‘2.0.0-‘: ‘riakee:/cookbooks/Multi-Data-Center-Replication-Operations’
}




Riak Enterprise’s Multi-Datacenter Replication system is largely
controlled by the riak-repl command. The sections below detail the
available subcommands.



add-listener


Adds a listener (primary) to the given node, IP address, and port.


riak-repl add-listener <nodename> <listen_ip> <port>



Below is an example usage:


riak-repl add-listener riak@10.0.1.156 10.0.1.156 9010



{{#1.2.1+}}





add-nat-listener


Adds a NAT-aware listener (primary) to the given node, IP address, port,
NAT IP, and NAT port. If a non-NAT listener already exists with the same
internal IP and port, it is “upgraded” to a NAT Listener.


riak-repl add-nat-listener <nodename> <internal_ip> <internal_port> <nat_ip> <nat_port>



Below is an example usage:


riak-repl add-nat-listener riak@10.0.1.156 10.0.1.156 9010 50.16.238.123 9010



{{/1.2.1+}}





del-listener


Removes and shuts down a listener (primary) on the given node, IP
address, and port.


riak-repl del-listener <nodename> <listen_ip> <port>



Below is an example usage:


riak-repl del-listener riak@10.0.1.156 10.0.1.156 9010






add-site


Adds a site (secondary) to the local node, connecting to the specified
listener.


riak-repl add-site <ipaddr> <portnum> <sitename>



Below is an example usage:


riak-repl add-site 10.0.1.156 9010 newyork






del-site


Removes a site (secondary) from the local node by name.


riak-repl del-site <sitename>



Below is an example usage:


riak-repl del-site newyork






status


Obtains status information about replication. Reports counts on how much
data has been transmitted, transfer rates, message queue lengths of
clients and servers, number of fullsync operations, and connection
status. This command only displays useful information on the leader
node.


riak-repl status






start-fullsync


Manually initiates a fullsync operation with connected sites.


riak-repl start-fullsync






cancel-fullsync


Cancels any fullsync operations in progress. If a partition is in
progress, synchronization will stop after that partition completes.
During cancellation, riak-repl status will show cancelled in the
status.


riak-repl cancel-fullsync






pause-fullsync


Pauses any fullsync operations in progress. If a partition is in
progress, synchronization will pause after that partition completes.
While paused, riak-repl status will show paused in the status
information. Fullsync may be cancelled while paused.


riak-repl pause-fullsync






resume-fullsync


Resumes any fullsync operations that were paused. If a fullsync
operation was running at the time of the pause, the next partition will
be synchronized. If not, it will wait until the next start-fullsync
command or fullsync_interval.


riak-repl resume-fullsync






riak-repl Status Output


The following definitions describe the output of the riak-repl status
command. Please note that many of these statistics will only appear on
the current leader node, and that all counts will be reset to 0 upon
restarting Riak Enterprise.



Client


Field | Description
:—–|:———–
client_stats | See Client Statistics
client_bytes_recv | The total number of bytes the client has received since the server has been started
client_bytes_sent | The total number of bytes sent to all connected sites
client_connect_errors | The number of TCP/IP connection errors
client_connects | A count of the number of site connections made to this node
client_redirect | If a client connects to a non-leader node, it will be redirected to a leader node
client_rx_kbps | A snapshot of the client (site)-received kilobits/second taken once a minute. The past 8 snapshots are stored in this list. Newest snapshots appear on the left side of the list.
client_tx_kbps | A snapshot of the client (site)-sent kilobits/second taken once a minute. The past 8 snapshots are stored in this list. Newest snapshots appear on the left side of the list.





Server


Field | Description
:—–|:———–
server_bytes_recv | The total number of bytes the server (listener) has received
server_bytes_sent | The total number of bytes the server (listener) has sent
server_connect_errors | The number of listener to site connection errors
server_connects | The number of times the listener connects to the client site
server_fullsyncs | The number of fullsync operations that have occurred since the server was started
server_rx_kbps | A snapshot of the server (listener) received kilobits/second taken once a minute. The past 8 snapshots are stored in this list. Newest snapshots appear on the left side of the list.
server_tx_kbps | A snapshot of the server (listener) sent kilobits/second taken once a minute. The past 8 snapshots are stored in this list. Newest snapshots appear on the left side of the list.
server_stats | See Server Statistics





Elections and Objects


Field | Description
:—–|:———–
elections_elected | If the replication leader node becomes unresponsive or unavailable, a new leader node in the cluster will be elected
elections_leader_changed | The number of times a Riak node has surrendered leadership
objects_dropped_no_clients | If the realtime replication work queue is full and there aren’t any clients to receive objects, then objects will be dropped from the queue. These objects will be synchronized during a fullsync operation.
objects_dropped_no_leader | If a client (site) cannot connect to a leader, objects will be dropped during realtime replication
objects_forwarded | The number of Riak objects forwarded to the leader the participate in replication. Please note that this value will only be accurate on a non-leader node.
objects_sent | The number of objects sent via realtime replication





Other


Field | Description
:—–|:———–
listener_<nodeid> | Defines a replication listener that is running on node <nodeid>
[sitename]_ips | Defines a replication site
leader | Which node is the current leader of the cluster
local_leader_message_queue_len | The length of the object queue on the leader
local_leader_heap_size| The amount of memory the leader is using







Client Statistics


Field | Description
——|————
node | A unique ID for the Riak node on which the client (site) is running
site | The connected site name configured with riak-repl add-site
strategy | A replication strategy defines an implementation of the Riak Replication protocol. Valid values: keylist, syncv1
fullsync_worker | The Erlang process ID of the fullsync worker
waiting_to_retry | The listeners currently waiting to retry replication after a failure
connected | A list of connected clients

		connected — The IP address and port of a connected client (site)

		cluster_name — The name of the connected client (site)

		connecting — The PID, IP address, and port of a client currently establishing a connection




state | State shows what the current replication strategy is currently processing. The following definitions appear in the status output if keylist strategy is being used. They can be used by Basho support to identify replication issues.		request_partition

		wait_for_fullsync

		send_keylist

		wait_ack









Bounded Queue


The bounded queue is responsible for holding objects that are waiting to
participate in realtime replication. Please see the [[Riak Enterprise
MDC Replication Configuration|Multi-Data-Center Replication:
Configuration]] guide for more information.


Field | Description
——|————
queue_pid | The Erlang process ID of the bounded queue
dropped_count | The number of objects that failed to be enqueued in the bounded queue due to the queue being full. These objects will be replicated during the next fullsync operation.
queue_length | The number of Riak objects currently in the bounded queue
queue_byte_size | The size of all objects currently in the queue
queue_max_size | The number of bytes the queue can hold before objects are dropped. These objects will be replicated during the next fullsync operation.
queue_percentage | The percentage of the queue that is full
queue_pending | The current count of “in-flight” objects we’ve sent that the client has not acknowledged
queue_max_pending | The maximum number of objects that can be “in flight” before we refuse to send any more.





Server Statistics


Field | Description
——|————
node  | A unique ID for the Riak node on which the server (listener) is running
site | The connected site name configured with riak-repl add-site
strategy | A replication strategy defines an implementation of the Riak Replication protocol. Valid values: keylist or syncv1.
fullsync_worker | The Erlang process ID of the fullsync worker
bounded_queue | See the Bounded Queue section above
state | State shows what the current replication strategy is processing. The following definitions appear in the status output if the keylist strategy is being used. They can be used by Basho support to identify replication issues.

		wait_for_partition

		build_keylist

		wait_keylist

		diff_bloom

		diff_keylist



s
message_queue_len | The number of Erlang messages that are waiting to be processed by the server





Keylist Strategy


These similar fields are under both the keylist_server and
keylist_client fields. Any differences are described in the table.


Field | Description
——|————
fullsync | On the client, the number of partitions that remain to be processed. On the server, the partition currently being processed by fullsync replication.
partition_start | The number of elapsed seconds since replication has started on a given partition
stage_start | The number of elapsed seconds since replication has started on a given stage
get_pool_size | The number of Riak get finite state workers available to process requests






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/mdc/v2/ssl.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Multi Data Center Replication: SSL”
project: riak
header: riakee
version: 1.2.0+
document: cookbook
toc: true
audience: intermediate
keywords: [mdc, repl, ssl]
moved: {
‘2.0.0-‘: ‘riakee:/cookbooks/Multi-Data-Center-Replication-SSL’
}





Features


Riak REPL SSL support consists of the following items:



		Encryption of replication data


		SSL certificate chain validation


		SSL common name whitelisting support








SSL Configuration


To configure SSL, you will need to include the following four settings
in the riak-repl section of your app.config:


{riak-repl, [
             % ...
             {ssl_enabled, true},
             {certfile, "/full/path/to/site1-cert.pem"},
             {keyfile, "/full/path/to/site1-key.pem"},
             {cacertdir, "/full/path/to/cacertsdir"}
             % ...
            ]}




The cacertdir is a directory containing all of the CA certificates
needed to verify the CA chain back to the root.





Verifying Peer Certificates


Verification of a peer’s certificate common name (CN) is enabled by using
the peer_common_name_acl property in the riak_repl section of your
app.config to specify an Access Control List (ACL).


The ACL is a list of one or more patterns, separated by commas. Each
pattern may be either the exact CN of a certificate to allow, or a
wildcard in the form *.some.domain.name. Pattern comparison is
case-insensitive, and a CN matching any of the patterns is allowed to connect.


For example, ["*.corp.com"] would match site3.corp.com but not
foo.bar.corp.com or corp.com. If the ACL were
["*.corp.com", "foo.bar.corp.com"], site3.corp.com and foo.bar.corp.com
would be allowed to connect, but corp.com still would not.


If no ACL (or only the special value "*") is specified, no CN filtering
is performed, except as described below.



Identical Local and Peer Common Names

As a special case supporting the view that a host's CN is a fully-qualified
domain name that uniquely identifies a single network device, if the CNs of
the local and peer certificates are the same, the nodes will *NOT* be allowed
to connect.This evaluation supercedes ACL checks, so it cannot be overridden with any
setting of the peer_common_name_acl property.




Examples


The following example will only allow connections from peer certificate
names like db.bashosamplecorp.com and security.bashosamplecorp.com:


{riak_repl, [
             % ...
             {peer_common_name_acl, ["db.bashosamplecorp.com", "security.bashosamplecorp.com"]}
             % ...
            ]}



The following example will allow connections from peer certificate names
like foo.bashosamplecorp.com or db.bashosamplecorp.com, but not a
peer certificate name like db.backup.bashosamplecorp.com:


{riak_repl, [
             % ...
             {peer_common_name_acl, ["*.bashosamplecorp.com"]}
             % ...
            ]}




This example will match any peer certificate name (and is the default):


{riak_repl, [
             % ...
             {peer_common_name_acl, "*"}
             % ...
            ]}








SSL CA Validation


You can adjust the way CA certificates are validated by adding the
following to the riak_repl section of your app.config:


{riak_repl, [
             % ...
             {ssl_depth, ...}
             % ...
            ]}



Note: ssl_depth takes an integer parameter.


The depth specifies the maximum number of intermediate certificates that
may follow the peer certificate in a valid certification path. By default,
no more than one (1) intermediate certificate is allowed between the peer
certificate and root CA. By definition, intermediate certificates cannot
be self signed.


For example:



		A depth of 0 indicates that the certificate must be signed directly
by a root certificate authority (CA)


		A depth of 1 indicates that the certificate may be signed by at most
1 intermediate CA’s, followed by a root CA


		A depth of 2 indicates that the certificate may be signed by at most
2 intermediate CA’s, followed by a root CA








Compatibility


Replication SSL is ONLY available in Riak 1.2+.


If SSL is enabled and a connection is made to a Riak Enterprise 1.0 or
1.1 node, the connection will be denied and an error will be logged.



Self-Signed Certificates


You can generate your own CA and keys by using this
guide [http://www.debian-administration.org/articles/618].


Make sure that you remove the password protection from the keys you
generate.








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/advanced/strong-consistency.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Using Strong Consistency
project: riak
version: 2.0.0+
document: guide
toc: true
audience: advanced
keywords: [developers, strong-consistency]





Note on commercial support

Riak's strong consistency feature is currently an open-source-only
feature and is not yet commercially supported.

In versions 2.0 and later, Riak allows you to create buckets that
provide [[strong consistency]] guarantees for the data stored within
them, enabling you to use Riak as a CP system (consistent plus partition
tolerant) for all of the data in that bucket. You can store just some of
your data in strongly consistent buckets or all of your data, depending
on your use case. Strong consistency was added to complement Riak’s
standard [[eventually consistent|Eventual Consistency]], high
availability mode.



Tradeoffs


When data is stored in a bucket with strong consistency guarantees, a
value is guaranteed readable by any client immediately after a
successful write has occurred to a given key. In this sense, single-key
strongly consistent operations are atomic, and operations on a given key
are linearizable [http://en.wikipedia.org/wiki/Linearizability]. This
behavior comes at the expense of availability because a [[quorum|Strong
Consistency#Trade-offs]] of primary [[vnodes|Vnodes]] responsible for
the key must be online and reachable or the request will
fail.


This trade-off is unavoidable for strongly consistent data, but the
choice is now yours [http://en.wikipedia.org/wiki/CAP_theorem] to make.





Enabling Strong Consistency


Complete instructions on enabling strong consistency can be found in
our documentation on [[strong consistency for operators|Managing Strong
Consistency#Enabling-Strong-Consistency]].





Creating Consistent Bucket Types


[[Strong consistency]] requirements in Riak are applied on a
bucket-by-bucket basis, meaning that you can use some buckets in an
eventually consistent fashion and others in a strongly consistent
fashion, depending on your use case.


To apply strong consistency to a bucket, you must create a [[bucket
type|Using Bucket Types]] that sets the consistent bucket property to
true, activate that type, and then apply that type to specific
bucket/key pairs.


To give an example, we’ll create a bucket type called
strongly_consistent with the consistent bucket property set to
true:


riak-admin bucket-type create strongly_consistent \
    '{"props":{"consistent":true}}'




Note on bucket type names

You can name [[bucket types|Using Bucket Types]] whatever you wish, with
the exception of `default`, which is a reserved term (a full listing of
the properties associated with the `default` bucket type can be found in
the documentation on [[bucket properties and operations|The
Basics#Bucket-Properties-and-Operations]]).

Once the strongly_consistent bucket type has been created, we can
check the status of the type to ensure that it has propagated through
all nodes and is thus ready to be activated:


riak-admin bucket-type status strongly_consistent



If the console outputs strongly_consistent has been created and may be activated and the properties listing shows that consistent has been
set to true, then you may proceed with activation:


riak-admin bucket-type activate strongly_consistent



When activation is successful, the console will return the following:


strongly_consistent has been activated



Now, any bucket that bears the type strongly_consistent—or whatever
you wish to name it—will provide strong consistency guarantees.


Elsewhere in the Riak docs, you can find more information on [[using
bucket types]], on the concept of [[strong consistency]], and on strong
consistency [[for operators|Managing Strong Consistency]].





Replication Properties


Strongly consistent operations in Riak function much differently from
their [[eventually consistent|Eventual Consistency]] counterparts.
Whereas eventually consistent operations enable you to set values for a
variety of [[replication properties]] either on each request or at the
bucket level, [[using bucket types]], these settings are quietly ignored
for strongly consistent operations. These settings include r, pr,
w, rw, and others. Two replication properties that can be set,
however, are n_val and return_body.


The n_val property is extremely important for two reasons:



		It dictates how fault tolerant a strongly consistent bucket is. More
information can be found in [[our recommendations for
operators|Managing Strong Consistency#Fault-Tolerance]].


		Once the n_val property is set for a given bucket type, it cannot
be changed. If you wish to change the n_val for one or more
strongly consistent buckets [[using bucket types]], you will need to
create a new bucket type with the desired n_val.





We also recommend setting the n_val on strongly consistent buckets to
at least 5. More on why we make this recommendation can be found in
[[Fault Tolerance|Managing Strong Consistency#Fault-Tolerance]].





Causal Context


Riak uses [[causal context]] to determine the causal history of objects.
In versions of Riak prior to 2.0, [[vector clocks|Causal
Context#Vector-Clocks]] were used to provide objects with causal context
metadata. In Riak versions 2.0 and later there is an option to use
[[dotted version vectors]], which function much like vector clocks from
the standpoint of clients, but with important advantages over vector
clocks.


While we strongly recommend attaching context to objects for all
updates—whether traditional vector clocks or the newer dotted version
vectors—they are purely [[optional|Conflict Resolution]] for all
eventually consistent operations in Riak. This is not the case for
strongly consistent operations. When modifying strongly consistent
objects in Riak, you must attach a causal context.


If you attempt to modify a strongly consistent object without attaching
a context to the request, the request will always fail. And while it is
possible to make writes to non-existing keys without attaching context,
we recommend doing this only if you are certain that the key does not
yet exist.


Instructions on using causal context can be found in our documentation
on [[object updates]].





Strongly Consistent Writes


Writing to strongly consistent keys involves some of the same best
practices that we advise when writing to eventually consistent keys. We
recommend bearing the following in mind:



		If you know that a key does not yet exist, you can write to that
key without supplying a [[context with the object|Using Strong
Consistency#Object-Context]]. If you are unsure, then you should
default to supplying a context object.


		If an object already exists under a key, strong consistency demands
that you supply a [[causal context|Using Strong
Consistency#Causal-Context]]. If you do not supply one, the update
will necessarily fail.


		Because strongly consistent writes must occasionally
[[sacrifice availability|Strong
Consistency#Strong-vs.-Eventual-Consistency]] for the sake of
consistency, strongly consistent updates can fail even under normal
conditions, particularly in the event of concurrent updates.








Error Messages


For the most part, performing reads, writes, and deletes on data in
strongly consistent buckets works much like it does in
non-strongly-consistent-buckets. One important exception to this is how
writes are performed. Strongly consistent buckets cannot allow siblings
by definition, and so all writes to existing keys must include a context
with the object.


If you attempt a write to a non-empty key without including causal
context, you will receive the following error:


Riak::Conflict: The object is in conflict (has siblings) and cannot be treated singly or saved:



java.lang.IllegalArgumentException: VClock cannot be null.



$response->isSuccess();  // false
$response->getStatusCode(); // 412



riak.RiakError: 'failed'



{error,<<"failed">>}



<html><head><title>412 Precondition Failed</title></head><body><h1>Precondition Failed</h1>Precondition Failed<p><hr><address>mochiweb+webmachine web server</address></body></html>




Getting started with Riak clients

If you are connecting to Riak using one of Basho's official
[[client libraries]], you can find more information about getting
started with your client in our [[quickstart guide|Five-Minute
Install#setting-up-your-riak-client]].




Known Issue with Client Libraries


All of Basho’s official [[client libraries]] currently convert errors
returned by Riak into generic exceptions, with a message derived from
the error message returned by Riak. In many cases this presents no
problems, since many error conditions are normal when using Riak.


When working with strong consistency, however, operations like
[[conditional puts|Strong Consistency#Implementation-Details]] commonly
produce errors that are difficult for clients to interpret. For example,
it is expected behavior for conditional puts to fail in the case of
concurrent updates to an object. At present, the official Riak clients
will convert this failure into an exception that is no different from
other error conditions, i.e. they will not indicate any
strong-consistency-specific errors.


The best solution to this problem at the moment is to catch these
exceptions on the application side and parse server-side error messages
to see if the error involved a conditional failure. If so, you should
set up your application to retry any updates, perhaps a specified number
of times or perhaps indefinitely, depending on the use case.


If you do set up a retry logic of this sort, however, it is necessary
to retry the entire read/modify/put cycle, meaning that you will need
to fetch the object, modify it, and then write. If you perform a simple
put over and over again, without reading the object, the update will
continue to fail.


A future version of Riak will address these issues by modifying the
server API to more accurately report errors specific to strongly
consistent operations.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/mdc/system-tuning.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Multi Data Center Replication: System Tuning”
project: riak
header: riakee
version: 1.0.0+
document: cookbook
toc: true
audience: intermediate
keywords: [mdc, repl, os]
moved: {
‘2.0.0-‘: ‘riakee:/cookbooks/Multi-Data-Center-Replication-UpgradeV2toV3’
}




Depending on the size of your objects and your replication latency
needs, you may need to configure your kernel settings to optimize
throughput.



Linux


Refer to the [[System Performance Tuning]] document.





Solaris


On Solaris, the following settings are suggested:


/usr/sbin/ndd -set /dev/tcp tcp_ip_abort_interval 60000
/usr/sbin/ndd -set /dev/tcp tcp_keepalive_interval 900000
/usr/sbin/ndd -set /dev/tcp tcp_rexmit_interval_initial 3000
/usr/sbin/ndd -set /dev/tcp tcp_rexmit_interval_max 10000
/usr/sbin/ndd -set /dev/tcp tcp_rexmit_interval_min 3000
/usr/sbin/ndd -set /dev/tcp tcp_time_wait_interval 60000
/usr/sbin/ndd -set /dev/tcp tcp_max_buf 4000000
/usr/sbin/ndd -set /dev/tcp tcp_cwnd_max 4000000
/usr/sbin/ndd -set /dev/tcp tcp_xmit_hiwat 4000000
/usr/sbin/ndd -set /dev/tcp tcp_recv_hiwat 4000000







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/references/apis/storage/openstack/RiakCS-OpenStack-Delete-Container.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: RiakCS OpenStack Delete Container
project: riakcs
version: 1.4.0+
document: api
toc: true
index: false
audience: advanced
keywords: [api, openstack, http]




Deletes a container.


Note
All objects in the container must be deleted before you can delete the container.

Requests



Request Syntax


DELETE /<api version>/<account>/<container> HTTP/1.1
Host: data.basho.com
X-Auth-Token: auth_token








Responses


This operation does not return a response.





Examples



Sample Request


A request that deletes a container named basho-docs.


DELETE /v1.0/deadbeef/basho-docs HTTP/1.1
Host: data.basho.com
Date: Wed, 06 Jun 2012 20:47:15 +0000
X-Auth-Token: aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa






Sample Response


HTTP/1.1 204 No Content
Date: Wed, 06 Jun 2012 20:47:15 +0000
Connection: close
Server: RiakCS
Content-Length: 0
Content-Type: text/plain; charset=UTF-8









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/references/apis/storage/openstack/Mapping-From-OOS-API-to-Riak-CS-internal-API.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Mapping From OOS API to Riak CS internal API
project: riakcs
version: 1.4.0+
document: api
toc: true
index: true
audience: advanced
keywords: [api, http]





Overview


This document outlines a mapping of the OpenStack Object Storage (OOS) API (version 1.0) URLs to their rewritten format that is processed by Webmachine and Riak CS.





URL Mapping



Storage Account Services



		List Containers
		GET /<api_version>/<account> -> GET /buckets








		Retrieve account metadata
		TBD








		Create/Update account metadata
		TBD








		Delete account metadata
		TBD














Storage Container Services



		List Objects
		GET /<api_version>/<account>/<container> -> GET /buckets/<bucket>/objects








		Create Container
		PUT /<api_version>/<account>/<container> -> PUT /buckets/<bucket>








		Delete Container
		DELETE /<api_version>/<account>/<container> -> DELETE /buckets/<bucket>








		Retrieve Container Metadata
		TBD








		Create/Update Container Metadata
		TBD








		Delete Container Metadata
		TBD














Storage Object Services



		Retrieve Object
		GET /<api_version>/<account>/<container>/<object> -> GET /buckets/<bucket>/objects/<object>








		Create/Update Object
		PUT /<api_version>/<account>/<container>/<object> -> PUT /buckets/<bucket>/objects/<object>








		Delete Object
		DELETE /<api_version>/<account>/<container>/<object> -> DELETE /buckets/<bucket>/objects/<object>








		Retrieve Object Metadata
		TBD








		Update Object Metadata
		TBD

















          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/references/apis/storage/openstack/index.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: RiakCS OpenStack Storage API
project: riakcs
version: 1.4.0+
document: api
toc: true
index: true
audience: advanced
keywords: [api, http, openstack]




The OpenStack storage API (v1) provides a convenient way to integrate Riak CS for use as an object storage system in conjunction with an OpenStack deployment.



API Feature Comparison


The following table describes the support status for current OpenStack Object Storage API features.


Feature | Status | Remark
——–|——–|——–
List Containers (lists all buckets for authenticated user) | ✓ | |
Get Account Metadata | Coming Soon | Planned for future release |
Create or Update Account Metadata | Coming Soon | Planned for future release |
Delete Account Metadata | Coming Soon | Planned for future release |
List Objects | ✓ | |
Create Container | ✓ | |
Delete Container | ✓ | |
Create or Update Container Metadata | ✗ | |
Delete Container Metadata | ✗ | |
Create Static Website | ✗ | |
Get Object | ✓ | |
Create or Update Object | ✓ | |
Create Large Objects | Coming Soon | Planned for future release |
Assigning CORS Headers to Requests | Coming Soon | Planned for future release |
Enabling File Compression with the Content-Encoding Header | ✗ | |
Enabling Browser Bypass with the Content-Disposition Header | ✗ | |
Expiring Objects with the X-Delete-After and X-Delete-At Headers | ✗ | |
Object Versioning | Coming Soon | Planned for future release |
Copy Object | Coming Soon | Planned for future release |
Delete Object | ✓ | |
Get Object Metadata | Coming Soon | Planned for future release |
Update Object Metadata | Coming Soon | Planned for future release |





Storage Account Services



		[[List Containers|RiakCS OpenStack List Containers]] — Lists the containers owned by an account








Storage Container Services



		[[List Objects|RiakCS OpenStack List Objects]] — Lists the objects in a container


		[[Create Container|RiakCS OpenStack Create Container]] — Creates a new container


		[[Delete Container|RiakCS OpenStack Delete Container]] — Deletes a container








Storage Object Services



		[[Get Object|RiakCS OpenStack Get Object]] — Retrieves an object


		[[Create or Update Object|RiakCS OpenStack Create Object]] — Write an object in a container


		[[Delete Object|RiakCS OpenStack Delete Object]] — Delete an object from a container









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/references/apis/storage/openstack/RiakCS-OpenStack-Delete-Object.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: RiakCS OpenStack Delete Object
project: riakcs
version: 1.4.0+
document: api
toc: true
index: false
audience: advanced
keywords: [api, openstack, http]




Removes the specified object, if it exists.



Requests



Request Syntax


DELETE /<api version>/<account>/<container>/<object> HTTP/1.1
Host: data.basho.com
X-Auth-Token: auth_token








Responses


This operation does not return a response.





Examples



Sample Request


The following request deletes the object basho-process.jpg from the container basho-docs.


DELETE /v1.0/deadbeef/basho-docs/basho-process.jpg HTTP/1.1
Host: data.basho.com
Date: Fri, 01 Jun  2012 12:00:00 GMT
X-Auth-Token: aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa






Sample Response


HTTP/1.1 204 No Content
Date: Wed, 06 Jun 2012 20:47:15 GMT
Connection: close
Server: RiakCS









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/references/apis/storage/openstack/RiakCS-OpenStack-List-Containers.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: RiakCS OpenStack List Containers
project: riakcs
version: 1.4.0+
document: api
toc: true
index: false
audience: advanced
keywords: [api, openstack, http]




Returns a list of all containers owned by an authenticated account.


Note: This operation does not list containers created by other accounts. It also does not list containers for anonymous requests.



Requests



Request Syntax


GET /<api version>/<account> HTTP/1.1
Host: data.basho.com
X-Auth-Token: auth_token








Responses


A list of containers is returned in the response body, one container per line. The HTTP response’s status code will be 2xx (between 200 and 299, inclusive).





Examples



Sample Request


GET /v1.0/deadbeef HTTP/1.1
Host: data.basho.com
X-Auth-Token: aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa






Sample Response


HTTP/1.1 200 Ok
Date: Thu, 07 Jun 2010 18:57:07 GMT
Server: RiakCS
Content-Type: text/plain; charset=UTF-8
Content-Length: 32

  images
  movies
  documents
  backups









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/references/apis/storage/openstack/RiakCS-OpenStack-Create-Container.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: RiakCS OpenStack Create Container
project: riakcs
version: 1.4.0+
document: api
toc: true
index: false
audience: advanced
keywords: [api, openstack, http]




Creates a new container. The account of the user who makes the request to create the container becomes the container owner. Anonymous requests cannot create containers.



Container Naming


A container name must obey the following rules, which produces a DNS-compliant container name:



		Must be from 3 to 63 characters.


		Must be one or more labels, each separated by a period (.). Each label:


		Must start with a lowercase letter or a number. Must end with a lowercase letter or a number. Can contain lowercase letters, numbers and dashes.


		Must not be formatted as an IP address (e.g., 192.168.9.2).








Requests



Request Syntax


PUT /<api version>/<account>/<container> HTTP/1.1
Host: data.basho.com
X-Auth-Token: auth_token






Request Parameters


This operation does not use request parameters.







Responses


This operation does not return a response.





Examples



Sample Request


A request that creates a container named basho-docs.


PUT /v1.0/deadbeef/basho-docs HTTP/1.1
Host: data.basho.com
Date: Wed, 06 Jun 2012 20:47:15 +0000
X-Auth-Token: aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa






Sample Response


HTTP/1.1 201 Created
Date: Thu, 07 Jun 2007 18:50:19 GMT
Server: RiakCS
Content-Type: text/plain; charset=UTF-8









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/references/apis/storage/openstack/RiakCS-OpenStack-Create-Object.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: RiakCS OpenStack Create Object
project: riakcs
version: 1.4.0+
document: api
toc: true
audience: advanced
keywords: [api, openstack, http]




Writes or overwrites an object’s content and metadata.


Riak CS is a distributed system. If it receives multiple write requests for the same object at the same time, the system will overwrite all but the last object written. If necessary, you can build versioning or object locking into your application.


To prevent the storage of data corrupted during transmission over a network, the Content-MD5 header instructs Riak CS to compare the object to the MD5 value provided. If the values don’t match, the operation returns an error. In addition, if the PUT Object operation calculates the MD5, you can compare the ETag that is returned to the calculated MD5 value.


Note: You can configure an application to use the 100-continue HTTP status code, which sends the Request Headers prior to sending the request body. Doing so prevents sending the message body when the message is rejected based on the headers, for example, due to authentication failure or redirect.



Requests



Request Syntax


PUT /<api version>/<account>/<container>/<object> HTTP/1.1
Host: data.basho.com
X-Auth-Token: auth_token








Responses


This operation does not return a response.





Examples



Sample Request


A request that stores the object basho-process.jpg in the container basho-docs.


PUT /v1.0/deadbeef/basho-docs/basho-process.jpg HTTP/1.1
Host: data.basho.com
Date: Fri, 01 Jun  2012 12:00:00 GMT
X-Auth-Token: aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa
Content-Type: text/plain
Content-Length: 201445
Expect: 100-continue
[201445 bytes of object data]






Sample Response


HTTP/1.1 201 Created
Date: Fri, 01 Jun  2012 12:00:00 GMT
ETag: "32cf731c97645a398434535f271b2358"
Content-Length: 0
Connection: close
Server: RiakCS









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/references/apis/storage/openstack/RiakCS-OpenStack-Get-Object.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: RiakCS OpenStack Get Object
project: riakcs
version: 1.4.0+
document: api
toc: true
index: false
audience: advanced
keywords: [api, openstack, http]




Retrieves an object from a Riak CS container.



Requests



Request Syntax


GET /<api version>/<account>/<container>/<object> HTTP/1.1
Host: data.basho.com
X-Auth-Token: auth_token








Examples



Sample Request


The following request returns the object basho-process.jpg from the container basho-docs.


GET /v1.0/deadbeef/basho-docs/basho-process.jpg HTTP/1.1
Host: data.basho.com
Date: Fri, 01 Jun  2012 12:00:00 GMT
X-Auth-Token: aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa






Sample Response


HTTP/1.1 200 OK
Date: Wed, 06 Jun 2012 20:48:15 GMT
Last-Modified: Wed, 06 Jun 2012 13:39:25 GMT
ETag: "32cf731c97645a398434535f271b2358"
Content-Length: 201445
Content-Type: text/plain
Connection: close
Server: RiakCS
[201445 bytes of object data]









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/community/product-advisories/appconfig-forward.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Forward Incompatibility of app.config
project: riak
version: 1.0.0+
versions: false
document: reference




Info | Value
:—-|:—–
Date issued | April 15, 2015
Product | Riak
Affected Riak versions | 2.0.0+, 2.1.0+



Overview


A forward incompatibility of app.config between 1.x and 2.x has been
identified.





Description


There is a forward compatibility issue when upgrading from the 1.x series to the
2.x series and continuing to use an app.config instead of migrating to the new
riak.conf introduced in 2.0. This issue results in different default bucket
properties being applied to un-typed buckets in 2.x, specifically for the
allow_mult and dvv_enabled parameters. In 1.x allow_mult defaulted to
false but defaults to true in 2.x. The dvv_enabled parameter did not exist
in 1.x, and defaults to true in 2.x.





Impact


A switch from {allow_mult, false} to {allow_mult, true} can cause
unbounded growth of objects as siblings are added each time the object is updated
unless the client application is explicitly resolving siblings.





Mitigation Strategy


This issue can be mitigated by adding {allow_mult, false} to
default_bucket_props in the riak_core section of the app.config.
{dvv_enabled, false} can also be added, however enabling Dotted Version Vectors
should have no negative impact on the cluster.


  {riak_core, [
    . . .
    {default_bucket_props, [
      {allow_mult, false},
      {dvv_enabled, false}]},
    . . .







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/references/apis/storage/openstack/RiakCS-OpenStack-List-Objects.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: RiakCS OpenStack List Objects
project: riakcs
version: 1.4.0+
document: api
toc: true
index: false
audience: advanced
keywords: [api, openstack, http]




Returns a list of objects (all or up to 1,000) in a container.



Requests



Request Syntax


GET /<api version>/<account>/<container> HTTP/1.1
Host: data.basho.com
X-Auth-Token: auth_token








Responses


A list of objects is returned in the response body, one object name
per line. The response will be a 200 OK if the request succeeded. If
the container does not exist, or if an incorrect account is specified,
then a response with a 404 (Not Found) status code will be returned.





Examples



Sample Request


A request that returns the objects in the container named basho-docs.


GET /v1.0/deadbeef/basho-docs HTTP/1.1
Host: data.basho.com
Date: Wed, 06 Jun 2012 20:47:15 +0000
X-Auth-Token: aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa






Sample Response


HTTP/1.1 200 Ok
Date: Thu, 07 Jun 2010 18:50:19 GMT
Server: RiakCS
Content-Type: text/plain; charset=UTF-8
Content-Length: 28

    scheduleQ1.jpg
    scheduleQ2.jpg









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/building/basic-cluster-setup.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Basic Cluster Setup
project: riak
version: 1.2.0+
document: cookbook
toc: true
audience: beginner
keywords: [operator, cluster]
moved: {
‘1.4.0-‘: ‘/cookbooks/Basic-Cluster-Setup’
}




Configuring a Riak cluster involves instructing each node to listen on a
non-local interface, i.e. not 127.0.0.1, and then joining all of the
nodes together to participate in the cluster.


Most configuration changes will be applied to the [[configuration
file|Configuration Files]] located in your rel/riak/etc directory (if
you compiled from source) or /etc (if you used a binary install of
Riak).


The commands below presume that you are running from a source install,
but if you have installed Riak with a binary install, you can substitute
the usage of bin/riak with sudo /usr/sbin/riak and bin/riak-admin
with sudo /usr/sbin/riak-admin. The riak and riak-admin scripts
are located in the /bin directory of your installation.



Note on changing the `name` value

If possible, you should avoid starting Riak prior to editing the name of
a node. This setting corresponds to the `nodename` parameter in the
`riak.conf` file if you are using the newer configuration system, and to
the `-name` parameter in `vm.args` (as described below) if you are using
the older configuration system. If you have already started Riak with
the default settings, you cannot change the `-name` setting and then
successfully restart the node.If you cannot restart after changing the -name value you have two
options:



		Discard the existing ring metadata by removing the contents of the
`ring` directory. This will require rejoining all nodes into a
cluster again.


		Rename the node using the [[riak-admin cluster replace|riak-admin
Command Line#cluster-replace]] command. This will not work if you have
previously only started Riak with a single node.







Configure the First Node


First, stop your Riak node if it is currently running:


riak stop




Select an IP address and port


Let’s say that the IP address for your cluster is 192.168.1.10 and that
you’ll be using the default port (8087). If you’re using the [[Protocol
Buffers interface|PBC API]] to Riak (which we recommend over the HTTP
interface due to performance gains), you should change your
configuration file:


listener.protobuf.internal = 127.0.0.1:8087



%% In the pb section of riak_core:

{"127.0.0.1", 8087 },



becomes


listener.protobuf.internal = 192.168.1.10:8087



%% In the pb section of riak_core:

{"192.168.1.10", 8087 },




Note on upgrading to 2.0

If you are upgrading to Riak version 2.0 or later from an pre-2.0
release, you can use either your old `app.config`/ `vm.args`
configuration files or the newer `riak.conf` if you wish. If you have
installed Riak 2.0 directly, you should use only `riak.conf`.Below, examples will be provided for both the old and new configuration
systems. Bear in mind that you need to use either the older or the newer
but never both simultaneously.


More on configuring Riak can be found in the Configuration
Files documentation.



If you’re using the HTTP interface, you will need to alter your
configuration in an analogous way:


listener.http.internal = 127.0.0.1:8098



%% In the riak_core section:

{http, [ {"127.0.0.1", 8098 } ]},



becomes


listener.http.internal = 192.168.1.10:8098



{http, [ {"192.168.1.10", 8098 } ]},






Name your node


Every node in Riak has a name associated with it. The default name is
riak@127.0.0.1. Let’s say that you want to change the name to
riak@192.168.1.10:


nodename = riak@127.0.0.1



-name riak@127.0.0.1



becomes


nodename = riak@192.168.1.10



-name riak@192.168.1.10




Node Names

Use fully qualified domain names (FQDNs)
rather than IP addresses for the cluster member node names. For example,
`riak@cluster.example.com` and `riak@192.168.1.10`
are both acceptable node naming schemes, but using the FQDN style is
preferred.Once a node has been started, in order to change the name you must
either remove ring files from the /data/ring directory or
[[riak-admin cluster force-replace|riak-admin Command Line#cluster-force-replace]] the node.






Start the node


Now that your node is properly configured, you can start it:


riak start



If the Riak node has been previously started, you must use the
riak-admin cluster replace command to change the node name and update
the node’s ring file.


riak-admin cluster replace riak@127.0.0.1 riak@192.168.1.10




Note on single nodes

If a node is started singly using default settings, as you might do when
you are building your first test environment, you will need to remove
the ring files from the data directory after you edit your configuration
files. `riak-admin cluster replace` will not work since the node has not
been joined to a cluster.

As with all cluster changes, you need to view the planned changes by
running riak-admin cluster plan and then running riak-admin cluster commit to finalize those changes.


The node is now properly set up to join other nodes for cluster
participation. You can proceed to adding a second node to the cluster.







Add a Second Node to Your Cluster


Repeat the above steps for a second host on the same network, providing
the second node with a host/port and node name. Once the second node has
started, use riak-admin cluster join to join the second node to the
first node, thereby creating an initial Riak cluster. Let’s say that
we’ve named our second node riak@192.168.1.11. From the new node’s
/bin directory:


riak-admin cluster join riak@192.168.1.10



Output from the above should resemble:


Success: staged join request for `riak@192.168.1.11` to `riak@192.168.1.10`



Next, plan and commit the changes:


riak-admin cluster plan
riak-admin cluster commit



After the last command, you should see:


Cluster changes committed



If your output was similar, then the second Riak node is now part of the
cluster and has begun syncing with the first node. Riak provides several
ways to determine the cluster’s ring status. Here are two ways to
examine your Riak cluster’s ring:



		Using the riak-admin command:


bin/riak-admin status | grep ring_members



With output resembling the following:


ring_members : ['riak@192.168.1.10','riak@192.168.1.11']






		Running the riak attach command. This will open up an Erlang shell,
into which you can type the following command:


1> {ok, R} = riak_core_ring_manager:get_my_ring().

%% Response:

{ok,{chstate,'riak@192.168.1.10',.........
(riak@192.168.52.129)2> riak_core_ring:all_members(R).
['riak@192.168.1.10','riak@192.168.1.11']









To join additional nodes to your cluster, repeat the above steps.  You
can also find more detailed instructions about [[adding and removing
nodes]] from a cluster.



Ring Creation Size
 All nodes in the cluster
must have the same initial ring size setting in order to join, and
participate in cluster activity. This setting can be adjusted in your
configuration file using the `ring_creation_size` parameter if you're
using the older configuration system or `ring_size` in the new system.Check the value of all nodes if you receive a message like this:
Failed: riak@10.0.1.156 has a different ring_creation_size






Running Multiple Nodes on One Host


If you built Riak from source code, or if you are using the Mac OS X
pre-built package, then you can easily run multiple Riak nodes on the
same machine. The most common scenario for doing this is to experiment
with running a Riak cluster.


Note: If you have installed the .deb or .rpm package, then you
will need to download and build Riak from source to follow the
directions below.


To run multiple nodes, make copies of the riak directory.



		If you ran make all rel, then this can be found in ./rel/riak
under the Riak source root directory.


		If you are running Mac OS X, then this is the directory where you
unzipped the .tar.gz file.





Presuming that you copied ./rel/riak into ./rel/riak1, ./rel/riak2,
./rel/riak3, and so on, you need to make two changes:



		Set your handoff port and your Protocol Buffers or HTTP port
(depending on which interface you are using) to different values on each
node. For example:


# For Protocol Buffers:
listener.protobuf.internal = 127.0.0.1:8187

# For HTTP:
listener.http.internal = 127.0.0.1:8198

# For either interface:
handoff.port = 8199



%% In the pb section of riak_core:
{"127.0.0.1", 8187 }

%% In the http section of riak_core:
{"127.0.0.1", 8198}






		Change the name of each node to a unique name. Now, start the nodes,
changing path names and nodes as appropriate:








./rel/riak1/bin/riak start
./rel/riak2/bin/riak start
./rel/riak3/bin/riak start

# etc



Next, join the nodes into a cluster:


./rel/riak2/bin/riak-admin cluster join riak1@127.0.0.1
./rel/riak3/bin/riak-admin cluster join riak1@127.0.0.1
./rel/riak2/bin/riak-admin cluster plan
./rel/riak2/bin/riak-admin cluster commit






Multiple Clusters on One Host


Using the above technique, it is possible to run multiple clusters on
one computer. If a node hasn’t joined an existing cluster, it will
behave just as a cluster would. Running multiple clusters on one
computer is simply a matter of having two or more distinct nodes or
groups of clustered nodes.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/http/store-search-index.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: HTTP Store Search Index
project: riak
version: 2.0.0+
document: api
audience: advanced
keywords: [http, api, search, index, yokozuna]
group_by: “Search-related Operations”




Creates a new Riak Search [[index|Using Search#Simple-Setup]].



Request


PUT /search/index/<index_name>






Optional Request Body


If you run a PUT request to this endpoint without a request body, Riak
will create a new Search index that uses the [[default Search
schema|Search Schema#The-Default-Schema]], i.e. _yz_default.


To specify a different schema, however, you must pass Riak a JSON object
as the request body in which the schema field specifies the name of
the schema to use. If you’ve [[stored a schema|Search
Schema#Custom-Schemas]] called my_custom_schema, the following PUT
request would create an index called my_index that used that schema:


curl -XPUT http://localhost:8098/search/index/my_index \
  -H "Content-Type: application/json" \
  -d '{"schema": "my_custom_schema"}'



More information can be found in [[Using Search]].





Normal Response Codes



		204 No Content — The index has been successfully created








Typical Error Codes



		409 Conflict — The index cannot be created because there is
already an index with that name


		503 Service Unavailable — The request timed out internally









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/community/lectures/searching-accessing.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Searching and Accessing
project: riak
version: 0.14.0+
document: appendix
toc: true
keywords: [community, resources, search]
moved: {
‘1.4.0-‘: ‘/references/appendices/community/Searching-and-Accessing-Data’
}




This page is a collection of videos, slides, papers, and other media on searching and accessing data in Riak.



Videos



    
        		
            [image: ]
            
        
        		
            Riak Training Part 4 of 10 - Basic Querying
In part 4 of 10 of the Riak Training Workshop Series, Basho engineer Casey Rosenthal overviews basic querying.
               
    


    
        		
            [image: ]
        
        		
            Riak Training 9 of 10: MapReduce
In part 9 of 10 of the Riak Training Workshop Series, Basho engineer Casey Rosenthal overviews MapReduce.
               
    


    
        		
            [image: ]
        
        		
            Riak Training 10 of 10: Riak Search
In part 10 of 10 of the Riak Training Workshop Series, Basho engineer Casey Rosenthal overviews Riak Search.
               
    


    
        		
            [image: ]
        
        		
            Links and Link Walking in Riak
This 12-minute screencast will take you through basic usage of links in Riak and then show you how they can be used to establish powerful relationships in your data and applications. 
               
    







Publications



		Accessing Data in Riak [http://info.basho.com/WPAccessingDatainRiak_Whitepaper.html]









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/references/appendices/Http-Administration.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: HTTP Administration Overview
project: riakcs
version: 1.3.0+
document: appendix
toc: true
audience: intermediate
keywords: [api]




Riak CS exposes the following administrative capabilities over HTTP
above and beyond those associated with Riak itself:


Task | CS URI | Further reading
:—-|:——-|:—————
User management        | /riak-cs/user  | [[Account Management]]
User access statistics | /riak-cs/usage | [[Querying Access Statistics]]
Storage statistics     | /riak-cs/usage | [[Querying Storage Statistics]]
Global statistics      | /riak-cs/stats | [[Monitoring and Metrics]]


By default, these are accessible over the same IP/port as the rest of
the CS API, but they can be configured to run elsewhere, with or without
authentication.



Output format


For these requests, results are available as either JSON or XML. Request
the appropriate data format by using the HTTP Accept header with
either application/json or application/xml, respectively.





URLs


Each of these requests is performed over the CS HTTP port (8080 by
default) or administrative port if configured via admin_port. The
admin_ip configuration setting can be used to further isolate the
administrative commands.


Only the admin user can view other users’ details unless the
admin_auth_enabled config is set to false.





Retrieving Statistics Via S3 Objects


As an alternative to raw HTTP requests, the administrative requests can
be issued via the S3 API. See the GitHub documents linked below for more
details.





Related Resources



		[[Configuring Riak CS]]


		[[Querying Access Statistics]]
		[[Usage and Billing Data]]


		Github wiki [https://github.com/basho/riak_cs/wiki/Querying-Access-Stats]








		[[Querying Storage Statistics]]
		Enabling storage statistics [https://github.com/basho/riak_cs/wiki/Logging-Storage-Stats]


		Github wiki [https://github.com/basho/riak_cs/wiki/Logging-Storage-Stats]








		[[Account Management]]
		Github wiki [https://github.com/basho/riak_cs/wiki/User-Management]








		[[Monitoring and Metrics]]









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/http/counters.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: HTTP Counters
project: riak
version: 1.4.0+
document: api
toc: true
audience: advanced
keywords: [api, http]
group_by: “Datatypes”
moved: {
‘1.4.0-‘: ‘/references/apis/http/HTTP-Counters’
}




Riak counters are a CRDT (convergent replicated data type) that (eventually)
converge to the correct total. You merely increment the counter with some
integer, and any potential conflicts will be automatically resolved by Riak.



Setup


Riak counters can only be used if the bucket has the allow_mult property
set to true.


curl -XPUT localhost:8098/buckets/BUCKET/props \
  -H "Content-Type: application/json" \
  -d "{\"props\" : {\"allow_mult\": true}}"



If you attempt to use counters without setting the above, you’ll get this
message:


Counters require bucket property 'allow_mult=true'






Request


To insert just POST an integer value using the /counters resource. This will
increment that keyed value by the given amount.


POST /buckets/BUCKET/counters/KEY



To receive the current value is a GET using /counters


GET /buckets/BUCKET/counters/KEY






Response


The regular POST/PUT ([[HTTP Store Object]]) and GET ([[HTTP Fetch Object]]) responses apply here.


Caveats: Counters have no support for Secondary Indexes (2i), Links or Custom HTTP Metadata.





Example


The body must be an integer (positive or negative).


curl -XPOST http://localhost:8098/buckets/my_bucket/counters/my_key -d "1"

curl http://localhost:8098/buckets/my_bucket/counters/my_key
1

curl -XPOST http://localhost:8098/buckets/my_bucket/counters/my_key -d "100"

curl http://localhost:8098/buckets/my_bucket/counters/my_key
101

curl -XPOST http://localhost:8098/buckets/my_bucket/counters/my_key -d "-1"
100







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/community/lectures/developing.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Developing with Riak
project: riak
version: 0.10.0+
toc: true
document: appendix
audience: intermediate
keywords: [community, resources]
moved: {
‘1.4.0-‘: ‘/references/appendices/community/Developing-with-Riak’
}




This page is a collection of videos, slides, papers, example applications, and other media discussing developing with Riak (general guidelines, using client libraries, etc.).


If you have a video to add, please fork the Riak Docs Repo on GitHub [https://github.com/basho/basho_docs] and do so.



Videos


<tr>
    <td class="vid_td">
        <a href="http://player.vimeo.com/video/18713269" target="_blank" title="Riak Overview and Schema Design"><img class="vid_img"src="http://b.vimeocdn.com/ts/117/890/117890563_200.jpg"/></a>
    </td>
    <td class="vid_td">
        <a href="http://player.vimeo.com/video/18713269" target="_blank" title="Riak Overview and Schema Design">Riak Overview and Schema Design</a><br />Basho Hackers Jon Meredith and Dave "Dizzy" Smith give an extensive overview of what Riak is and how you should approach schema design when developing with Riak. (Special thanks to the team at Pivotal Labs Boulder for making this happen.) 
    </td>       
</tr>       
<tr>
    <td class="vid_td">
        <a href="http://player.vimeo.com/video/13554436" target="_blank" title="MapReduce querying in Riak"><img class="vid_img"src="http://b.vimeocdn.com/ts/779/892/77989230_640.jpg"/></a>
    </td>
    <td class="vid_td">
        <a href="http://player.vimeo.com/video/13554436" target="_blank" title="MapReduce querying in Riak">MapReduce querying in Riak</a><br />Basics and best practices for MapReduce querying in Riak
    </td>
</tr>



    
        		
            [image: ]
        
        		
            Riak with Node.js Webinar
Learn how to use Riak from Node.js applications.
               
    


    
        		
            [image: ]
        
        		
            Riak with Rails
Using Riak with Ruby on Rails.
        
    







Example Application


To showcase the power of indexing in Riak, we created a zombie apocalypse [http://basho.com/indexing-the-zombie-apocalypse-with-riak/] app that’s run on Riak. This app has one million “Zombielepsy” victims loaded into Riak and lets the user locate them using ZIP code as the index value. It supports both Term-Based Inverted Indexes and [[Secondary Indexes|Using Secondary Indexes]]. In addition to better understanding indexing in Riak, users can:



		Create a Zombie Sighting Report System so that the concentration of live zombies in an area can be quickly determined based on the count and last report date.


		Add a crowd-sourced Inanimate Zombie Reporting System so that members of the non-zombie population can report inanimate zombies.


		Add a correlation feature, utilizing Graph CRDTs, so we can find our way back to Patient Zero.








Slide Decks


This is a sample of the slide decks used in presentations given by Riak Core Developers and Developer Advocates, and members of the Riak Community at conferences, meetups, and various other events worldwide.


If you have a Slide Deck to add, please fork the Riak Docs Repo on GitHub [https://github.com/basho/basho_docs] and do so.



		riak-js: Javascript Turtles All the Way Down [http://www.slideshare.net/seancribbs/riakjs-javascript-turtles-all-the-way-down] — riak-js is an awesome client driver for the Riak distributed datastore.


		Building Distributed Systems With Riak and Riak Core [http://www.slideshare.net/argv0/riak-coredevnation] — My talk from DevNationSF 2010


		Configure a Riak Cluster [http://www.slideshare.net/mbbx6spp/link-walking-with-riak] — Describe how to create, manage and traverse links in Riak KV.


		Link Walking with Riak [http://www.slideshare.net/seancribbs/riakjs-javascript-turtles-all-the-way-down] — riak-js is an awesome client driver for the Riak distributed datastore.


		Riak with NodeJS [http://www.slideshare.net/seancribbs/riak-with-nodejs] — Learn how to use Riak with NodeJS applications.









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/building/installing/aws-marketplace.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Installing on AWS Marketplace
project: riak
version: 1.2.1+
document: tutorial
audience: beginner
keywords: [tutorial, installing, AWS, marketplace, amazon]
prev: “[[Installing on Windows Azure]]“
up:   “[[Installing and Upgrading]]“
next: “[[Installing Riak from Source]]“
moved: {
‘1.4.0-‘: ‘/tutorials/installation/Installing-on-AWS-Marketplace’
}





Launching Riak VMs via the AWS Marketplace


In order to launch a Riak virtual machine via the AWS Marketplace, you will first need to sign up for an Amazon Web Services [http://aws.amazon.com] account.



		Navigate to https://aws.amazon.com/marketplace/ and sign in with your Amazon Web Services account.





		Locate Riak in the Databases & Caching category or search for Riak from any page.





		Set your desired AWS region, EC2 instance type, firewall settings, and key pair


[image: AWS Marketplace Instance Settings]





		Click the Accept Terms and Launch with 1-Click button.









Security Group Settings


Once the virtual machine is created, you should verify that your selected EC2 security group is properly configured for Riak.



		In the AWS EC2 Management Console, click Security Groups, then click the name of the security group for your Riak VM.


		Click on the Inbound tab in the lower pane.  Your security group should include the following open ports:






		22 (SSH)


		8087 (Riak Protocol Buffers Interface)


		8098 (Riak HTTP Interface)






		You will need to add additional rules within this security group to allow your Riak instances to communicate.  For each port range below, create a new Custom TCP rule with the source set to the current security group ID (found on the Details tab).






		Port range: 4369


		Port range: 6000-7999


		Port range: 8099






		When complete, your security group should contain all of the rules listed below. If you are missing any rules, add them in the lower panel and then click the Apply Rule Changes button.


[image: EC2 Security Group Settings]








We also recommend that you read more about Riak’s [[Security and Firewalls]].







Clustering Riak on AWS


You will need need to launch at least 3 instances to form a Riak cluster.  When the instances have been provisioned and the security group is configured, you can connect to them using SSH or PuTTY as the ec2-user.


You can find more information on connecting to an instance on the official Amazon EC2 instance guide [http://docs.amazonwebservices.com/AWSEC2/latest/UserGuide/AccessingInstances.html].



Note

The following clustering setup will not be resilient to instance restarts unless deployed in Amazon VPC.


		On the first node, obtain the internal IP address:


curl http://169.254.169.254/latest/meta-data/local-ipv4






		For all other nodes, use the internal IP address of the first node:


sudo riak-admin cluster join riak@<ip.of.first.node>






		After all of the nodes are joined, execute the following:


sudo riak-admin cluster plan



If this looks good:


sudo riak-admin cluster commit



To check the status of clustering use:


sudo riak-admin member_status









You now have a Riak cluster running on AWS.


Further Reading:



		[[Basic Riak API Operations|The Basics]]









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/http/fetch-object.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: HTTP Fetch Object
project: riak
version: 0.10.0+
document: api
toc: true
audience: advanced
keywords: [api, http]
group_by: “Object-related Operations”
moved: {
‘1.4.0-‘: ‘/references/apis/http/HTTP-Fetch-Object’
}




Reads an object from the specified bucket/key.



Request


GET /buckets/bucket/keys/key



Important headers:



		Accept - When multipart/mixed is the preferred content-type, objects with
siblings will return all siblings in single request. See [[Siblings examples|HTTP Fetch Object#Siblings-examples]]. See
also RFC 2616 - [[Accept header definition|http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.1]].





Optional headers:



		If-None-Match and If-Modified-Since invoke conditional request semantics,
matching on the ETag and Last-Modified of the object, respectively.  If the
object fails one of the tests (that is, if the ETag is equal or the object is
unmodified since the supplied timestamp), Riak will return a 304 Not Modified
response. See also RFC 2616 - [[304 Not Modified|http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.5]].





Optional query parameters:



		r - (read quorum) how many replicas need to agree when retrieving the
object ([[default is defined by the bucket|HTTP Set Bucket Properties]])


		pr - how many primary replicas need to be online when doing the read
([[default is defined by the bucket|HTTP Set Bucket Properties]])


		basic_quorum - whether to return early in some failure cases (eg. when r=1
and you get 2 errors and a success basic_quorum=true would return an error)
([[default is defined by the bucket|HTTP Set Bucket Properties]])


		notfound_ok - whether to treat notfounds as successful reads for the
purposes of R ([[default is defined by the bucket|HTTP Set Bucket Properties]])


		vtag - when accessing an object with siblings, which sibling to retrieve.
Scroll down to the [[Manually requesting siblings|HTTP Fetch Object#Manually requesting siblings]] example for more information.








Response


Normal response codes:



		200 OK


		300 Multiple Choices


		304 Not Modified (when using conditional request semantics)





Typical error codes:



		400 Bad Request - e.g. when r parameter is invalid (> N)


		404 Not Found - the object could not be found on enough partitions


		503 Service Unavailable - the request timed out internally





Important headers:



		Content-Type - the media type/format


		X-Riak-Vclock - the opaque vector clock for the object


		X-Riak-Meta-* - any user-defined metadata defined when storing the object


		ETag - the entity tag for the object, useful for conditional GET operations
and validation-based caching


		Last-Modified - a timestamp for when the object was last written, in HTTP
datetime format


		Link - user- and system-defined links to other resources. [[Read more about
Links.|Links]]





The body of the response will be the contents of the object except when siblings
are present.


Siblings

When `allow_mult` is set to true in the bucket properties, concurrent updates
are allowed to create "sibling" objects, meaning that the object has any number
of different values that are related to one another by the vector clock.  This
allows your application to use its own conflict resolution technique.

An object with multiple sibling values will result in a `300 Multiple
Choices` response.  If the `Accept` header prefers `multipart/mixed`, all
siblings will be returned in a single request as sections of the
`multipart/mixed` response body.  Otherwise, a list of "vtags" will be given in
a simple text format. You can request individual siblings by adding the `vtag`
query parameter. Scroll down to the 'manually requesting siblings' example below for more information.

To resolve the conflict, store the resolved version with the `X-Riak-Vclock`
given in the response.






Simple Example


$ curl -v http://127.0.0.1:8098/buckets/test/keys/doc2
* About to connect() to 127.0.0.1 port 8098 (#0)
*   Trying 127.0.0.1... connected
* Connected to 127.0.0.1 (127.0.0.1) port 8098 (#0)
> GET /buckets/test/keys/doc2 HTTP/1.1
> User-Agent: curl/7.19.4 (universal-apple-darwin10.0) libcurl/7.19.4 OpenSSL/0.9.8l zlib/1.2.3
> Host: 127.0.0.1:8098
> Accept: */*
>
< HTTP/1.1 200 OK
< X-Riak-Vclock: a85hYGBgzGDKBVIsbLvm1WYwJTLmsTLcjeE5ypcFAA==
< Vary: Accept-Encoding
< Server: MochiWeb/1.1 WebMachine/1.9.0 (participate in the frantic)
< Link: </buckets/test>; rel="up"
< Last-Modified: Wed, 10 Mar 2010 18:11:41 GMT
< ETag: 6dQBm9oYA1mxRSH0e96l5W
< Date: Fri, 30 Sep 2011 15:24:35 GMT
< Content-Type: application/json
< Content-Length: 13
<
* Connection #0 to host 127.0.0.1 left intact
* Closing connection #0
{"foo":"bar"}






Siblings examples



Manually requesting siblings


Simple call to fetch an object that has siblings:


$ curl -v http://127.0.0.1:8098/buckets/test/keys/doc
* About to connect() to 127.0.0.1 port 8098 (#0)
*   Trying 127.0.0.1... connected
* Connected to 127.0.0.1 (127.0.0.1) port 8098 (#0)
> GET /buckets/test/keys/doc HTTP/1.1
> User-Agent: curl/7.19.4 (universal-apple-darwin10.0) libcurl/7.19.4 OpenSSL/0.9.8l zlib/1.2.3
> Host: 127.0.0.1:8098
> Accept: */*
>
< HTTP/1.1 300 Multiple Choices
< X-Riak-Vclock: a85hYGDgyGDKBVIszMk55zKYEhnzWBlKIniO8kGF2TyvHYIKf0cIszUnMTBzHYVKbIhEUl+VK4spDFTPxhHzFyqhEoVQz7wkSAGLMGuz6FSocFIUijE3pt5HlsgCAA==
< Vary: Accept, Accept-Encoding
< Server: MochiWeb/1.1 WebMachine/1.9.0 (participate in the frantic)
< Date: Fri, 30 Sep 2011 15:24:35 GMT
< Content-Type: text/plain
< Content-Length: 102
<
Siblings:
16vic4eU9ny46o4KPiDz1f
4v5xOg4bVwUYZdMkqf0d6I
6nr5tDTmhxnwuAFJDd2s6G
6zRSZFUJlHXZ15o9CG0BYl
* Connection #0 to host 127.0.0.1 left intact
* Closing connection #0



Now request one of the siblings directly:


$ curl -v http://127.0.0.1:8098/buckets/test/keys/doc?vtag=16vic4eU9ny46o4KPiDz1f
* About to connect() to 127.0.0.1 port 8098 (#0)
*   Trying 127.0.0.1... connected
* Connected to 127.0.0.1 (127.0.0.1) port 8098 (#0)
> GET /buckets/test/keys/doc?vtag=16vic4eU9ny46o4KPiDz1f HTTP/1.1
> User-Agent: curl/7.19.4 (universal-apple-darwin10.0) libcurl/7.19.4 OpenSSL/0.9.8l zlib/1.2.3
> Host: 127.0.0.1:8098
> Accept: */*
>
< HTTP/1.1 200 OK
< X-Riak-Vclock: a85hYGDgyGDKBVIszMk55zKYEhnzWBlKIniO8kGF2TyvHYIKf0cIszUnMTBzHYVKbIhEUl+VK4spDFTPxhHzFyqhEoVQz7wkSAGLMGuz6FSocFIUijE3pt5HlsgCAA==
< Vary: Accept-Encoding
< Server: MochiWeb/1.1 WebMachine/1.9.0 (participate in the frantic)
< Link: </buckets/test>; rel="up"
< Last-Modified: Wed, 10 Mar 2010 18:01:06 GMT
< ETag: 16vic4eU9ny46o4KPiDz1f
< Date: Fri, 30 Sep 2011 15:24:35 GMT
< Content-Type: application/x-www-form-urlencoded
< Content-Length: 13
<
* Connection #0 to host 127.0.0.1 left intact
* Closing connection #0
{"bar":"baz"}






Get all siblings in one request


$ curl -v http://127.0.0.1:8098/buckets/test/keys/doc -H "Accept: multipart/mixed"
* About to connect() to 127.0.0.1 port 8098 (#0)
*   Trying 127.0.0.1... connected
* Connected to 127.0.0.1 (127.0.0.1) port 8098 (#0)
> GET /buckets/test/keys/doc HTTP/1.1
> User-Agent: curl/7.19.4 (universal-apple-darwin10.0) libcurl/7.19.4 OpenSSL/0.9.8l zlib/1.2.3
> Host: 127.0.0.1:8098
> Accept: multipart/mixed
>
< HTTP/1.1 300 Multiple Choices
< X-Riak-Vclock: a85hYGDgyGDKBVIszMk55zKYEhnzWBlKIniO8kGF2TyvHYIKf0cIszUnMTBzHYVKbIhEUl+VK4spDFTPxhHzFyqhEoVQz7wkSAGLMGuz6FSocFIUijE3pt5HlsgCAA==
< Vary: Accept, Accept-Encoding
< Server: MochiWeb/1.1 WebMachine/1.9.0 (participate in the frantic)
< Date: Fri, 30 Sep 2011 15:24:35 GMT
< Content-Type: multipart/mixed; boundary=YinLMzyUR9feB17okMytgKsylvh
< Content-Length: 766
<

--YinLMzyUR9feB17okMytgKsylvh
Content-Type: application/x-www-form-urlencoded
Link: </buckets/test>; rel="up"
Etag: 16vic4eU9ny46o4KPiDz1f
Last-Modified: Wed, 10 Mar 2010 18:01:06 GMT

{"bar":"baz"}
--YinLMzyUR9feB17okMytgKsylvh
Content-Type: application/json
Link: </buckets/test>; rel="up"
Etag: 4v5xOg4bVwUYZdMkqf0d6I
Last-Modified: Wed, 10 Mar 2010 18:00:04 GMT

{"bar":"baz"}
--YinLMzyUR9feB17okMytgKsylvh
Content-Type: application/json
Link: </buckets/test>; rel="up"
Etag: 6nr5tDTmhxnwuAFJDd2s6G
Last-Modified: Wed, 10 Mar 2010 17:58:08 GMT

{"bar":"baz"}
--YinLMzyUR9feB17okMytgKsylvh
Content-Type: application/json
Link: </buckets/test>; rel="up"
Etag: 6zRSZFUJlHXZ15o9CG0BYl
Last-Modified: Wed, 10 Mar 2010 17:55:03 GMT

{"foo":"bar"}
--YinLMzyUR9feB17okMytgKsylvh--
* Connection #0 to host 127.0.0.1 left intact
* Closing connection #0









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/community/lectures/introductions.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Overviews and Introductions
project: riak
version: 0.10.0+
document: appendix
toc: true
keywords: [community, resources]
moved: {
‘1.4.0-‘: ‘/references/appendices/community/Overviews-and-Introductions’
}




This page is a collection of videos, slides, papers, and other media introducing Riak and its features.



Videos



    
        		
            [image: ]
        
        		
            Riak Training Workshop Series: Episode 1
In this classroom-style live workshop, Basho engineer Casey Rosenthal gives an in-depth overview of Riak. Part I provides a high-level overview of Riak, subsequent parts delve deeper into Riak, including key concepts like querying, MapReduce, configuring Riak in production deployments, and more.
               
    


    
        		
            [image: ]
        
        		
            Introduction to Riak CS
Basho Engineers Kelly McLaughlin and Reid Draper explain the basics of [[Riak CS]], why it exists, and what some good use cases are. 
        
    


    
        		
            [image: ]
        
        		
            MDC Webinar
In this webinar, Basho solutions engineer Jim Rushforth gives a technical overview of Riak Multi-Datacenter Replication. 
               
    


    
        		
            [image: ]
        
        		
            Riak Control
An introduction to [[Riak Control]] from Basho Technologies. 
               
    

                           





Webinars



		Intro to Riak [http://info.basho.com/IntrotoRiak_Recorded.html] — A general, Basho-produced introduction to Riak.








Slide Decks


This is a sample of the slide decks used in presentations given by Riak Core Developers and Developer Advocates, and members of the Riak Community at conferences, meetups, and various other events worldwide.



		Riak from Small to Large [http://www.slideshare.net/rklophaus/riak-from-small-to-large] — Riak [http://basho.com], a Dynamo-inspired, open-source key/value datastore, was built to scale from a single machine to a 100+ cluster without driving you or your operations team crazy. This presentation points out the characteristics of Riak that become important in small, medium, and large clusters, and then demonstrates the Riak API via the Python client library.


		Introducing Riak and Ripple [http://www.slideshare.net/seancribbs/introducing-riak-and-ripple] — This is a great overview of working with Riak and Ripple from Sean Cribbs, the author of Ripple.


		Getting Started with Riak — Nosql Live 2010 Boston [http://www.slideshare.net/rklophaus/getting-started-with-riak-nosql-live-2010-boston] — Delivered by Rusty Klophaus, this is a very high level overview of Riak and includes basic Python code snippets.


		








Publications


The following papers give background information on distributed systems and relevant aspects of Riak’s architecture.



		[[Amazon’s Dynamo Paper|Dynamo]]


		Relational to Riak [http://basho.com/assets/RelationaltoRiak.pdf]


		Multi-Datacenter Replication in Riak [http://info.basho.com/RiakMDC_Whitepaper.html]


		Riak CS Technical Overview [http://info.basho.com/RiakCSTechnicalOverview.html]


		Distributed Systems: Principles and Paradigms [http://www.amazon.com/Distributed-Systems-Principles-Andrew-Tanenbaum/dp/0130888931]


		Time, Clocks, and the Ordering of Events in a Distributed System [http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.142.3682]


		Distributed Algorithms [http://www.amazon.com/Distributed-Algorithms-Kaufmann-Management-Systems/dp/1558603484ref=sr_1_1?ie=UTF8&s=books&qid=1273371587&sr=1-1]


		Elements of Distributed Computing [http://www.amazon.com/Elements-Distributed-Computing-Vijay-Garg/dp/0471036005/ref=pd_bxgy_b_img_c]


		Towards Robust Distributed Systems [http://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf]


		Brewer’s Conjecture and the Feasibility of Consistent Available Partition-Tolerant Web Services [http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.20.1495]


		(White paper) Big Data’s Effect on Data Management [http://info.basho.com/DataWP.html]


		Riak for Gaming [http://info.basho.com/RiakonGaming.html]


		Riak for Mobile [http://info.basho.com/RiakonMobile.html]


		Riak for Retail [http://info.basho.com/RiakonRetail.html]


		Riak for Advertising [http://info.basho.com/RiakonAdvertising.html]








Articles, Reports, and News


Outside of what has been created by Basho, we think that outside sources can also be a valuable tool when evaluating Riak or Riak CS. Please see our News Page [http://basho.com/news/] for frequently updated information.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/building/installing/index.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Installing and Upgrading
project: riak
version: 0.10.0+
document: tutorial
audience: beginner
keywords: [tutorial, installing, upgrading]
next: “[[Installing Erlang]]“
moved: {
‘1.4.0-‘: ‘/tutorials/installation’
}




Riak is supported on numerous popular operating systems and virtualized
environments. The following information will help you to
properly install or upgrade Riak in one of the supported environments.


Click the link for your operating system or virtualized environment for
detailed Riak installation instructions.



		[[Debian and Ubuntu|Installing on Debian and Ubuntu]]


		[[RHEL and CentOS|Installing on RHEL and CentOS]]


		[[Mac OS X|Installing on Mac OS X]]


		[[FreeBSD|Installing on FreeBSD]]


		[[SUSE|Installing on SUSE]]


		[[Windows Azure|Installing on Windows Azure]]


		[[AWS Marketplace|Installing on AWS Marketplace]]


		[[From Source|Installing Riak from Source]] (for unlisted-operating systems, requires [[Erlang installation|Installing Erlang]])






Chef Cookbooks



		[[Installing Riak With Chef]]








Cloudsoft


Cloudsoft provides tested, optimized Riak blueprints to help develop and deploy
applications faster and easier on a wide range of environments. The AMP-Basho
software will automatically deploy and manage Basho Riak and Riak Enterprise
clusters using Apache Brooklyn’s easy-to-use YAML blueprinting approach,
combined with Cloudsoft’s enterprise-supported Application Management Platform
(AMP).



		Install Riak with Cloudsoft [https://github.com/cloudsoft/amp-basho]








Upgrading



		[[Rolling Upgrades]]









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/http/reset-bucket-props.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: HTTP Reset Bucket Properties
project: riak
version: 1.3+
document: api
toc: true
audience: advanced
keywords: [api, http]
group_by: “Bucket-related Operations”
moved: {
‘1.4.0-‘: ‘/references/apis/http/HTTP-Reset-Bucket-Properties’
}




Resets bucket properties like n_val and allow_mult back to the
default settings.



Request


DELETE /buckets/bucket/props



Resetting bucket properties is not available via the old API format.





Response


Normal status codes:



		204 No Content








Example


$ curl -XDELETE -v localhost:8098/buckets/bucket/props                                                                                                             {13:47}
* About to connect() to localhost port 8098 (#0)
*   Trying 127.0.0.1...
* connected
* Connected to localhost (127.0.0.1) port 8098 (#0)
> DELETE /buckets/bucket/props HTTP/1.1
> User-Agent: curl/7.24.0 (x86_64-apple-darwin12.0) libcurl/7.24.0 OpenSSL/0.9.8r zlib/1.2.5
> Host: localhost:8098
> Accept: */*
>
< HTTP/1.1 204 No Content
< Vary: Accept-Encoding
< Server: MochiWeb/1.1 WebMachine/1.9.2 (someone had painted it blue)
< Date: Tue, 06 Nov 2012 21:56:17 GMT
< Content-Type: application/json
< Content-Length: 0
<
* Connection #0 to host localhost left intact
* Closing connection #0







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/community/lectures/operating.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Operating in Production
project: riak
version: 0.10.0+
document: appendix
toc: true
keywords: [community, resources]
moved: {
‘1.4.0-‘: ‘/references/appendices/community/Production-Deployment’
}




Comcast, Yammer, Voxer, Boeing, BestBuy, Joyent, Kiip, GitHub, and the Danish Government are just a few of the thousands of startups and enterprises that have deployed Riak [http://basho.com/company/production-users/].


This page is a collection of videos, slides, papers, and other media detailing various Riak deployments.



Videos



    
        		
            [image: ]
        
        		
            Riak Operations
This is a webinar covering the various operational aspects of running a production Riak cluster. 
             
    


    
        		
            [image: ]
        
        		
            Riak in Production at Voxer
Voxer relies on Riak as their primary database for various services. They have more than 50 machines dedicated to Riak to support their huge growth and user base, and this has made for an adventure in scaling.
               
    


    
        		
            [image: ]
        
        		
            Scaling Riak at Kiip
In this talk, recorded at the May 2012 San Francisco Riak Meetup, Armon Dadgar and Mitchell Hashimoto of Kiip give an overview of how and why they are using Riak in production and the road they took to get there.        You can also get the [[slides|https://speakerdeck.com/u/mitchellh/p/day-at-kiip]].
    </td>
</tr>   
<tr>
    <td class="vid_td">
        <a href="http://player.vimeo.com/video/35905739" target="_blank" title="Riak at Posterous"><img class="vid_img"src="http://b.vimeocdn.com/ts/245/866/245866678_200.jpg"/></a>
    </td>
    <td class="vid_td">
        <a href="http://player.vimeo.com/video/35905739" target="_blank" title="Riak at Posterous">Riak at Posterous</a><br />Julio Capote, Backend Engineer at Posterous, talks about their move to Riak to serve as a post cache, and how they went about selecting it over other database technologies like MySQL, MongoDB, and Redis.
    </td>       
</tr>       
<tr>
    <td class="vid_td">
        <a href="http://player.vimeo.com/video/27208328" target="_blank" title="Riak at Formspring"><img class="vid_img"src="http://b.vimeocdn.com/ts/180/470/180470095_200.jpg"/></a>
    </td>
    <td class="vid_td">
        <a href="http://player.vimeo.com/video/27208328" target="_blank" title="Riak at Formspring">Riak at Formspring</a><br />In this talk, Tim Bart of Formspring gives an overview of how and why they are using Riak as the data storage layer for two new features they are rolling out. Tim starts with an overview of what Formspring is all about and then goes into the design of their new features and what they've learned (both good and bad) when working with Riak at scale.
    </td>       
</tr>
<tr>
    <td class="vid_td">
        <a href="http://player.vimeo.com/video/21598799" target="_blank" title="Riak and Scala at Yammer"><img class="vid_img"src="http://b.vimeocdn.com/ts/139/033/139033664_200.jpg"/></a>
    </td>
    <td class="vid_td">
        <a href="http://player.vimeo.com/video/21598799" target="_blank" title="Riak and Scala at Yammer">Riak and Scala at Yammer</a><br />In this talk, Coda Hale and Ryan Kennedy give an overview of "Streamie," the Riak-backed notifications service they recently built and put into production at Yammer.
    </td>       
</tr>       
<tr>
    <td class="vid_td">
        <a href="http://player.vimeo.com/video/13508289" target="_blank" title="Riak in Production - Lexer"><img class="vid_img"src="http://b.vimeocdn.com/ts/776/587/77658784_200.jpg"/></a>
    </td>
    <td class="vid_td">
        <a href="http://player.vimeo.com/video/13508289" target="_blank" title="Riak in Production - Lexer">Riak in Production - Lexer</a><br />In this short clip, Basho's Community Manager Mark Phillips speaks with Andrew Harvey, a developer for Lexer, and gets a few details on how and why they are using Riak in their applications.
    </td>       
</tr>   
<tr>
    <td class="vid_td">
        <a href="http://www.infoq.com/presentations/Case-Study-Riak-on-Drugs" target="_blank" title="Riak on Drugs (and the Other Way Around)"><img class="vid_img"src="http://basho.com/images/riak-on-drugs.jpg"/></a>
    </td>
    <td class="vid_td">
        <a href="http://www.infoq.com/presentations/Case-Study-Riak-on-Drugs" target="_blank" title="Riak on Drugs (and the Other Way Around)">Riak on Drugs (and the Other Way Around)</a><br />October 11, 2011 --- Kresten Krab Thorup discusses a MySQL project that was moved to Riak for high availability and scalability and to run in multiple datacenters, sharing experiences, pitfalls, and lessons learned. 
    </td>       
</tr>
<tr>
    <td class="vid_td">
        <a href="http://player.vimeo.com/video/37930578" target="_blank" title="Instant-ish Real Service Architecture"><img class="vid_img"src="http://b.vimeocdn.com/ts/260/760/260760293_200.jpg"/></a>
    </td>
    <td class="vid_td">
        <a href="http://player.vimeo.com/video/37930578" target="_blank" title="Instant-ish Real Service Architecture">Instant-ish Real Service Architecture</a><br />Filmed at BashoChats on February 28, 2012.

        Ted Nyman, Lead Engineer at Simple, talks about the RESTful service-oriented JVM-backed architecture they've built using new libraries and frameworks like Dropwizard which allow for the development of sophisticated services with surprising little development time.
    </td>       
</tr>










Slide Decks


This is a sample of the slide decks used in presentations given by Riak Core Developers and Developer Advocates, and members of the Riak Community at conferences, meetups, and various other events worldwide. (If you have a Slide Deck to add, please fork the Riak Docs Repo on GitHub [https://github.com/basho/basho_docs] and do so.)



		Riak at Posterous [http://www.slideshare.net/capotej/riak-at-posterous] — Posterous recently deployed Riak to serve as their content cache. In this talk, Julio Capote covers why the engineering team chose Riak for the use case. He also shares details on the old post cache and its problems, which solutions were evaluated, and how the team settled on Riak.


		Scaling with Riak at Showyou [http://www.slideshare.net/jmuellerleile/scaling-with-riak-at-showyou] — A presentation on how Showyou uses the Riak datastore at Showyou.com, as well as work they’ve been doing on a custom Riak backend for search and analytics.


		Riak perf wins [http://www.slideshare.net/flakenstein/riak-perf-wins] — How the team at Clipboard.com got more than 100x better search performance with some simple changes to Riak Search.


		Riak Use Cases: Dissecting The Solutions To Hard Problems [http://www.slideshare.net/argv0/riak-use-cases-dissecting-the-solutions-to-hard-problems] — Basho Chief Architect Andy Gross discusses how Riak can be used in difficult environments.


		Scaling at Showyou: Operations [http://www.slideshare.net/aphyr_/scaling-at-showyou] — Architecture/operations slides from the Scaling at Showyou talk.


		Riak: A Successful Failure [http://www.slideshare.net/GiltTech/riak-a-successful-failure-11512791] — Riak in production: Portrait of a successful failure.








Publications


The following papers give case studies of Riak in production.



		Auric — Riak Powers Payment Card Industry Solution [http://media.basho.com/pdf/Auric-Case-Study.pdf]


		Linkfluence — Linkfluence Drives Social Media Insight with Riak [http://media.basho.com/pdf/Linkfluence-Case-Study-v2-1.pdf]


		Trifork — Basho and Trifork Power Critical Medical Data System for Danish Citizens [http://media.basho.com/pdf/Trifork-Case-Study.pdf]


		Voxer — Voxer Drives Meteoric Growth Powered by Riak [http://media.basho.com/pdf/Voxer-Case-Study.pdf]


		Yammer — Yammer Powers User Notifications with Riak [http://media.basho.com/pdf/Yammer-Case-Study-v2-1.pdf]









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/building/installing/freebsd.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Installing on FreeBSD
project: riak
version: 1.2.0+
document: tutorial
audience: beginner
keywords: [tutorial, installing, freebsd]
prev: “[[Installing on Mac OS X]]“
up:   “[[Installing and Upgrading]]“
next: “[[Installing on SmartOS]]“
download:
key: freebsd
name: “FreeBSD”
moved: {
‘1.4.0-‘: ‘/tutorials/installation/Installing-on-FreeBSD’
}




You can install Riak on FreeBSD for the AMD64 architecture with a binary package or by building from source code.



Installing From Binary Package


Note
The Riak 1.2 binary package is supported on FreeBSD version 9. Users have reported success building Riak from source on a number of FreeBSD versions, however.
Installing Riak from a binary package is the simplest method with least required dependencies, and requires less time to complete than building from source.



Prerequisites and Dependencies


Riak depends on sudo to be installed if the Riak command line tools are to be executed by users other than the riak user. Please ensure that sudo is installed via packages or the ports collection prior to installing the Riak package.


The Riak binary package also depends on a packaged version of OpenSSL. Prior to installing Riak 1.2 on FreeBSD 9, you’ll need to install openssl-1.0.0_7 either from package or the ports collection.





Installation


You can install the Riak binary package on FreeBSD remotely using the
pkg_add remote option. For this example, we’re installing riak-{{VERSION}}-FreeBSD-amd64.tbz.


sudo pkg_add -r http://s3.amazonaws.com/downloads.basho.com/riak/{{V.V}}/{{VERSION}}/freebsd/9/riak-{{VERSION}}-FreeBSD-amd64.tbz



When Riak is installed, a message is displayed with information about the installation and available documentation.


Thank you for installing Riak.

Riak has been installed in /usr/local owned by user:group riak:riak

The primary directories are:

    {platform_bin_dir, "/usr/local/sbin"}
    {platform_data_dir, "/var/db/riak"}
    {platform_etc_dir, "/usr/local/etc/riak"}
    {platform_lib_dir, "/usr/local/lib/riak"}
    {platform_log_dir, "/var/log/riak"}

These can be configured and changed in the platform_etc_dir/app.config.

Add /usr/local/sbin to your path to run the riak and riak-admin scripts directly.

Man pages are available for riak(1) and riak-admin(1)



If instead of this message, you receive an error during installation regarding OpenSSL, similar to this one:


Package dependency openssl-1.0.0_7 for /tmp/riak-{{VERSION}}-FreeBSD-amd64.tbz not found!



Be sure that you’ve installed the required OpenSSL version from packages or the ports collection as described in the Prerequisites and Dependencies section.







Installing From Source


Installing Riak from source on FreeBSD is a straightforward process which requires installation of more dependencies (such as Erlang) prior to building, and requires more time than a binary package installation.


That said, installing from source provides for greater flexibility with respect to configuration, data root locations, and more fine grained control over specific dependency versions.



Prerequisites and Dependencies


When building and installing Riak from source, you might be required to install some prerequisite software before proceeding with the build.


If you do not currently have the following software installed, please install it with packages or the ports collection before proceeding.



		Erlang (Can also be installed via Kerl as described in [[Installing Erlang]].


		Curl


		Git


		OpenSSL (version 1.0.0_7)


		Python


		sudo








Installation


First download the version you wish to install from Basho downloads [http://basho.com/resources/downloads/].


Next, unpack and build a release from source:


tar zxf <riak-x.x.x>
cd riak-x.x.x
gmake rel



Upon conclusion of the build, the rel/riak directory will contain a full Riak node environment, including configuration, data, and log directories:


bin               # Riak binaries
data              # Riak data and metadata
erts-5.9.2        # Erlang Run-Time System
etc               # Riak Configuration
lib               # Third party libraries
log               # Operational logs
releases          # Release information



If you’d prefer to build a development environment consisting of 4 nodes which can be run as a cluster on one machine, specify the devrel target instead of the rel target, like this:


gmake devrel








Next Steps?


From here you might want to check out:



		[[Post Installation Notes|Post Installation]]: for checking Riak health after installation


		[[Five Minute Install]]: a guide for setting up a 5 node cluster and exploring Riak’s main features.


		[[Basic Configuration]]: a guide that will show you how to go from one node to bigger than Google!








References



		Basho Downloads [http://basho.com/resources/downloads/]


		[[Installing and Upgrading]]


		[[Installing Erlang]]


		Using the FreeBSD Package System [http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/packages-using.html]


		Using the FreeBSD Ports Collection [http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/ports-using.html]









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/http/delete-object.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: HTTP Delete Object
project: riak
version: 0.10.0+
document: api
toc: true
audience: advanced
keywords: [api, http]
group_by: “Object-related Operations”
moved: {
‘1.4.0-‘: ‘/references/apis/http/HTTP-Delete-Object’
}




Deletes an object from the specified bucket / key.



Request


DELETE /buckets/bucket/keys/key



Optional query parameters:



		rw - quorum for both operations (get and put) involved in deleting an
object (default is set at the bucket level)


		r - (read quorum) how many replicas need to agree when retrieving the object


		pr - (primary read quorum) works like r but requires that the nodes
read from are not fallback nodes


		w - (write quorum) how many replicas must confirm receiving writes before returning a successful response


		dw - (durable write quorum) how many replicas to commit to durable storage
before returning a successful response


		pw - (primary write quorum) how many replicas to commit to primary nodes
before returning a successful response








Response


Normal response codes:



		204 No Content


		404 Not Found





Typical error codes:



		400 Bad Request - e.g. when rw parameter is invalid (> N)





404 responses are “normal” in the sense that DELETE operations are idempotent
and not finding the resource has the same effect as deleting it.





Example


$ curl -v -X DELETE http://127.0.0.1:8098/buckets/test/keys/test2
* About to connect() to 127.0.0.1 port 8098 (#0)
*   Trying 127.0.0.1... connected
* Connected to 127.0.0.1 (127.0.0.1) port 8098 (#0)
> DELETE /buckets/test/keys/test2 HTTP/1.1
> User-Agent: curl/7.19.4 (universal-apple-darwin10.0) libcurl/7.19.4 OpenSSL/0.9.8l zlib/1.2.3
> Host: 127.0.0.1:8098
> Accept: */*
>
< HTTP/1.1 204 No Content
< Vary: Accept-Encoding
< Server: MochiWeb/1.1 WebMachine/1.9.0 (participate in the frantic)
< Date: Fri, 30 Sep 2011 15:24:35 GMT
< Content-Type: application/json
< Content-Length: 0
<
* Connection #0 to host 127.0.0.1 left intact
* Closing connection #0







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/theory/why-riak.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Why Riak
project: riak
version: 0.10.0+
document: tutorial
audience: beginner
keywords: [tutorial, fast-track]
interest: [
“[[Clusters]]”,
“[[Buckets]]”,
“[[Eventual Consistency]]”,
“[[Vector Clocks]]”,
“[[Replication]]“
]
moved: {
‘1.4.0-‘: ‘/tutorials/fast-track/What-is-Riak’
}





What is Riak?


Riak is a distributed database designed to deliver maximum data
availability by distributing data across multiple servers. As long as
your Riak client can reach one Riak server, it should be able to write
data.


While Riak is typically known as an eventually consistent system,
beginning with version 2.0 it can be used either as an eventually or
strongly consistent system, and these two approaches can be mixed and
matched in a single cluster.


When Riak is used as an eventually consistent system, the data that
you want to read should remain available in most failure scenarios,
although it may not be the most up-to-date version of that data.


When Riak is used as a strongly consistent system, on the other
hand, reads will return the most up-to-date version of data, with the
drawback that some nodes will be temporarily unavailable to receive
writes in certain rare situations.



Basho’s goals for Riak


Goal | Description
——-|——-
Availability | Riak writes to and reads from multiple servers to offer data availability even when hardware or the network itself are experiencing failure conditions
Operational simplicity | Easily add new machines to your Riak cluster without incurring a larger operational burden
Scalability | Riak automatically distributes data around the cluster and yields a near-linear performance increase as you add capacity
Masterless | Your requests are not held hostage to a specific server in the cluster that may or may not be available





When Riak makes sense


If your data does not fit on a single server and demands a distributed
database architecture, you should take a close look at Riak as a
potential solution to your data availability issues. Getting distributed
databases right is very difficult, and Riak was built to address the
problem of data availability with as few trade-offs and downsides as
possible.


Riak’s focus on availability makes it a good fit whenever downtime is
unacceptable. No one can promise 100% uptime, but Riak is designed to
survive network partitions and hardware failures that would
significantly disrupt most databases. An exception to Riak’s high
availability approach is the optional [[strong consistency|Using Strong
Consistency]] feature, which can be applied on a selective basis.


A less-heralded feature of Riak is its predictable latency. Because its
fundamental operations—read, write, and delete—do not involve
complex data joins or locks, it services those requests promptly. Thanks
to this capability, Riak is often selected as a data storage backend for
data management software from a variety of paradigms, such as
Datomic [http://www.datomic.com/overview.html].


From the standpoint of the actual content of your data, Riak might also
be a good choice if your data can be modeled as one of Riak’s currently
available [[Data Types|Using Data Types]]: flags, registers, counters,
sets, or maps. These Data Types enable you to take advantage of Riak’s
high availability approach while simplifying application development.





When Riak is Less of a Good Fit


Basho recommends that you run no fewer than 5 data servers in a cluster.
This means that Riak can be overkill for small databases. If you’re not
already sure that you will need a distributed database, there’s a good
chance that you won’t need Riak.


If explosive growth is a possibility, however, you are always highly
advised to prepare for that in advance. Scaling at Internet speeds is
sometimes compared to overhauling an airplane mid-flight. If you feel
that such a transition might be necessary in the future, then you might
want to consider Riak.


Riak’s simple data model, consisting of keys and values as its atomic
elements, means that your data must be denormalized if your system is to
be reasonably performant. For most applications this is not a serious
hurdle. But if your data simply cannot be effectively managed as keys
and values, Riak will most likely not be the best fit for you.


Correspondingly, if your application demands a high query load by any
means other than key/value lookup—e.g. SQL-style SELECT * FROM table
operations—Riak will not be as efficient as other databases. If you
wish to compare Riak with other data technologies, Basho offers a tool
called [[Basho Bench]] to help measure its performance, so that you can
decide whether the availability and operational benefits of Riak
outweigh its disadvantages.







How Does a Riak Cluster Work?


A Riak cluster is a group of nodes that are in constant
communication to ensure data availability and partition tolerance.



What is a Riak Node?


A Riak node is not quite the same as a server, but in a production
environment the two should be equivalent. A developer may run multiple
nodes on a single laptop, but this would never be advisable in a real
production cluster.


Each node in a Riak cluster is equivalent, containing a complete,
independent copy of the whole Riak package. There is no “master” node;
no node has more responsibilities than others; and no node has special
tasks not performed by other nodes. This uniformity provides the basis
for Riak’s fault tolerance and scalability.


Each node is responsible for multiple data partitions, as discussed
below:





Riak Automatically Re-Distributes Data When Capacity is Added


When you add (or remove) machines, data is rebalanced automatically with
no downtime. New machines claim data until ownership is equally spread
around the cluster, with the resulting cluster status updates shared to
every node via a gossip protocol and used to route requests. This is
what makes it possible for any node in the cluster to receive requests.
The end result is that developers don’t need to deal with the underlying
complexity of where data lives.





Consistent Hashing


Data is distributed across nodes using consistent hashing. Consistent
hashing ensures that data is evenly distributed around the cluster and
makes possible the automatic redistribution of data as the cluster
scales.





Intelligent Replication


Riak’s replication scheme ensures that you can still read, write, and
update data if nodes go down. Riak allows you to set a replication
variable, N (also known as the n_val), that specifies the number of
nodes on which a value will be replicated.


An n_val value of 3 (the default) means that each object is replicated
3 times. When an object’s key is mapped onto a given node, Riak will
continue on and automatically replicate the data onto two more nodes.
This parameter enables you to replicate values to 7 nodes in a 10-node
cluster, 10 nodes in a 15-node cluster, and so on.







When Things Go Wrong


Riak retains fault tolerance, data integrity, and availability even in
failure conditions such as hardware failure and network partitions. Riak
has a number of means of addressing these scenarios and other bumps in
the road, like version conflicts in data.



Hinted Handoff


Hinted handoff enables Riak to handle node failure. If a node goes down,
a neighboring node will take over its storage operations. When the
failed node returns, the updates received by the neighboring node are
handed back to it. This ensures that availability for writes and updates
is maintained automatically, minimizing the operational burden of
failure conditions.





Version Conflicts


In any system that replicates data, conflicts can arise, for example
when two clients update the same object at the exact same time or when
not all updates have yet reached hardware that is experiencing lag.


In Riak, replicas are [[eventually consistent|Eventual Consistency]],
meaning that while data is always available, not all replicas may have
the most recent update at the exact same time, causing brief
periods—generally on the order of milliseconds—of inconsistency
while all state changes are synchronized.


Riak addresses data conflicts as follows: When you make a read request,
Riak looks up all replicas for that object. By default, Riak will return
the most recently updated version, determined by looking at the object’s
vector clock. Vector clocks are metadata attached to each replica when
it is created. They are extended each time a replica is updated to keep
track of versions. You can also allow clients to resolve conflicts
themselves if that is a better fit for your use case.





Riak Data Types


If you are not interested in dealing with version conflicts on the
application side, [[Riak Data Types|Using Data Types]] offer a powerful
yet easy-to-use means of storing certain types of data while allowing
Riak to handle merge conflicts. These conflicts are resolved
automatically by Riak using Data Type-specific algorithms inspired by
research into convergent replicated data
types [http://hal.upmc.fr/docs/00/55/55/88/PDF/techreport.pdf].





Read Repair


When an outdated replica is returned as part of a read request, Riak
will automatically update the out-of-sync replica to make it consistent.
[[Read repair|Riak Glossary#Read-Repair]], a self-healing property of
the database, will even update a replica that returns a not_found in
the event that a node loses the data due to physical failure.





Reading and Writing Data in Failure Conditions


In Riak, you can set an R value for reads and a W value for writes.
These values give you control over how many replicas must respond to a
request for it to succeed.


Let’s say that you have an N value of 3 (aka n_val=3) for a particular
key/value pair, but one of the physical nodes responsible for a replica
is down. With an r=2 setting, only 2 replicas must return results for
read to be deemed successful. This allows Riak to provide read
availability even when nodes are down or laggy. The same applies for the
W in writes. If this value is not specified, Riak defaults to quorum,
according to which the majority of nodes must respond.


There is more on [[replication properties]] elsewhere in the
documentation.








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/building/installing/azure.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Installing on Windows Azure
project: riak
version: 1.1.0+
document: tutorial
audience: beginner
keywords: [tutorial, installing, windows, azure]
prev: “[[Installing on SUSE]]“
up:   “[[Installing and Upgrading]]“
next: “[[Installing on AWS Marketplace]]“
moved: {
‘1.4.0-‘: ‘/tutorials/installation/Installing-on-Windows-Azure’
}




Steps to install Riak on CentOS VMs using the Windows Azure platform.



Creating CentOS VMs


You will need to sign up for the Windows Azure Virtual Machines preview feature in order to create a virtual machine. You can also sign up for a free trial account if you do not have a Windows Azure account.



		Navigate to https://account.windowsazure.com [https://account.windowsazure.com/] and sign in with your Windows Azure account.





		Click “preview features” to view the available previews.


[image: ]





		Scroll down to Virtual Machines & Virtual Networks and click “try it now”.


[image: ]





		Select your subscription and click the check.


[image: ]









Create a virtual machine running CentOS Linux



		Login to the Windows Azure (Preview) Management Portal using your Windows Azure account.





		In the Management Portal, at the bottom left of the web page, click “+New”, click “Virtual Machine”, and then click “From Gallery”.


[image: ]





		Select a CentOS virtual machine image from “Platform Images”, and then click the next arrow at the bottom right of the page.


[image: ]





		On the VM Configuration page, provide the following information:



		Provide a “Virtual Machine Name”, such as “testlinuxvm”.


		Specify a “New User Name”, such as “newuser”, which will be added to the Sudoers list file.  Do NOT use the username “riak”, as it may conflict with the installation package.


		In the “New Password” box, type a strong password.


		In the “Confirm Password” box, retype the password.


		Select the appropriate “Size” from the drop down list.


		Click the next arrow to continue.





[image: ]





		On the VM Mode page, provide the following information:



		If this is the first node, select the “STANDALONE VIRTUAL MACHINE” radio button. Otherwise, select the “CONNECT TO EXISTING VIRTUAL MACHINE” radio button, and select the first node in the drop down list.


		In the “DNS Name” box, type a valid DNS address, e.g “testlinuxvm”.


		In the “Storage Account” box, select “Use Automatically Generated Storage Account”.


		In the “Region/Affinity Group/Virtual Network” box, select a region where this virtual image will be hosted.


		Click the next arrow to continue.





[image: ]





		On the VM Options page, select “(none)” in the “Availability Set” box. Click the check mark to continue.


[image: ]





		Wait while Windows Azure prepares your virtual machine.











Configure Endpoints


Once the virtual machine is created you must configure endpoints in order to remotely connect.



		In the Management Portal, click “Virtual Machines”, then click the name of your new VM, then click “Endpoints”.


		If this is the first node, click “Add Endpoint”, leave “Add Endpoint” checked, hit the right arrow and fill out the next form as follows:
		Name: https


		Protocol: leave set to ‘TCP’


		Public Port: 443


		private Port: 8069
















Connect to CentOS VMs using PuTTY or SSH


When the virtual machine has been provisioned and the endpoints configured you can connect to it using SSH or PuTTY.



Connecting Using SSH


For Linux & Mac Users:


ssh newuser@testlinuxvm.cloudapp.net -o ServerAliveInterval=180



Enter the user’s password.


For Windows Users, use PuTTY:


If you are using a Windows computer, connect to the VM using PuTTY. PuTTY can be downloaded from the PuTTY Download Page [http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html].



		Download and save putty.exe to a directory on your computer. Open a command prompt, navigate to that folder, and execute putty.exe.





		Enter the SSH DETAILS as found on the Node’s Dashboard, i.e., “testlinuxvm.cloudapp.net” for the Host Name and “22” for the Port.


[image: ]













Install Riak and configure using a shell script



		On each node, once you’ve connected using the steps above, execute:





sudo su -
curl -s https://raw.github.com/basho/riak_on_azure/1.0/azure_install_riak.sh | sh






Configure Riak using Riak Control


You can either use Riak Control or the command line to add nodes to your Riak Cluster. If you wish to add nodes via the command line, skip down to the section entitled “Configure Riak using Command Line”



		Find the dns name and “Deployment ID” in the virtual machine dashboard of the VM you created the https endpoint for.  For Example:
		dns: basho-example.cloudapp.net


		Deployment ID: 7ea145743aeb4402a088da1234567890








		Visit https://dns-name.cloudapp.net/admin in your browser


		Ender ‘admin’ as the username, and the “Deployement ID” as the password.


		Select ‘Cluster’ on the left.


		Add VMs which also have the Riak software installed and configured by entering riak@yourhostnamehere in the input box, and clicking ‘Add Node’.  Use the short name of each vm, not the DNS name.  For Example:
		riak@basho-centos1











You now have a Riak cluster on Azure





Configure Riak using Command Line


If you have already followed the instructions in the section “Configure Riak using Riak Control”, skip this section.


First, SSH into the second (and subsequent nodes) and execute:


riak-admin cluster join riak@yourhostnamehere



(Where ‘yourhostnamehere’ is the short name of the first node in your cluster)


(NOTE: The host you choose can actually be any host that has already joined the cluster. The first host has no special significance, but it’s important not to attempt to join to a node that hasn’t joined a cluster yet.  Doing this would create a second cluster; thus we use the first node for these instructions.)


After all the nodes have have been joined to the first node via the previous command, connect to any of the nodes via SSH or PuTTY and execute the following:


riak-admin cluster plan



Verify all the nodes are listed as expected.  If the cluster plan looks good:


riak-admin cluster commit



To check the status of clustering use:


riak-admin member-status



You now have a Riak cluster on Azure





Load Test Data


Execute on any one of the nodes:


curl -s http://rekon.basho.com | sh



Visit DNS address listed on the dashboard, at the port we opened as an endpoint:


http://testlinuxvm.cloudapp.net:8098/riak/rekon/go



Further Reading:



		[[Basic Riak API Operations|The Basics]]









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/http/store-search-schema.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: HTTP Store Search Schema
project: riak
version: 2.0.0+
document: api
audience: advanced
group_by: “Search-related Operations”
keywords: [http, api, search, index, yokozuna]




Creates a new Riak [[Search schema]].



Request


PUT /search/index/<schema_name>






Required Form Data


In order to create a new Search schema, you must pass Riak a properly
formed XML schema. More information can be found in the [[Search
Schema]] document. If you’ve created a schema and stored it in the filed
my_schema.xml and would like to create a new schema called
my_custom_schema, you would use the following HTTP request:


curl -XPUT http://localhost:8098/search/schema/my_custom_schema \
  -H "Content-Type: application/xml" \
  --data-binary @my_schema.xml






Normal Response



		204 No Content — The schema has been successfully created








Typical Error Codes



		400 Bad Request — The schema cannot be created because there is
something wrong with the schema itself, e.g. an XML formatting error
that makes Riak Search unable to parse the schema


		409 Conflict — The schema cannot be created because there is
already a schema with that name


		503 Service Unavailable — The request timed out internally









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/community/faqs/index.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Riak FAQs
project: riak
version: 1.2+
document: cookbook
toc: false
index: true
audience: beginner
keywords: [faq]
simple: true
versions: false
moved: {
‘1.4.0-‘: ‘/cookbooks/faqs’
}





Riak FAQs



		[[Getting Started FAQs|Basic FAQs]]


		[[Developing on Riak FAQs|Developing on Riak FAQs]]


		[[Operating Riak FAQs]]


		[[Log Messages FAQs]]


		[[Riak Community FAQs]]









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/upgrade-v20.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Upgrading to 2.0
project: riak
version: 2.0.0+
document: guide
audience: intermediate
keywords: [developers, upgrading]




If you are upgrading to Riak 2.0 from an earlier version, we strongly
recommend reading through each of the sections of this guide for
information on which concrete steps need to be undertaken to
successfully upgrade and which default Riak behaviors have changed.


If you are looking for an overview of the new features and
functionality included in version 2.0, we recommend checking out our
guide to [[Riak 2.0]].



New Clients


To take advantage of the new features available in Riak 2.0, we
recommend upgrading your application to an official Basho client that
was built with those features in mind. There exist official
2.0-compatible clients in the following languages:



		Java [https://github.com/basho/riak-java-client]


		Ruby [https://github.com/basho/riak-ruby-client]


		Python [https://github.com/basho/riak-python-client]


		Erlang [https://github.com/basho/riak-erlang-client]





While we strongly recommend using the newest versions of these clients,
older versions will still work with Riak 2.0, with the drawback that
those older clients will not able to take advantage of
[[new features|Riak 2.0]] like [[data types|Using Data Types]]
or the new [[Riak Search|Using Search]].





Bucket Types


In versions of Riak prior to 2.0, the location of objects was
determined by objects’ [[bucket|Buckets]] and [[key|Keys and Objects]],
while all bucket-level configurations were managed by setting [[bucket
properties|The Basics#bucket-properties-and-operations]].


In Riak 2.0, [[bucket types|Using Bucket Types]] are both an additional
namespace for locating objects and a new means of configuring bucket
properties in a more systematic fashion. More comprehensive details on
usage can be found in the documentation on [[using bucket types]].
Here, we’ll list some of the things to be aware of when upgrading.



Bucket types and object location


With the introduction of bucket types, the location of all Riak objects
is determined by bucket type, bucket, and key, meaning that there
are three namespaces involved in object location instead of two. A full
tutorial can be found in [[Using Bucket Types]].


If your application was written in conjunction with a version of Riak
prior to 2.0, you should make sure that any endpoint in Riak targeted
in terms of a bucket/key pairing be changed to accommodate a bucket
type/bucket/key location.


If you’re using a pre-2.0-specific client and targeting a location
specified only by bucket and key, Riak will use the default bucket
configurations. The following URLs are equivalent in Riak 2.0:


/buckets/<bucket>/keys/<key>
/types/default/buckets/<bucket>/keys/<key>



If you use object locations that don’t specify a bucket type, you have
three options:



		Accept Riak’s [[default bucket configurations|Using Bucket
Types#buckets-as-namespaces]]


		Change Riak’s defaults using your [[configuration files|Configuration
Files#Default-Bucket-Properties]]


		Manage multiple sets of bucket properties by specifying those
properties for all operations (not recommended)








Features that rely on bucket types


One of the reasons that we recommend using bucket types for Riak 2.0
and later is because a variety of newer Riak features were built with
bucket types as a precondition:



		[[Strong consistency]] — Using Riak’s strong consistency subsystem
requires you to set the consistent parameter on a bucket type to
true


		[[Riak Data Types|Using Data Types]] — In order to use Riak Data
Types, you must [[create bucket types|Using Data
Types#setting-up-buckets-to-use-riak-data-types]] specific to the
Data Type you are using








Bucket types and downgrades


If you do decide to use bucket types, please bear in mind that you
cannot [[downgrade|Rolling Downgrades]] your cluster to a version of
Riak prior to 2.0 if you have both created and activated a
bucket type.







New allow_mult Behavior


One of the biggest changes in version 2.0 from the standpoint of
application development involves Riak’s default behavior regarding
[[siblings|Causal Context#Siblings]]. In versions prior to 2.0, the
allow_mult setting was set to false by default for all buckets,
which means that Riak’s default behavior was to resolve
object replica [[conflicts|Conflict Resolution]] between nodes on its
own, thus relieving connecting clients of the need to resolve those
conflicts.


In 2.0, allow_mult is set to true for any bucket type that you
create and activate. This means that the default when [[using bucket
types]] is to handle [[conflict resolution]] on the client side using
either traditional [[vector clocks|Causal Context#Vector-Clocks]] or the
newer [[dotted version vectors|Causal Context#Dotted-Version-Vector]].


If you wish to set allow_mult to false in version 2.0, you have two
options:



		Set your bucket type’s allow_mult property to false


		Don’t use bucket types





More information on handling siblings can be found in our documentation
on [[conflict resolution]].





Enabling Security


The [[authentication and authorization|Authentication and
Authorization]] mechanisms included with Riak 2.0 should only be turned
on after careful testing in a non-production environment. Security
changes the way in which all applications interact with Riak.





When Downgrading is No Longer an Option


If you decide to upgrade to version 2.0, you can still downgrade your
cluster to an earlier version of Riak if you wish, unless you perform
one of the following actions in your cluster:



		Index data to be used in conjunction with the new [[Riak Search|Using
Search]].


		Create and activate one or more [[bucket types|Using Bucket
Types]]. By extension, you will not be able to downgrade your cluster
if you have used the following features, both of which rely on bucket
types:
		[[Strong consistency]]


		[[Riak Data Types|Using Data Types]]











If you use other new features, such as [[Riak Security|Authentication
and Authorization]] or the new [[configuration files]], you can still
downgrade your cluster, but you will no longer be able to use those
features after the downgrade.





Upgrading Your Configuration System


Riak 2.0 offers a new configuration system that both simplifies
configuration syntax and utilizes one configuration file, riak.conf,
instead of the two files, app.config and vm.args, required by the
older system. Full documentation of the new system can be found in
[[Configuration Files]].


If you’re upgrading to Riak 2.0 from an earlier version, you have two
configuration options:



		Manually port your configuration from the older system into the new
system.


		Keep your configuration files from the older system, which are still
recognized in Riak 2.0.





If you choose the first option, make sure to consult the
[[configuration files]] documentation, as many configuration parameters
have changed names, some no longer exist, and others have been added
that were not previously available.


If you choose the second option, Riak will automatically determine that
the older configuration system is being used. You should be aware,
however, that some settings must be set in an advanced.config file.
For a listing of those parameters, see our documentation on [[advanced
configuration|Configuration Files#advanced-configuration]].


If you choose to keep the existing app.config files, you must add the
following additional settings in the riak_core section:


{riak_core,
     [{default_bucket_props,
          [{allow_mult,false}, %% or the same as an existing setting
           {dvv_enabled,false}]},
          %% other settings
     ]
},



This is to ensure backwards compatibility with 1.4 for these bucket properties.





Upgrading LevelDB


If you are using LevelDB and upgrading to 2.0, no special steps need to
be taken, unless you wish to use your old app.config file for
configuration. If so, make sure that you set the
total_leveldb_mem_percent parameter in the eleveldb section of the
file to 70.


{eleveldb, [
    %% ...
    {total_leveldb_mem_percent, 70},
    %% ...
]}



If you do not assign a value to total_leveldb_mem_percent, Riak will
default to a value of 15, which can cause problems in some clusters.





Upgrading Search


Information on upgrading Riak Search to 2.0 can be found in our
[[Search upgrade guide|Upgrading Search from 1.x to 2.x]].





Migrating from Short Names


Although undocumented, versions of Riak prior to 2.0 did not prevent the
use of the Erlang VM’s -sname configuration parameter. As of 2.0 this
is no longer permitted. Permitted in 2.0 are nodename in riak.conf
and -name in vm.args. If you are upgrading from a previous version
of Riak to 2.0 and are using -sname in your vm.args, the below steps
are required to migrate away from -sname.



		Upgrade to Riak
1.4.12 [http://docs.basho.com/riak/1.4.12/downloads/].


		Back up the ring directory on each node, typically located in
/var/lib/riak/ring.


		Stop all nodes in your cluster.


		Run [[riak-admin reip <old_nodename> <new_nodename>|riak-admin Command Line#reip]] on each node in your cluster, for each node in your
cluster. For example, in a 5 node cluster this will be run 25 total
times, 5 times on each node. The <old_nodename> is the current
shortname, and the <new_nodename> is the new fully qualified hostname.


		Change riak.conf or vm.args, depending on which configuration
system you’re using, to use the new fully qualified hostname on each
node.


		Start each node in your cluster.









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/http/index.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: HTTP API
project: riak
version: 1.0.0+
document: api
toc: true
audience: advanced
keywords: [api, http]
index: true
moved: {
‘1.4.0-‘: ‘/references/apis/http’
}




Riak has a rich, full-featured HTTP 1.1 API. This is an overview of the
operations you can perform via HTTP and can be used as a guide for
developing a compliant client. All URLs assume the default configuration
values where applicable. All examples use curl to interact with Riak.



URL Escaping

Buckets, keys, and link specifications may not contain unescaped
slashes. Use a URL-escaping library or replace slashes with `%2F`.


Bucket-related Operations


Method | URL | Doc
:——|:—-|:—
GET | /types/<type>/buckets/<bucket>/props | [[HTTP Get Bucket Properties]]
PUT | /types/<type>/buckets/<bucket>/props | [[HTTP Set Bucket Properties]]
DELETE | /types/<type>/buckets/<bucket>/props | [[HTTP Reset Bucket Properties]]
GET | /types/<type>/buckets?buckets=true | [[HTTP List Buckets]]
GET | /types/<type>/buckets/<bucket>/keys?keys=true | [[HTTP List Keys]]





Object-related Operations


Method | URL | Doc
:——|:—-|:—
GET | /types/<type>/buckets/<bucket>/keys/<key> | [[HTTP Fetch Object]]
POST | /types/<type>/buckets/<bucket>/keys/<key> | [[HTTP Store Object]]
PUT | /types/<type>/buckets/<bucket>/keys/<key> | [[HTTP Store Object]]
DELETE | /types/<type>/buckets/<bucket>/keys/<key> | [[HTTP Delete Object]]





Riak-Data-Type-related Operations


For documentation on the HTTP API for [[Riak Data Types|Data Types]],
see the curl examples in [[Using Data Types]].





Query-related Operations


Method | URL | Doc
:——|:—-|:—
POST | /mapred | [[HTTP MapReduce]]
GET | /types/<type>/buckets/<bucket>/index/<index>/<value> | [[HTTP Secondary Indexes]]
GET | /types/<type>/buckets/<bucket>/index/<index>/<start>/<end> | [[HTTP Secondary Indexes]]





Server-related Operations


Method | URL | Doc
:——|:—-|:—
GET | /ping | [[HTTP Ping]]
GET | /stats | [[HTTP Status]]
GET | / | [[HTTP List Resources]]





Search-related Operations


Method | URL | Doc
:——|:—-|:—
GET | /search/query/<index_name> | [[HTTP Search Query]]
GET | /search/index | [[HTTP Search Index Info]]
GET | /search/index/<index_name> | [[HTTP Fetch Search Index]]
PUT | /search/index/<index_name> | [[HTTP Store Search Index]]
DELETE | /search/index/<index_name> | [[HTTP Delete Search Index]]
GET | /search/schema/<schema_name> | [[HTTP Fetch Search Schema]]
PUT | /search/schema/<schema_name> | [[HTTP Store Search Schema]]






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/community/product-advisories/maps-204.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Map Data Type Disk Incompatibility
project: riak
version: 1.0.0+
versions: false
document: reference




Info | Value
:—-|:—–
Date issued | January 21, 2015
Product | Riak
Affected versions | Riak 2.0.4
Symptoms | Request timeouts, inability to access data in Riak maps
Cause | Change in the on-disk format of Riak maps



Overview


On January 20th, 2015, a user
reported [http://lists.basho.com/pipermail/riak-users_lists.basho.com/2015-January/016568.html]
issues with [[Riak Data Types|Data Types]] upon upgrading from Riak
2.0.2 to 2.0.4. It was discovered that keys storing [[Riak maps|Using
Data Types#Maps]] are unreadable after upgrading due to a change in the
on-disk format of maps that was introduced as a performance improvement.





Identification


You can verify whether this issue is affecting your cluster by checking
your cluster’s [[logs|Logging]]. You will see errors along the following
lines if your cluster is affected:


2015-01-21 13:01:00.441 [error]
<0.1033.0>@riak_core_vnode:vnode_command:348 riak_kv_vnode command
failed
{{badrecord,dict},[{dict,filter_dict,2,[{file,"dict.erl"},{line,464}]},{riak_dt_map,'-filter_unique/4-fun-1-',4,[{file,"src/riak_dt_map.erl"},{line,466}]},{sets,fold_bucket,3,[{file,"sets.erl"},{line,313}]},{sets,fold_seg,4,[{file,"sets.erl"},{line,309}]},{sets,fold_segs,4,[{file,"sets.erl"},{line,305}]},{riak_dt_map,merge,2,[{file,"src/riak_dt_map.erl"},{line,454}]},{riak_kv_crdt,'-merge_value/2-fun-0-',5,[{file,"src/riak_kv_crdt.erl"},{line,204}]},{orddict,update,4,[{file,"orddict.erl"},{line,170}]}]}






Affected Users


Users will be affected under the following conditions:



		They use Riak maps in their cluster


		They have upgraded to Riak version 2.0.4





If your cluster does not use Riak maps you may upgrade to 2.0.4 as
normal.





Mitigation Strategy


The recommended mitigation strategy is to upgrade to Riak 2.0.5 or
later [http://docs.basho.com/riak/latest/downloads/].






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/theory/stanchion.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Stanchion
project: riakcs
version: 1.5.0+
document: cookbook
audience: intermediate
keywords: [operator, stanchion]




Stanchion is an application used by Riak CS to manage the serialization
of requests, which enables Riak CS to manage [[globally unique
entities|Stanchion#Globally-Unique-Entities]] like users and bucket
names. Serialization in this context means that the entire cluster
agrees upon a single value for any globally unique entity at any given
time; when that value is changed, the new value must be recognized
throughout the entire cluster.



The Role of Stanchion in a Riak CS Cluster


Unlike Riak and Riak CS, which both run on multiple nodes in your
cluster, there should be only one running Stanchion instance in your
Riak CS cluster at any time. Correspondingly, your Stanchion
installation must be managed and configured separately. For more
information, see the following documents:



		[[Configuring Stanchion]]


		[[Installing Stanchion|Installing Riak
CS#Installing-Stanchion-on-a-Node]]


		[[The Stantion Command-line Interface|Riak CS Command-line
Tools#stanchion]]





For a more in-depth discussion of implementation details, see the
project’s
README [https://github.com/basho/stanchion/blob/master/README.org] on
GitHub.





Globally Unique Entities


There are two types of entities that must be globally unique within a
Riak CS system:



		User identifiers — Riak CS mandates that each user create an
account using an email address as an identifier. Stanchion takes steps
to ensure that an email address has not already been used before
accepting a user creation request.


		Bucket names — Bucket names must be unique within a Riak CS
system (just as they must be unique in S3 and other systems) and any
attempt to create a bucket with a name that is already in use are
rejected.





The uniqueness of these entities is enforced by serializing any creation
or modification requests that involve them. This process is handled by
Stanchion. What happens under the hood is essentially that Stanchion
mandates that all [[vnodes|Riak Glossary#vnode]] in the underlying Riak
cluster that are responsible for the user or bucket being created must
be available at creation time.


One result of this enforcement is that user creation requests and bucket
creation or modification, i.e. deletion, requests are not highly
available like other Riak CS system operations. If the Stanchion
application is unavailable or cannot be reached for whatever reason,
you will not be able to carry out user- and bucket-related operations.
In addition, instability in the Riak cluster may lead to user and bucket
requests being disallowed. If this happens, you will see something like
this in the Stanchion console or error logs:


2013-01-03 05:24:24.028 [warning] <0.110.0>@stanchion_utils:bucket_available:501 Error occurred trying to check if the bucket <<"mybucket">> exists. Reason: <<"{pr_val_unsatisfied,3,2}">>



Because of this, user- and bucket-related operations should be used
only as preparation for a workflow and not included as part of a
highly available workflow.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/client-implementation.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Client Implementation Guide
project: riak
version: 1.2.0+
document: tutorials
toc: true
audience: advanced
keywords: [interface, client]
moved: {
‘1.4.0-‘: ‘/tutorials/Client-Implementation-Guide’
}




This document details aspects of the Riak client interfaces and can be
used as a general guide for understanding how to interact with Riak and
how to implement a compliant client library or application. Below are
some high-level recommendations for implementing well-behaved clients.



Hide Transport Details


Although Riak’s two interfaces do not have complete feature-parity,
client libraries should make an effort to hide implementation details of
the protocols from applications, presenting a uniform interface. This
will reduce the amount of code changes needed to select a different
transport mechanism for operational reasons.





Protocol Buffers API


While Riak continues to have a fully featured [[HTTP API]] for the sake
of backwards compatibility, we strongly recommend building new clients
to use the [[Protocol Buffers|PBC API]] API instead, primarily because
internal tests at Basho have shown performance gains of 25% or more when
using Protocol Buffers instead of HTTP.


For a general introduction to Protocol Buffers, we recommend checking
out Google’s official
documentation [http://code.google.com/p/protobuf/]. In essence, using
Protocol Buffers involves the following steps:



		Finding a Protocol Buffers message generator in the language of your
choice and converting Riak’s .proto
files [https://github.com/basho/riak_pb/tree/develop/src] to native
code.


		Once you’ve generated all of the necessary messages, you’ll need to
implement a transport layer to interface with Riak. A full list of
Riak-specific Protocol Buffers messages can be found on the [[PBC API]]
page. The official Python
client [https://github.com/basho/riak-python-client], for example, has a
single
RiakPbcTransport [https://github.com/basho/riak-python-client/blob/3c7530f047a3b29]
class that handles all message building, sending, and receiving, while
the official Java client [https://github.com/basho/riak-java-client]
takes a more piecemeal approach to messages (as shown by the
FetchOperation [https://github.com/basho/riak-java-client/blob/a74a9b99eda5e5f79c4be16dd432e04317b45e84/src/main/java/com/basho/riak/client/core/operations/FetchOperation.java])
class, which handles reads from Riak.


		Once the transport layer is in place, you can begin building
higher-level abstractions for your client.





The drawback behind using Protocol Buffers is that it’s not as widely
known as HTTP and has a bit of a learning curve for those who aren’t
used to it. The good news, however, is that Google offers official
support for C++, Java, and Python and many other
languages [https://github.com/google/protobuf/wiki/Third-Party-Add-ons]
have strong community support.





Retry Requests


As described in the [[Eventual Consistency]] document, there are many
scenarios that can result in temporary inconsistency, which may cause
the appearance of stale data or [[sibling objects|Causal
Context#Siblings]]. To react appropriately to unexpected or unsuccessful
results, clients should enable users to retry requests a specifiable
number of times before failing to the caller. For example, when fetching
a key that might be inconsistent among its replicas, this gives [[read
repair|Active Anti-Entropy#Read-Repair-vs-Active-Anti-Entropy]] a chance
to update the stale copies. Retries also may give the client an
opportunity to reconnect to the Riak node (or a different node in the
cluster) when the original connection is lost for whatever reason. A
number of operations in Riak
are idempotent and thus can be retried without side-effects.





Sibling Resolution


In order to give applications the opportunity to recover from
conflicting or partitioned writes to a key, Riak can be configured to
present the client multiple versions of the value, also known as
[[siblings|Causal Context#Siblings]]. It then becomes the responsibility
of the application to resolve those siblings in a way that is meaningful
to the application domain. Clients should provide a way to encapsulate
resolution behavior such that it can be run automatically when sibling
values are detected, potentially multiple times in the course of a fetch
or storage operation. Without sibling resolution, [[the number of stored
versions will continually grow|Causal Context#Siblings]], resulting in
degraded performance across the cluster in the form of extremely high
per-operation latencies or apparent unresponsiveness.





Read-before-Write and Causal Context


Riak will return an encoded [[causal context]] with every “fetch” or
“read” request that does not result in a not found response. This
context (which is simply a non-human-readable byte string) tells Riak
how to resolve concurrent writes, essentially representing the “last
seen” version of the object to which the client made modifications. In
order to prevent [[sibling explosion|Causal Context#Sibling]], clients
should always return this causal context to Riak when updating an
object. Because of this, it is essential that object be fetched before
being written (except in the case where Riak selects the key or there is
a priori knowledge that the object is new). Client libraries should
either provide means for easily performing such [[update
operations|Object Updates]] or perform read-before-write operations
automatically. This can reduce operational issues by limiting [[sibling
explosion|Causal Context#Sibling-Explosion]].  Clients may also choose
to perform automatic [[sibling resolution|Client Implementation
Guide#Sibling-Resolution]] on read.





Discourage Expensive Operations


A number of operations (e.g. [[listing buckets|HTTP List Buckets]] or
[[listing keys|HTTP List Keys]]), while useful, are extremely expensive
to run in production. A well-behaved client should expose all
functionality but provide some sort of warning to the developer when
they choose to perform those expensive operations.





Nagle’s Algorithm


In most cases — especially when using the [[PBC API]], which tends to
use small messages — clients should set the TCP_NODELAY flag on
opened socket connections to Riak, which disables Nagle’s
Algorithm [http://en.wikipedia.org/wiki/Nagle%27s_algorithm]. Latency
profiles having a minimum of 40 milliseconds often indicate the presence
of Nagle on either end of the connection.  If the client application has
significant round-trip latency to the Riak cluster, disabling Nagle will
have little effect, but for well-connected clients it can significantly
reduce latency.





Compatibility with Riak 2.0


The release of [[Riak 2.0]] has brought a variety of fundamental changes
to Riak that client builders and maintainers should be aware of,
including a variety of new features, such as [[security|Authentication
and Authorization]] and [[Riak Data Types|Using Data Types]]. The
sections below will list some of those changes and suggest approaches to
addressing them, including some examples from our official [[client
libraries]].





Nodes and Clusters


When writing Riak clients, it’s important to remember that Riak always
functions as a [[clustered|Clusters]] (i.e. [[multi-node|Riak
Glossary#Node]]) system, and connecting clients need to be built to
interact with all nodes in the cluster on the basis of each node’s host
and port.


While it’s certainly possible to build clients to only interact with a
single node, this would mean that your client’s users will need to
create their own cluster interaction logic. Instead, you should build
your client to do things like the following:



		periodically [[ping|PBC Ping]] nodes to make sure they’re still online


		recognize when nodes are no longer responding and then stop sending
requests to those nodes (until they come back online)


		provide a load-balancing scheme to spread interactions across nodes
(or provide multiple schemes, or an interface whereby users can
register their own schemes)





In general, you should think of the cluster interaction level as a kind
of stateful registry of healthy, responsive nodes. In some systems, it
might also be necessary to to have configurable parameters for
connections to Riak, e.g. minimum and/or maximum concurrent connections.





Bucket Types


Prior to Riak 2.0, the location of objects in Riak was determined by
[[bucket|Buckets]] and [[key|Keys and Objects#Keys]]. In version 2.0,
[[bucket types|Using Bucket Types]] were introduced as a third
namespacing layer in addition to buckets and keys. Connecting clients
now need to either specify a bucket type or use the [[default|Using
Bucket Types#Default-Bucket-Properties]] type for all K/V operations.
Although creating, listing, modifying, and activating bucket types can
be accomplished only via the [[command line|Using Bucket
Types#Managing-Bucket-Types-Through-the-Command-Line]], your client
should provide an interface for seeing which bucket properties are
associated with a bucket type. More information can be found in our
documentation on [[bucket types and Protocol Buffers|PBC Get Bucket
Type]].


One of the changes to be aware of when building clients is that Riak has
changes its querying structure to accommodate bucket types. When
performing K/V operations, you now need to specify a bucket type in
addition to a bucket and key. This means that the structure of all K/V
operations needs to be modified to allow for this. We’d also recommend
enabling users to perform K/V operations without specifying a bucket
type, in which case the default type is used. In the official Python
client, for example, the following two reads are equivalent:


client.bucket('fruits').get('apple')
client.bucket_type('default').bucket('fruits').get('apple')






Dealing with Objects and Content Types


One of the trickier things about dealing with objects in Riak is that
objects can be of any data type you choose (Riak Data Types are a
different matter, and covered in the [[section below|Client
Implementation Guide#Riak-Data-Types]]). You can store JSON, XML, raw
binaries, strings, mp3s, MPEGs (though you should probably consider
Riak
CS [http://docs.basho.com/riak/latest/dev/references/protocol-buffers/get-bucket-type/]
for larger files like that), and so on. While this makes Riak an
extremely flexible database, it means that clients need to be able to
work with a wide variety of content types.


All objects stored in Riak must have a specified content type, e.g.
application/json, text/plain, application/octet-stream, etc. While
a Riak client may not need to be able to handle all data types, a
client intended for wide use should be able handle at least the
following:



		JSON


		XML


		plain text


		binaries





You should also strongly consider building automatic type handling into
your client. When the official Ruby and Python clients, for example,
read JSON from Riak, they automatically convert that JSON to hashes and
dicts (respectively). The Java client, to give another example,
automatically converts
POJOs [http://en.wikipedia.org/wiki/Plain_Old_Java_Object] to JSON by
default and enables you to automatically convert stored JSON to custom
POJO classes [http://en.wikipedia.org/wiki/Plain_Old_Java_Object] when
fetching objects, which enables you to easily interact with Riak in a
type-specific way. If you’re writing a client in a language with strong
type safety, this might be a good thing to offer users.


Another important thing to bear in mind: all of your client interactions
with Riak should be UTF-8 [http://en.wikipedia.org/wiki/UTF-8]
compliant, not just for the data stored in objects but also for things
like bucket, key, and bucket type names. In other words, your client
should be able to store an object in the bucket Möbelträgerfüße with
the key tête-à-tête.





Conflict Resolution


If you’re using either [[Riak Data Types|Data Types]] or Riak’s [[strong
consistency]] subsystem, you don’t have to worry about
[[siblings|Conflict Resolution#Siblings]] because those features by
definition do not involve sibling creation or resolution. But many users
of your client will want to use Riak as an [[eventually
consistent|Eventual Consistency]] system, which means that they will
need to be able to create their own [[conflict resolution logic|Conflict
Resolution]].


In essence, your users’ applications will need to be able to make
intelligent, use-case-specific decisions about what to do when the
application is confronted with [[siblings|Conflict
Resolution#Siblings]]. Most fundamentally, this means that your client
needs to enable objects to have multiple sibling values instead of just
a single value. In the official Python client, for example, each object
of the class
RiakObject [https://github.com/basho/riak-python-client/blob/master/riak/riak_object.py#L107]
has parameters that you’d expect, like content_type, bucket, and
data, but it also has a siblings parameter that returns a list of
sibling values.


In addition to enabling objects to have multiple values, we also
strongly recommend providing some kind of helper logic that enables
users to easily apply their own sibling resolution logic, i.e. some
means of paring the list of sibling values down to a single value. What
kind of interface should be provided? That will depend heavily on the
language. In a functional language, for example, that might mean
enabling users to specify filtering functions that whittle the siblings
list down to a single “correct” value. To see conflict resolution in our
official clients in action, see our tutorials for [[Java|Conflict
Resolution: Java]], [[Ruby|Conflict Resolution: Ruby]], and
[[Python|Conflict Resolution: Python]].





Riak Data Types


In version 2.0, Riak added support for conflict-free replicated data
types (aka CRDTs [http://dl.acm.org/citation.cfm?id=2050642]), which we
call [[Riak Data Types|Data Types]]. These five special Data
Types—flags, registers, counters, sets, and maps—enable you to forgo
things like application-side conflict resolution because Riak handles
the resolution logic for you (provided that your data can be modeled as
one of the five types). What separates Riak Data Types from other Riak
objects is that you interact with them transactionally, meaning that
changing Data Types involves sending messages to Riak about what changes
should be made rather than fetching the object and modifying it on the
client side.


This means that your client interface needs to enable users to modify
the Data Types as much as they need to on the client side before
committing those changes to Riak. So if an application needs to add five
counters to a map and then remove items from three different sets within
that map, it should be able to commit those changes with one message
to Riak. The official Python client, for example, has a
store() [https://github.com/basho/riak-python-client/blob/master/riak/datatypes/datatype.py#L118]
function that sends all client-side changes to Riak at once, plus a
reload() [https://github.com/basho/riak-python-client/blob/master/riak/datatypes/datatype.py#L64]
function that fetches the current value of the type from Riak with no
regard for client-side changes (in fact, reloading the type will
actually wipe out all client-side changes).





Security


One of the most important features introduced in Riak 2.0 is
[[security|Authentication and Authorization]]. When enabled, all clients
connecting to Riak, regardless of which [[security source|Managing
Security Sources]] is chosen, must communicate with Riak over a secure
SSL connection rooted in an
x.509 [http://en.wikipedia.org/wiki/X.509]-certificate-based Public Key
Infrastructure (PKI). If you want your client’s users to be able to take
advantage of Riak security, you’ll need to create an SSL interface.
Fortunately, there are OpenSSL [https://www.openssl.org/] and other
libraries for all major languages. To see SSL in action in our official
clients, see our tutorials for [[Java|Client-side Security: Java]],
[[Ruby|Client-side Security: Ruby]], [[Python|Client-side Security:
Python]], and [[Erlang|Client-side Security: Erlang]].


Although not strictly necessary, we also recommend enabling users to
specify certificate revocation
lists [http://docs.basho.com/riak/latest/dev/advanced/client-security/python/#Specifying-a-Certificate-Revocation-List],
OCSP
checking [http://docs.basho.com/riak/latest/dev/advanced/client-security/ruby/#Online-Certificate-Status-Protocol],
and cipher
lists [http://docs.basho.com/riak/latest/dev/advanced/client-security/python/#Specifying-Ciphers].





Features That Don’t Require Client Changes


The following features that became available in [[Riak 2.0]] shouldn’t
require any changes to client libraries:



		[[Strong consistency]] — While adding strong consistency has
entailed a lot of changes within Riak itself, K/V operations
involving strongly consistent data function just like their
eventually consistent counterparts in most respects. The one small
exception is that performing object updates without first fetching
the object will necessarily fail because the initial fetched
object contains the object’s [[causal context]], which is necessary
for strongly consistent operations. It may be a good idea to add
this requirement to your client documentation.


		[[New configuration system|Configuration Files]] — Configuration has
been drastically simplified in Riak 2.0, but these changes won’t
have a direct impact on client interfaces.


		[[Dotted version vectors|Causal Context#Dotted-Version-Vectors]] —
While dotted version vectors (DVVs) are superior to the older
[[vector clocks|Causal Context#Vector-Clocks]] in preventing
problems like [[sibling explosion|Causal
Context#Sibling-Explosion]], client libraries interact with DVVs
just like they interact with vector clocks. In fact, our Protocol
Buffers messages still use a vclock field for both vector clocks
and DVVs, for the sake of backward compatibility.









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/community/style-guide.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Documentation Style Guide
project: riak
version: 1.4.1+
document: appendix
toc: true
index: true
keywords: [community]




The adage that no documentation is better than poor quality
documentation should always be borne in mind when we write
documentation. We should strive to provide accurate and current
information in a clear and consistent style that is appropriate for the
target audience.


For the sake of delivering clear and consistent documentation, this
document provides a common set of writing guidelines, complete with
document structures, styles, and conventions that we try to follow.



Essential Style Concepts



Audience


Before you begin authoring a document or response, be sure to
accurately identify your intended audience. This should always be the
first thing you do before even outlining or typing a single word.


Once you’ve identified your audience, try to keep their needs in mind
when writing. Our audience fortunately consists mainly of highly
technical people, but you should still avoid excessive use of jargon and
opt to keep language clear and simple wherever possible.





Voice


We prefer to prove that we’re human by using the active voice in our
documentation and customer responses. The collective pronouns we or
us are preferred over I in most cases, except for when writing in
informal communication styles, such as in blog posts.





Style for Purpose


It should always be asked of a document: is this document primarily
descriptive, prescriptive, or explanatory in nature? Our documentation
is generally split into two major document types: guides and
references. Once you’ve identified your audience, the next step is to
choose the type of document that you will write from these two primary
forms.



Guides


A guide helps the user through a particular process often by using
detailed and stepwise instructions presented in a narrative style.


When writing guides, it is helpful to use ordered lists when presenting
a series of steps, examples of the exact commands required to complete
those steps, and the expected output from each command.





References


In contrast to a guide, a reference is more of a collection of raw
knowledge that strives for correctness and completeness. In references,
the  focus is on compact explanation of specific features, API methods,
and similarly fine-grained domains of knowledge. It is important to
include all available information in a reference.


Guides and references are complementary documents and should always
exist in separate form. Avoid the temptation to mix the two styles in
one document.







Consistency


Consistency is a key element in authoring technical content. Using the
same term for something every single time is very important if you seek
to avoid confusing the reader. While a concept may be well grounded in
your mind due to frequent use, communicating to a person unfamiliar with
the concept is less effective when you use terminology inconsistently.


Even minor inconsistencies, such as the addition of an extra word to a
term or an unconventional abbreviation, can confuse the reader. This
confusion will ultimately impair their ability to effectively understand
your writing and, by extension, our technologies.







Document Design & Structure


The following pointers will help you structure a document and highlight
important content in a consistent way.



Chunks and Scanning


Well-written documentation is organized and presented in way that plays
to our tendency to rapidly scan content and find the information we
need.


To that end, write in small, easily scanned chunks of related
information, use common, everyday vocabulary suited for the target
audience, and avoid dense paragraphs stuffed with technical terminology
whenever possible.





Headings, Lists, & Emphasis


Proper organization and flow in a document helps the reader more quickly
locate the information they need. The following section describes
document organization methods which facilitate scanning and findability
while maintaining logical content ordering.


In general, it’s a good idea to use ordered—i.e. numbered—lists to
denote stepwise operations and unordered lists for grouping related
items, and to introduce both types of list with a complete sentence that
ends in a colon (:).


This is a sample unordered list:



		Riak


		Riak Enterprise


		Riak CS






Headings


Using descriptive headings helps to summarize detailed content within a
section of documentation. This also helps the reader scan a document and
quickly locate the section of content most appropriate for their needs.


Try to describe document sections with well-worded headings, and keep
heading levels to a minimum to reduce document structure complexity.


When writing headings, use an uppercase initial letter for all nouns,
verbs, and adjectives. Use an uppercase initial letter for all
conjunctions and prepositions longer than 4 characters. Use all
lowercase letters for conjunctions and prepositions shorter than 4
characters.


When in doubt, there’s a web tool that helps with correct title
capitalization [http://titlecapitalization.com/] in headers.



Performance and Tuning









Formatting Conventions


The following describes text formatting conventions useful for all
customer-facing product documentation and issue responses.



Italics


Use text set in italics to introduce new technology terminology,
provided that it is followed by a corresponding explanation. It’s also
good form to italicize non-English words, exempli gratia.





Bold


Use bold text when describing the targets of user interface options
or locations in an interface or system, such as “click Save”.





Fixed Width (Monospace)


Use fixed-width text by wrapping items in single backticks (\`) to
indicate command names, code, filenames, or text strings that a user is
expected to actually type in.


Typically, bare fixed-width text will indicate the actual commands and
arguments needed. When the placeholder arguments are used in an example
and the placeholder arguments should be replaced with actual data, a
note should be made about doing so.


Example:


After modifying vm.args, restart the node with riak restart.







Preformatted Text Blocks


Use three backticks (\`) with an optional language designator to
indicate blocks of code, configuration data, or other preformatted text.


Trim line lengths to less than 80 characters, and don’t include actual
prompts for command line examples, as doing so can be troublesome for
readers who copy and paste command line examples.


Erlang code example:


length([P || {riak_kv_vnode, P, _} <- riak_core_vnode_manager:all_vnodes()]).



Shell commands example:


riak-admin member-status
riak-admin transfers






Callouts & Notes


Inline notes are formatted in Markdown by wrapping text in
single-asterisk (*) characters.


Inline note example:


Note that when attempting to identify the database...


For blockstyle callouts in documentation, use an HTML <div> element
with either info or note classes. When using the info class, an
icon is included in the styling of the block for additional visual
impact. You can optionally specify a title for the block style note with
a second <div> element inside the note or info <div> with a class of
title.


Block note with title example:


<div class="note">
<div class="title">Note on Magic Switch</div>
There is a third-party switch located on the cabinet. Please do not
change the switch setting from **more magic** to **magic** while the
machine is in production, as a crash could occur.
</div>



Please note that Markdown syntax can also be intermixed within the HTML
<div> elements as well.





Grammar, Punctuation & Spelling


Consistent grammar, punctuation, and spelling usage within our
documentation strengthens reader confidence and helps to avoid
confusion.



Abbreviations


Abbreviation is the shortening of a word form. In writing about time,
for example, it is common to abbreviate ante meridiem as “am” and
post meridiem as “pm”.


When using abbreviation, avoid creating new forms of abbreviation, as
this can cause confusion. It is also unnecessary to explain the meaning
of familiar abbreviations (as in the above example).





Acronyms


An acronym is the representation of a multi-word term and is usually
formed by taking the first letter of each word from the term,
capitalizing it, and combining it with the other letters. The acronym
for application programming interface, for example, is “API”.


When you first use an acronym in a document, you should write out the
full term and enclose the acronym in parentheses immediately after the
term.


Avoid creating new acronyms in an ad-hoc manner, as they can cause
confusion.


Example:


This guide explains tuning Riak for operating clusters within the Amazon
Web Services (AWS) infrastructure.





Apostrophe


Use apostrophes primarily for making contractions. In the case of
internationalization of documentation, contractions should be avoided.
Pluralization of acronyms is not a correct use of apostrophes.


Example:


Don’t forget that you cannot easily change the ring_creation_size
after it has been initially specified.





Articles


Avoid using the definite article “the” to begin any of the following:



		Headings


		Document titles


		Section or chapter titles


		Callouts or notes


		Figure or table captions








Captions


Captions do not require a period at the end and use the same general
rules as headings.





Comma


The comma (,) should be used in series fashion when using lists of
three or more items and after introductory clauses. As a rule, we use
the Oxford comma for the sake of clarity.


Example:


The memory, disk, and network utilization are graphed using Graphite.





Commands


Avoid using commands as verbs.





Colon


Use a colon to introduce sequences or steps in a process or when a
command line example is to be shown. Colons should not, however, be used
in headings.


Example:


Follow these steps on each node to modify the configuration:



		Stop the node.


		Update the app.config file.


		Verify the configuration with riak chkconfig.


		If the configuration is valid, start the node with riak start.








Hyphen


Hyphens are common in technical documentation, but they are also tricky
to use properly. Fundamentally, a hyphen should join two words to form a
single concept, but there are other uses for hyphens as well, such as
denoting fractional measurements.


Examples:



		two-phase commit


		decision-making tree


		time-sensitive data





When in doubt about correct hyphen usage, consult a
[[reference|Documentation Style Guide#References]].





Key Names


All keyboard key names should be capitalized and bolded.


Example:


Press Control+Alt+Delete to reboot.





Numbers and Numerals


Since this is technical documentation, the normal rules of spelling
small numbers don’t apply all that much. Most of our usage of numbers
are for precision. We’d rather see the sentence:


“You should aim for 8 vnodes per node.”


As opposed to the wordy variant:


“You should aim for eight vnodes per node.”


Try and avoid starting sentences with numbers.


Examples:



		An 8-core processor


		Roughly 7 million operations per second


		The output consisted of four 25MB log files








Parentheses


Use parentheses to encapsulate acronyms on first use and for alternative
terms, but do not use them for complete asides or additional explanatory
text. Parentheses are also useful for referencing a specific section of
a system manual page.


Examples:



		Read about tuning the ZFS Second-Level Adaptive Replacement Cache
(L2ARC)


		See the sysctl(8) manual page for more details








Period


The period (.) is used to end complete sentences, at the end of each
step in a stepwise procedure, and in certain circumstances like acronyms
and abbreviations.


Example:


Complete steps 4 through 9 for each node that is a cluster member.





Proper Names


Proper names, such as Java, Python, Ruby, and Justin should
always be capitalized, with the exception of referring to commands of
the same name, as in the case of java, python, and ruby.


Example:


Justin typed python and pressed Enter to start the Python
interactive interpreter.





Quotations


Use quotations for emphasizing text from other sources when used
verbatim. We prefer quotations in web documents to underlining as an
alternate emphasis method beyond bold or italics.


Example:


“Yes, it can silently fail if you don’t check the returned error code.”





Blockquotes


For multiple sentence quotes, consider a blockquote, which is a line
started with a less than (>) character.


Example:



To achieve this level of availability, Dynamo sacrifices consistency
under certain failure scenarios. It makes extensive use of object
versioning and application-assisted conflict resolution in a manner that
provides a novel interface for developers to use.






Semicolons


Some people like semicolons, but they can be tricky to use. We recommend
avoiding them; unless you really paid attention in English class.





Dashes


Unlike semicolons, dashes are hard to use incorrectly. But their overuse
can make copy harder to read—use sparingly to separate ideas. You can
create a proper em dash [http://en.wikipedia.org/wiki/Dash#Em_dash] in
markdown by typing three en
dashes [http://en.wikipedia.org/wiki/Dash#En_dash] (---).









Terminology


A number of technical terms related to distributed computing
environments and specific to Riak are common to our product
documentation. Consistent use of these terms is critical to composing
accurate documentation that inspires confidence.



Basho Product-Specific Terminology



Erlang


Erlang is the primary programming language used to develop Riak and
Riak-related products. It should always be capitalized, as there is no
erlang command.





Fullsync, realtime


When describing Riak Enterprise replication, eschew hyphens in
fullsync and realtime.





MapReduce


MapReduce is written as “MapReduce;” avoid the use of incorrect
versions of the term, such as “Map/Reduce”, “M/R”, or any
lowercase-only form (e.g., “mapreduce”).





Multi-Datacenter Replication


One of the features of Riak Enterprise is Multi-Datacenter Replication.
It should be capitalized in both headings and sentences.





Protocol Buffers


When referring to the Google Protocol Buffers data serialization
mechanism, refer to it as “Protocol Buffers” or “protocol buffers.”
Avoid using project name abbreviations like “protobuffs.”


When writing about the Riak Protocol Buffers Client or API, use of the
abbreviation “PBC” or “PBC API” is acceptable, provided that the full
term is introduced at an earlier point in the document or response.





Riak


Riak is a product name and should always be spelled with a capital
R.


On the other hand, riak is a command name, is case-sensitive, and
should always be spelled in all lowercase letters and enclosed in
backticks when using Markdown.





Riak Enterprise


Riak Enterprise is a product name. Avoid references to “Riak EE,”
“Riak EDS,” or just “Enterprise”.







Localized Date Conventions


Should use the date convention for the document audience and avoid
abbreviations in date components, such as month names. Time should be
expressed in 24-hour format with a note about the specific time zone in
use. If in doubt, use ISO 8601: YYYY-MM-DD.







References



		A Short Guide to Writing
Guides [https://gist.github.com/coderoshi/3729593]


		American English grammar rules from the Chicago Manual of
Style [http://www.chicagomanualofstyle.org/home.html]


		Hyphen Use from the Purdue Online Writing
Lab [http://owl.english.purdue.edu/owl/resource/576/01/]









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/intro-v20.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Riak 2.0
project: riak
version: 2.0.0+
document: guide
audience: beginner
keywords: [developers]




Riak version 2.0 includes deep changes affecting all facets of Riak,
along with a wide variety of new features unavailable in previous
versions. Here, we’d like to briefly describe these new features and
direct you to sections of the documentation that explain how you can put
them to work in your Riak installation. For more in-depth implementation
details, we suggest checking out the version 2.0 release
notes [https://github.com/basho/riak/blob/riak-2.0.0/RELEASE-NOTES.md].


If you’re upgrading to Riak 2.0 from an earlier version, please be aware
that all of the new features listed below are purely optional:



		Riak Data Types — Riak’s new CRDT-based [[Data Types]] can
simplify modeling data in Riak, but are only used in buckets
explicitly configured to use them.


		Strong Consistency, Riak Security, and the New Riak Search —
These are subsystems in Riak that must be explicitly turned on to
work. If not turned on, they will have no impact on performance.
Furthermore, the older Riak Search will continue to be included with
Riak.


		Security — [[Authentication and authorization]] can be enabled
or disabled at any time.


		Configuration management — Riak’s [[configuration files]] have
been streamlined into a single file named riak.conf. If you are
upgrading, however, your existing app.config and vm.args files
will still be recognized in version 2.0.


		Bucket Types — While we strongly recommend [[using bucket
types]] when creating new buckets, they are not required.


		Dotted Version Vectors (DVVs) — This alternative to traditional
[[vector clocks|Causal Context#Vector-Clocks]] is enabled by default
in all [[bucket types|Using Bucket Types]], but DVVs can be disabled
by setting the dvv_enabled property to false on any bucket type.





In a nutshell, upgrading to 2.0 will change how you use Riak only if you
want it to. But even if you don’t plan on using the new features, there
are a number of improvements that make upgrading a good choice,
including the following:



		[[Cluster metadata]] — This is a subsystem of Riak added in 2.0 that
reduces the amount of inter-node gossip in Riak clusters, which can
reduce network congestion.


		[[Active Anti-Entropy]] — While Riak has had an Active Anti-Entropy
(AAE) feature that is turned on by default since version 1.3, AAE
performance has been improved in version 2.0.


		Bug patches [https://github.com/basho/riak/blob/2.0/RELEASE-NOTES.md]
— A variety of bugs present in earlier versions have been identified
and patched.





More on upgrading can be found in our [[Riak 2.0 upgrade guide|Upgrading
to 2.0]].



Riak Data Types


In distributed systems, there is an unavoidable trade-off between
consistency and availability. This can complicate some aspects of
application design if you’re using Riak as a key/value store because the
application is responsible for resolving conflicts between replicas of
objects stored in different Riak nodes.


Riak 2.0 offers a new approach to this problem for a wide range of use
cases in the form of [[Riak Data Types|using data types]]. Instead of
forcing the application to resolve conflicts, Riak offers five Data
Types that can cut through some of the complexities of developing using
Riak: [[flags|Data Types#Flags]], [[registers|Data Types#Registers]],
[[counters|Data Types#Counters]], [[sets|Data Types#Sets]], and
[[maps|Data Types#Maps]].



Relevant Docs



		[[Using Data Types]] explains how to use Riak Data Types on the
application side, with usage examples for all five Data Types in all
of Basho’s officially supported clients (Java, Ruby, Python, .NET and
Erlang) and for Riak’s HTTP interface


		[[Data Types]] explains some of the theoretical concerns that drive
Riak Data Types and shares some details about how they are implemented
under the hood in Riak








Video


Data Structures in Riak [http://vimeo.com/52414903] by Basho engineers
Sean Cribbs [https://github.com/seancribbs] and Russell
Brown [https://github.com/russelldb].







Riak Search 2.0 (codename: Yokozuna)


Riak Search 2.0 is a complete, top-to-bottom replacement for Riak
Search, integrating Riak with Apache
Solr [https://lucene.apache.org/solr/]‘s full-text search capabilities
and supporting Solr’s client query APIs.



Relevant Docs



		[[Using Search]] provides a broad-based overview of how to use the new
Riak Search


		[[Search Schema]] shows you how to create and manage custom search
schemas


		[[Search Details]] provides an in-depth look at the design
considerations that went into the new Riak Search








Video


Riak Search 2.0 [https://www.youtube.com/watch?v=-c1eynVLNMo] by Basho
engineer and documentarian Eric Redmond [https://github.com/coderoshi].







Strong Consistency


Riak is typically known as an AP system, favoring high availability and
partition tolerance while sacrificing data consistency. In version 2.0,
you have the option of applying strong consistency guarantees and thus
of using Riak as a CP—consistent plus partition-tolerant—system for
some (or perhaps all) of your data.



Relevant Docs



		[[Using Strong Consistency]] shows you how to enable Riak’s strong
consistency subsystem and to apply strong consistency guarantees to
data stored in specified buckets


		[[Strong Consistency]] provides a theoretical treatment of how a
strongly consistent system differs from an [[eventually
consistent|Eventual Consistency]] system, as well as details about how
strong consistency is implemented in Riak


		[[Managing Strong Consistency]] is a guide to strong consistency for
Riak operators








Video


Bringing Consistency to Riak [http://vimeo.com/51973001] by Basho
engineer Joseph Blomstedt [https://github.com/jtuple]. You should also
check out part 2 [https://www.youtube.com/watch?v=gXJxbhca5Xg].







Security


In version 2.0, Riak enables you to manage both authorization to
perform specific tasks, from GETs and PUTs to running MapReduce jobs to
administering Riak Search, and authentication of Riak clients
seeking access to Riak. Previously, securing Riak was restricted to the
network level. Now, security measures can be applied to the internals of
Riak itself and managed through a simple command-line interface.



Relevant Docs



		[[Authentication and Authorization]] explains how Riak Security can be
enabled and disabled, how users and groups are managed, how
authorization to perform certain operations can be granted and
revoked, how security ciphers can be chosen, and more


		[[Managing Security Sources]] is an in-depth tutorial on how to
implement Riak’s four supported authentication sources: trusted
networks, passwords, pluggable authentication modules, and
certificates








Video


Locking the Distributed Chicken Coop [https://www.youtube.com/watch?v=T6i8S6_dV7U]
by Basho engineer Andrew Thompson [https://github.com/Vagabond].







Simplified Configuration Management


In older versions of Riak, a Riak node’s configuration was determined by
two separate files: app.config and vm.args. In Riak 2.0, you have
the option of either continuing to use these files, which can be useful
if you’re upgrading to 2.0, or to manage configuration through a single
riak.conf file in which parameters are set using the following syntax:


parameter.sub-parameter = setting



Based on Basho’s Cuttlefish [https://github.com/basho/cuttlefish]
project, the new system is much simpler, leaving behind the Erlang
syntax required in app.config.



Note on upgrading

Version 2.0 will support both the old and the new configuration system,
in case you're upgrading. Please note, however, that if you use both
systems side by side, all settings from the older,
`app.config`/`vm.args`-based system will override any settings from the
new system.


Relevant Docs



		[[Configuration Files]] lists and describes all of the configurable
parameters available in Riak 2.0, from configuring your chosen storage
backend(s) to setting default bucket properties to controlling Riak’s
logging system and much more.








Video


Lightning talk on Cuttlefish [https://www.youtube.com/watch?v=Z3hKKpOFOrg]
by Basho engineer Joe DeVivo [https://github.com/joedevivo].







Bucket Types


In older versions of Riak, bucket properties were managed on a
bucket-by-bucket, ad hoc basis. With bucket types, you can now create
and manage whole configurations of bucket properties and apply them to
buckets. This is a much more efficient way of configuring buckets. In
addition, bucket types act as a third namespace in addition to buckets
and keys.



Relevant Docs



		[[Using Bucket Types]] explains how to create, modify, and activate
bucket types, as well as how the new system differs from the older,
bucket properties-based system








Video


Bucket Types and Config [https://www.youtube.com/watch?v=lZk8cD-qFHM]
hangout with Basho engineers Joe DeVivo [https://github.com/joedevivo]
and Jordan West [https://github.com/jrwest].







Dotted Version Vectors


In prior versions of Riak, [[conflict resolution]] was managed using
[[vector clocks|Causal Context#Vector-Clocks]], which are a mechanism
for tracking object update causality. Riak 2.0 has added support for
dotted version vectors (DVVs).  DVVs serve an analogous role to vector
clocks but are more effective at containing [[sibling explosion|Causal
Context#sibing-explosion]] and can thus reduce Riak cluster latency. The
[[dotted version vectors|Causal Context#Dotted-Version-Vectors]] doc
explains some of the theoretical nuances behind the distinction between
DVVs and vector clocks and offers instructions on implementing DVVs.





New Client Libraries


While Basho offered official [[client libraries]] for Java, Ruby,
Python, .NET and Erlang for versions of Riak prior to 2.0, all clients
have undergone major changes in anticipation of the 2.0 release.


Language | Docs
:——–|:—-
Java [https://github.com/basho/riak-java-client] | Javadoc [http://basho.github.io/riak-java-client/2.0.0-SNAPSHOT/]
Ruby [https://github.com/basho/riak-ruby-client] | API [http://basho.github.io/riak-ruby-client]
Python [https://github.com/basho/riak-python-client] | Sphinx [http://basho.github.io/riak-python-client/]
.NET [https://github.com/basho/riak-dotnet-client] | wiki [https://github.com/basho/riak-dotnet-client/wiki], API [http://basho.github.io/riak-dotnet-client-api/]
Erlang [https://github.com/basho/riak-erlang-client] | EDocs [http://basho.github.io/riak-erlang-client/]


You will also notice that our documentation now features a wide variety
of code samples from all four officially supported clients.





Incompatibilities


Some 2.0-specific features are currently not compatible with one
another. Incompatibilities are marked with a
✗ in the table below.



  
    
      		
      		Search 2.0
      		Strong consistency
      		Data Types
      		Secondary indexes
      		Legacy Search
    


  
  
    
      		Strong consistency
      		†
      		
      		
      		
      		
    


    
      		Data Types
      		✓
      		✗
      		
      		
      		
    


    
      		Secondary indexes
      		✗
      		‡
      		✗
      		
      		
    


    
      		Legacy Search
      		*
      		✗
      		✗
      		✗
      		
    


    
      		Security
      		✓
      		✓
      		✓
      		✓
      		✗
    


  




†


  


 


 


 The data indexed by Riak Search can be
stored in a strongly consistent fashion, but indexes themselves are
eventually consistent

‡


  


 


 


 If secondary indexes are attached to an
object, you can perform strongly consistent operations on the object but
the secondary indexes will be ignored

*  


 


 


 Legacy Search and Search 2.0
can be run side by side, but we do not recommend this






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/http/list-resources.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: HTTP List Resources
project: riak
version: 0.10.0+
document: api
toc: true
audience: advanced
keywords: [api, http]
group_by: “Server Operations”
moved: {
‘1.4.0-‘: ‘/references/apis/http/HTTP-List-Resources’
}




List available HTTP resources for the Riak node. This can be used by clients to
automatically recognize the location of the resources for specific operations.


The standard resources are:



		riak_kv_wm_buckets - [[Bucket Operations|HTTP API#Bucket-Operations]]


		riak_kv_wm_index - [[HTTP Secondary Indexes]]


		riak_kv_wm_link_walker - [[HTTP Link Walking]]


		riak_kv_wm_mapred - [[HTTP MapReduce]]


		riak_kv_wm_object- [[Object/Key Operations|HTTP API#Object-Key-Operations]]


		riak_kv_wm_ping - [[HTTP Ping]]


		riak_kv_wm_props - [[HTTP Set Bucket Properties]]


		riak_kv_wm_stats - [[HTTP Status]]





{{#2.0.0-}}


If Search is enabled, the following resources will also be included:



		riak_solr_searcher_wm - [[Solr search|http://docs.basho.com/riak/1.4.8/dev/using/search/#Querying]]


		riak_solr_indexer_wm - [[Solr indexing|http://docs.basho.com/riak/1.4.8/dev/advanced/search/#Indexing-using-the-Solr-Interface]]





{{/2.0.0-}}
{{#1.0.0-}}


If Luwak is enabled, the following resource will also be included:



		luwak_wm_file - [[Luwak Operations|HTTP API#Luwak Operations (Large Objects)]]





{{/1.0.0-}}



Request


GET /



Headers:



		Accept - application/json or text/html








Response


Normal status codes:



		200 OK





Important headers:



		Link - all resources that are described in the response body, but in Link
form








Example


Request JSON response


$ curl -i http://localhost:8098 -H "Accept: application/json"
HTTP/1.1 200 OK
Vary: Accept
Server: MochiWeb/1.1 WebMachine/1.10.0 (never breaks eye contact)
Link: </buckets>; rel="riak_kv_wm_buckets",</riak>; rel="riak_kv_wm_buckets",</buckets>; rel="riak_kv_wm_counter",</buckets>; rel="riak_kv_wm_index",</buckets>; rel="riak_kv_wm_keylist",</buckets>; rel="riak_kv_wm_link_walker",</riak>; rel="riak_kv_wm_link_walker",</mapred>; rel="riak_kv_wm_mapred",</buckets>; rel="riak_kv_wm_object",</riak>; rel="riak_kv_wm_object",</ping>; rel="riak_kv_wm_ping",</buckets>; rel="riak_kv_wm_props",</stats>; rel="riak_kv_wm_stats"
Date: Wed, 27 Nov 2013 20:18:31 GMT
Content-Type: application/json
Content-Length: 398

{"riak_kv_wm_buckets":"/buckets","riak_kv_wm_buckets":"/riak","riak_kv_wm_counter":"/buckets","riak_kv_wm_index":"/buckets","riak_kv_wm_keylist":"/buckets","riak_kv_wm_link_walker":"/buckets","riak_kv_wm_link_walker":"/riak","riak_kv_wm_mapred":"/mapred","riak_kv_wm_object":"/buckets","riak_kv_wm_object":"/riak","riak_kv_wm_ping":"/ping","riak_kv_wm_props":"/buckets","riak_kv_wm_stats":"/stats"}

# Request HTML response
curl -i http://localhost:8098 -H "Accept: text/html"
HTTP/1.1 200 OK
Vary: Accept
Server: MochiWeb/1.1 WebMachine/1.10.0 (never breaks eye contact)
Link: </buckets>; rel="riak_kv_wm_buckets",</riak>; rel="riak_kv_wm_buckets",</buckets>; rel="riak_kv_wm_counter",</buckets>; rel="riak_kv_wm_index",</buckets>; rel="riak_kv_wm_keylist",</buckets>; rel="riak_kv_wm_link_walker",</riak>; rel="riak_kv_wm_link_walker",</mapred>; rel="riak_kv_wm_mapred",</buckets>; rel="riak_kv_wm_object",</riak>; rel="riak_kv_wm_object",</ping>; rel="riak_kv_wm_ping",</buckets>; rel="riak_kv_wm_props",</stats>; rel="riak_kv_wm_stats"
Date: Wed, 27 Nov 2013 20:20:05 GMT
Content-Type: text/html
Content-Length: 666

<html><body><ul><li><a href="/buckets">riak_kv_wm_buckets</a></li><li><a href="/riak">riak_kv_wm_buckets</a></li><li><a href="/buckets">riak_kv_wm_counter</a></li><li><a href="/buckets">riak_kv_wm_index</a></li><li><a href="/buckets">riak_kv_wm_keylist</a></li><li><a href="/buckets">riak_kv_wm_link_walker</a></li><li><a href="/riak">riak_kv_wm_link_walker</a></li><li><a href="/mapred">riak_kv_wm_mapred</a></li><li><a href="/buckets">riak_kv_wm_object</a></li><li><a href="/riak">riak_kv_wm_object</a></li><li><a href="/ping">riak_kv_wm_ping</a></li><li><a href="/buckets">riak_kv_wm_props</a></li><li><a href="/stats">riak_kv_wm_stats</a></li></ul></body></html>







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/community/product-advisories/ssl-poodle.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: SSL 3.0 Vulnerability and POODLE Attack
project: riak
version: 1.0.0+
versions: false
document: reference




Info | Value
:—-|:—–
Date issued | January 27, 2015
Product | Riak and Riak CS
Affected Riak versions | 1.2.x, 1.3.x, 1.4.x, 2.0.0-2.0.2
Affected Riak CS versions | All versions up to 1.5.2



Overview


SSL version 3 has been revealed as insecure via an attack on
POODLE [https://www.us-cert.gov/ncas/alerts/TA14-290A]. The Erlang VM
on which Riak relies supports this old version.





Description


This fix is very narrow in scope. It instructs Erlang’s SSL library to
forbid SSL version 3 traffic. Versions of Riak prior to 1.2 are also
susceptible in the limited scenarios described here, but the patch
supplied is not applicable.





Affected Users


Users that do any of the following will be will be affected:



		expose Riak CS to untrusted networks via HTTPS


		expose Riak’s optional HTTPS interface to untrusted networks


		expose Riak Control to untrusted networks





If you do not expose Riak or Riak CS to untrusted networks, we do not
recommend applying this patch, as it may lead to upgrade problems in the
future. If you are a Riak CS user, please also assess your Riak
installation against the criteria above and apply the patch if
indicated.





Riak 2.0 Users


If you have installed Riak 2.0.5, you will not need to apply the patch,
as that version includes the fix. If you are using Riak 2.0.0 to 2.0.2,
please upgrade to 2.0.5.





Riak CS and Riak 1.2-1.4 Users


To install the patch, perform the following on each node in your
cluster:



		Fetch the patch ZIP
file [https://github.com/basho/basho_docs/raw/master/source/data/poodle-1.x.zip]


		Stop the node


		Uncompress the patch ZIP file


		Copy the ssl_record.beam file from the unzipped file to the
basho-patches directory. Below is a list of operating systems and the
appropriate directory for that system:






		Debian and Ubuntu — /usr/lib/riak/lib/basho-patches





		CentOS and RHEL — /usr/lib64/riak/lib/basho-patches


For Riak CS, the relevant directories are
/usr/lib/riak-cs/lib/basho-patches and
/usr/lib64/riak-cs/lib/basho-patches, respectively.









		Confirm the MD5 hash of the ssl_record.beam file
(541b4a78044808b70b871a0897013b82)


		Start the node





To verify that the patch has been installed properly, run the [[riak attach|riak Command Line#attach]] command (or [[riak-cs attach|Riak CS Command-line Tools#riak-cs]]).


Once you have entered the Erlang shell, run m(ssl_record). (be sure
to include the trailing period).


In the resulting output, the compiled: Date: text should read
January 15 2015. You can exit the shell using Ctrl-C a.





Backout Plan


To uninstall this patch, perform the following on each node in your
cluster:



		Stop the node


		Delete the ssl_record.beam file from the basho-patches directory


		Start the node








Moving Forward


This patch is included in Riak 2.0.5 and all releases thereafter.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/quickstart.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Five-Minute Install
project: riak
version: 1.1.0+
document: tutorials
toc: true
audience: beginner
keywords: [developers, 2i]
moved: {
‘1.4.0-‘: ‘/tutorials/fast-track/Building-a-Development-Environment’
}




In this tutorial, we’ll share some quick start installers for OSX, as
well as provide instructions for building a
five-node [http://basho.com/why-your-riak-cluster-should-have-at-least-five-nodes/]
Riak cluster running on your local machine.



DMG Installer for OSX


If you would like to explore some of Riak’s functionality using a simple,
self-contained installer for OSX, you may view the
[[Riak App|https://github.com/basho-labs/riak-app]] project.  This will
create a single local instance of Riak so you may familiarize yourself
with Riak’s configuration and administration.  Note that this sample
application should not be used in a production deployment.





Riak Dev Cluster for OSX


To quickly create a five-node local devrel cluster on OSX, you may use the
[[Riak Dev Cluster|https://github.com/basho-labs/riak-dev-cluster/]] project.
This application will easily install and join a cluster of local nodes on OSX
for testing and administration.  Note that this sample application should not
be used in a production deployment.





Install Riak


The above installers helped you explore the basics of Riak on OSX.For full instructions on installing Riak for your desired operating
system, follow the steps below.


Basho’s pre-packaged Riak binaries (found under [[Downloads]]) embed the
Erlang runtime. This tutorial, however, is based on a source build, so
you will need to [[install Erlang|Installing Erlang]] if it is not
installed on your machine already.


If you wish to build Riak 2.0 from source, we strongly recommend using
Basho’s patched version of Erlang. The tar file for this version can be
downloaded
here [http://s3.amazonaws.com/downloads.basho.com/erlang/otp_src_R16B02-basho8.tar.gz].


curl -O http://s3.amazonaws.com/downloads.basho.com/erlang/otp_src_R16B02-basho8.tar.gz
tar -xvf otp_src_R16B02-basho8.tar.gz
cd otp_src_R16B02-basho8



Once you have unzipped the package, see our guide to [[installing
Erlang]] for installation instructions.



Get the Source


The following links provide platform-specific instructions for
downloading and installing Riak from source.



		[[Debian and Ubuntu|Installing on Debian and
Ubuntu#Installing-From-Source]]


		[[RHEL and CentOS|Installing on RHEL and
CentOS#Installing-From-Source]]


		[[Mac OS X|Installing on Mac OS X#Installing-From-Source]]


		[[FreeBSD|Installing on FreeBSD#Installing-From-Source]]


		[[SUSE|Installing on SUSE]]


		[[Windows Azure|Installing on Windows Azure]]


		[[AWS Marketplace|Installing on AWS Marketplace]]


		[[Unlisted Operating System|Installing Riak from Source]]








Build Riak


Now that you’ve downloaded and installed Riak using the instructions
above, it’s time to build it. Access the riak directory from your
install and run make all:


cd riak-{{VERSION}}
make all



The make all command grabs all of Riak’s dependencies for you so that
you don’t have to chase them down on your own. This process will likely
take a few moments.







Start Up Five Nodes


Now that Riak is built, use Rebar [https://github.com/basho/rebar], a
packaging and build system for Erlang applications, to get five
self-contained Riak nodes running on your machine. When you put Riak
into production, Rebar will enable you to ship a pre-built Riak package
to your deployment machines. But for now, we’ll just stick to the five
nodes. You can set the number of nodes you wish to create via
DEVNODES.


From the same directory in which you just ran make all, you can use
the following command to start up five nodes:


make devrel DEVNODES=5



You have just generated a dev directory. Let’s go into that directory
to check out its contents:


cd dev; ls



You will see that five directories beginning with dev have been
created:


dev1       dev2       dev3       dev4       dev5



Each of these directories is a complete, self-contained package
containing a Riak node. We need to start each node individually using
the start command in the bin directory. Let’s start with dev1:


dev1/bin/riak start




ulimit warning

At this point, you may receive a warning message to increase the number
of open file handles, i.e. ulimit, in your operating
system. See our [[Open Files Limit]] guide for platform-specific
instructions on doing so.  
Once you’ve started the node in dev1, do the same for dev2 through
dev5:


dev2/bin/riak start
dev3/bin/riak start
dev4/bin/riak start
dev5/bin/riak start



Of if you prefer more succinct commands, you can use a for loop to
iterate through and start the available nodes:


for node in dev*; do $node/bin/riak start; done




Check Running Nodes


After you have the nodes up and running, it’s time to test them and make
sure that they’re available. You can do this by taking a quick look at
your process list. To do this, run:


ps aux | grep beam



This should give you granular details on the five running Riak nodes. If
you’d like to simply check which nodes are running and which are not,
you can run the riak ping command on a specific node:


dev1/bin/riak ping



If the response is pong, then the node is up and running. Otherwise,
the node is currently stopped and will return something like the
following:


Node 'dev1@127.0.0.1' not responding to pings.



Alternatively, you can run a command to iterate through each node and
return its current status:


for node in dev*; do $node/bin/riak ping; done








Create the Cluster


Although you now have five nodes up and running, they are not yet
connected to one another, i.e. they do not yet form a Riak
[[cluster|Clusters]]. The next step is to join the nodes together into a
cohesive unity. You can do this using the [[riak-admin|riak-admin Command Line]] command interface. The riak-admin script, like the
riak script used above, is found in the bin directory of each Riak
node.


First, try joining the node dev2 to dev1:


dev2/bin/riak-admin cluster join dev1@127.0.0.1



If the response states that the cluster join is successfully staged,
everything went well. We’ll get into staging below, but we still have
three running nodes that have not yet been joined, so let’s join those as well:


dev3/bin/riak-admin cluster join dev1@127.0.0.1
dev4/bin/riak-admin cluster join dev1@127.0.0.1
dev5/bin/riak-admin cluster join dev1@127.0.0.1



Or alternatively:


for n in {3..5}; do dev$n/bin/riak-admin cluster join dev1@127.0.0.1; done



Notice that you don’t need to join every node to every single other
node. Once two nodes have been joined, they will share all the
information necessary to join all of the nodes into a unity. Thus, if
dev1 is joined to dev2 and also to dev5, dev2 and dev5 will be
able to communicate with one another.


At this point, the nodes have not yet been actually joined. Instead, the
join operations have been staged and are ready to be committed. To
make those joins take effect, you first must review the planned cluster
changes:


dev1/bin/riak-admin cluster plan



Note: The plan for the entire cluster can be reviewed on any node
in the cluster.


The plan command will print out a synopsis of what changes will be
made to the cluster on commit and how the cluster will look after the
changes are complete. The output should look like this:


=============================== Staged Changes ================================
Action         Nodes(s)
-------------------------------------------------------------------------------
join           'dev2@127.0.0.1'
join           'dev3@127.0.0.1'
join           'dev4@127.0.0.1'
join           'dev5@127.0.0.1'
-------------------------------------------------------------------------------


NOTE: Applying these changes will result in 1 cluster transition

###############################################################################
                         After cluster transition 1/1
###############################################################################

================================= Membership ==================================
Status     Ring    Pending    Node
-------------------------------------------------------------------------------
valid     100.0%     20.3%    'dev1@127.0.0.1'
valid       0.0%     20.3%    'dev2@127.0.0.1'
valid       0.0%     20.3%    'dev3@127.0.0.1'
valid       0.0%     20.3%    'dev4@127.0.0.1'
valid       0.0%     18.8%    'dev5@127.0.0.1'
-------------------------------------------------------------------------------
Valid:5 / Leaving:0 / Exiting:0 / Joining:0 / Down:0

Transfers resulting from cluster changes: 51
  12 transfers from 'dev1@127.0.0.1' to 'dev5@127.0.0.1'
  13 transfers from 'dev1@127.0.0.1' to 'dev4@127.0.0.1'
  13 transfers from 'dev1@127.0.0.1' to 'dev3@127.0.0.1'
  13 transfers from 'dev1@127.0.0.1' to 'dev2@127.0.0.1'



Finally, you can commit the join commands that you staged and then
reviewed:


dev2/bin/riak-admin cluster commit



Note: Changes to a cluster can be committed from any node.



About `riak-admin`

`riak-admin` is Riak's administrative tool. It's used to perform any
operational tasks beyond starting and stopping a node (e.g.  to make a
node join and leave a cluster), to back up data, and to manage general
cluster operations. You can read more about the `riak-admin` command in
the [[riak-admin command line]] documentation.




Test the Cluster


Now that we have a running five-node Riak cluster, let’s make sure that
it’s working properly. For this we have a couple of options. The
simplest is to run the member-status command on one of our nodes:


dev1/bin/riak-admin member-status



This will give us a high-level view of our cluster and tell us the
percentage of the data in the cluster that each node manages:


================================= Membership ==================================
Status     Ring    Pending    Node
-------------------------------------------------------------------------------
valid      20.3%      --      'dev1@127.0.0.1'
valid      20.3%      --      'dev2@127.0.0.1'
valid      20.3%      --      'dev3@127.0.0.1'
valid      20.3%      --      'dev4@127.0.0.1'
valid      18.8%      --      'dev5@127.0.0.1'
-------------------------------------------------------------------------------
Valid:5 / Leaving:0 / Exiting:0 / Joining:0 / Down:0



In order to test whether our cluster is working properly, let’s store an
object (just a short text snippet) and then attempt to fetch it. The
easiest way to get started is by using Riak’s [[HTTP API]]. We’ll use
curl [http://httpkit.com/resources/HTTP-from-the-Command-Line/] to make
a PUT request to the [[key|Keys and Objects#keys]] german in the
[[bucket|Buckets]] welcome.


curl -XPUT http://localhost:10018/buckets/welcome/keys/german \
  -H 'Content-Type: text/plain' \
  -d 'herzlich willkommen'



Your HTTP port might differ, so check your [[configuration files]] for
the valid port in your cluster. That information can be found in
/etc/riak.conf if you’re using the newer configuration system or in
/etc/app.config if you’re using the older system.



Note on the HTTP API

While the HTTP API can be useful for getting started or for running
basic test operations, we strongly recommend using [[client libraries]]
that utilize Riak's [[Protocol Buffers API|PBC API]] when building
applications.  
If the PUT request above succeeded, that means that you’ve stored your
first object in Riak. Now attempt a GET request to the same HTTP
endpoint:


curl http://localhost:10018/buckets/welcome/keys/german



You should get the following result:


herzlich willkommen



Now try something a little bit more involved. Copy a
JPEG [http://en.wikipedia.org/wiki/JPEG] image file from somewhere on
your hard drive into the root directory of your cluster:


cp ~/image/location/<image_name>.jpg .



Use curl to PUT the image into Riak:


curl -XPUT http://localhost:10018/buckets/images/keys/<image_name>.jpg \
  -H 'Content-Type: image/jpeg' \
  --data-binary @<image_name>.jpg



You can verify that the image has been properly stored by navigating to
the URL above in a browser or issuing a GET request:


curl -O http://localhost:10018/buckets/images/keys/<image_name>.jpg



This will save the image to the current directory. You can open it with
an image editor to verify that the image has been stored and retrieved
correctly.


Congratulations! You should now have a five-node Riak cluster up and
running.



HTTP interface ports

The above configuration sets up nodes with HTTP interfaces listening on
ports `10018`, `10028`, `10038`, `10048`, and `10058` for `dev1`,
`dev2`, `dev3`, `dev4`, and `dev5` respectively. The default port for
single nodes to listen on is `10018`, and users will need to take note
of this when trying to use any of the default settings for Riak client
libraries.  



Setting Up Your Riak Client


Basho maintains official [[client libraries]] for Java, Ruby, Python,
.NET, Erlang, and PHP. Below are links to client-specific documentation for each
language:



		Java [https://github.com/basho/riak-java-client]


		Ruby [https://github.com/basho/riak-ruby-client]


		Python [https://github.com/basho/riak-python-client]


		.NET [https://github.com/basho/riak-dotnet-client]


		Node.js [https://github.com/basho/riak-nodejs-client]


		Erlang [https://github.com/basho/riak-erlang-client]


		PHP [https://github.com/basho/riak-php-client]





In each of the above docs, you’ll find detailed client installation and
setup instructions. Here, we’ll walk you through the basics of
establishing a client connection to Riak in each of the four official
clients. In each case, it will be assumed that the client has been
successfully installed and that your application has been configured to
use it.



Java


In the new 2.0 version of the Java client, Riak is accessed at the
[[cluster|Clusters]] level rather than at the basic client level, as in
previous versions of the client. This enables you to provide host and
port information for all of the nodes in your cluster.


There are a variety of ways to set up cluster interaction with the Java
client. We’ll start with the simplest way, which is to create a
connection to a single node, add that node to our cluster object, and
then create a client object (which must refer to a cluster). Let’s
assume the node is listening on localhost and the [[Protocol
Buffers|PBC API]] port 10017.


RiakNode node = new RiakNode.Builder()
        .withRemoteAddress("127.0.0.1")
        .withRemotePort(10017)
        .build();
RiakCluster cluster = new RiakCluster.Builder(node)
        .build();
RiakClient client = new RiakClient(cluster);



An important thing to always bear in mind is that you must start your
cluster object before it can be used.


cluster.start();

// There is also a method to shut the cluster down:

cluster.shutdown();



If you do not start up your cluster object, you will see an error like
this:


Exception in thread "main" java.lang.IllegalStateException: required: [RUNNING] current: CREATED



Now let’s try to make a more complex cluster with three different nodes.
Each node will listen on localhost but they will listen on ports
10017, 10027, and 10037, respectively. Since they all share the same
host, we can create a node builder object and create new nodes using
that builder. This time, though, we’ll add those nodes to a Java List
that we can pass to our cluster object:


List<RiakNode> nodes = new LinkedList<RiakNode>();
RiakNode.Builder nodeBuilder = new RiakNode.Builder()
        .withRemoteAddress("127.0.0.1");

nodes.add(nodeBuilder.withRemotePort(10017).build());
nodes.add(nodeBuilder.withRemotePort(10027).build());
nodes.add(nodeBuilder.withRemotePort(10037).build());

RiakCluster cluster = new RiakCluster(nodes).build();
RiakClient client = new RiakClient(cluster)l



Remember once again that you must run the start() method on your
cluster object.


A third way to create a cluster object is by using a list of
remote addresses (as strings) and a node builder object to create a
list of nodes in one go. The following example would create three node
objects for nodes on the hosts 101.0.0.1, 101.0.0.2, and
101.0.0.3, respectively, all of which are listening on port 10017:


List<String> addresses = new LinkedList<String>();
addresses.add("101.0.0.1");
addresses.add("101.0.0.2");
addresses.add("101.0.0.3");

RiakNode.Builder nodeBuilder = new RiakNode.Builder()
        .withRemotePort(10017);
List<RiakNode> nodes = RiakNode.Builder.buildNodes(nodeBuilder, addresses);



For some Java code samples to get you started, see our tutorials on
[[the basics of Riak|The Basics]], [[Riak Data Types|Using Data Types]],
and [[Riak Search 2.0|Using Search]], as well as a variety of other
pages in the Riak for Developers section of the documentation (in
the navbar on the left).





Ruby


How you connect to Riak with the Ruby client depends on whether you’re
using Riak in a development environment with a one-node
[[cluster|Clusters]] or if you’re using multiple nodes, as you would in
any production environment.


If you’re developing using a single-node cluster, you can create a
client object and specify the host and [[Protocol Buffers|PBC API]]
port. The example below connects the Ruby client to a one-node cluster
running on the host 101.0.0.1 and the port 8087:


require 'riak'

client = Riak::Client.new(host: '101.0.0.1', pb_port: 8087)



If connecting to multiple nodes, you can specify the connection
information for those nodes when you instantiate the client object (or
whatever you wish to call this object). Let’s say that your cluster
consists of three nodes, each with a Protocol Buffers port of 8087 and
IPs of 101.0.0.1, 101.0.0.2, and 101.0.0.3, respectively. We can specify
this information in the hash that we pass to the client:


port = 8087

client = Riak::Client.new(nodes: [
  { host: '101.0.0.1', pb_port: port },
  { host: '101.0.0.2', pb_port: port },
  { host: '101.0.0.3', pb_port: port }
])



For some Ruby code samples to get you started, see our tutorials on
[[the basics of Riak|The Basics]], [[Riak Data Types|Using Data Types]],
[[data modeling with Riak Data Types]], and [[Riak Search 2.0|Using
Search]], as well as a variety of other pages in the Riak for
Developers section of the documentation (in the navbar on the left).





Python


How you connect to Riak with the Python client depends on whether you’re
using Riak in a development environment with a one-node
[[cluster|Clusters]] or if you’re using multiple nodes, as you would in
any production environment.


If you’re developing using a single-node cluster, you can create a
client object and specify the host and [[Protocol Buffers|PBC API]]
port. The example below connects the Python client to a one-node cluster
running on host 101.0.0.1 and port 8087:


from riak import RiakClient

client = RiakClient(host='101.0.0.1', protocol='pbc', pb_port=8087)



If connecting to multiple nodes, you can specify the connection
information for those nodes when you instantiate the client object (or
whatever you wish to call this object). Let’s say that your cluster
consists of three nodes, each with a Protocol Buffers port of 8087 and
IPs of 101.0.0.1, 101.0.0.2, and 101.0.0.3, respectively. We can specify
this information in the hash that we pass to the client:


port = 8087

client = RiakClient(protocol='pbc',nodes=[
  { 'host': '127.0.0.1', 'pb_port': port },
  { 'host': '127.0.0.2', 'pb_port': port },
  { 'host': '127.0.0.3', 'pb_port': port }
])



For some Python code samples to get you started, see our tutorials on
[[the basics of Riak|The Basics]], [[Riak Data Types|Using Data Types]],
and [[Riak Search 2.0|Using Search]], as well as a variety of other
pages in the Riak for Developers section of the documentation (in
the navbar on the left).





.NET


When using the .NET
client [https://github.com/basho/riak-dotnet-client], you should
specify the connection information for all of the nodes in your cluster
in your project’s App.config file. Let’s say that you’re running a
three-node cluster with all nodes listening on port 8087 and on the IP
addresses 127.0.0.1, 127.0.0.2, and 127.0.0.3, respectively.


An App.config file specifying this information will look something
like this:


<?xml version="1.0" encoding="utf-8"?>
<configuration>
  <configSections>
    <section name="riakConfig" type="RiakClient.Config.RiakClusterConfiguration, RiakClient" />
  </configSections>
  <riakConfig>
    <nodes>
      <node name="dev1" hostAddress="127.0.0.1" pbcPort="8087" poolSize="20" />
      <node name="dev2" hostAddress="127.0.0.2" pbcPort="8087" poolSize="20" />
      <node name="dev3" hostAddress="127.0.0.3" pbcPort="8087" poolSize="20" />
    </nodes>
  </riakConfig>
</configuration>



Note that a connection pool size of 20 was chosen for each of node
connections. You may modify that as you see fit.


Once the connection info is in place, you must initialize a
RiakCluster object, specifying you’ll be using the riakConfig
parameters:


// Note: cluster implements `IDisposable`
var cluster = RiakCluster.fromConfig("riakConfig");



With the cluster object instantiated, you can create a RiakClient
object that is used to execute all operations with Riak:


var client = cluster.CreateClient();






Node.js


There are a variety of ways to set up cluster interaction with the Node.js
client. The following is the simplest way, which is to pass an array of
host:port information to the Riak.Client constructor.


var Riak = require('basho-riak-client');

var riakNodes = [
    'riak-test:10017',
    'riak-test:10027',
    'riak-test:10037',
    'riak-test:10047'
];

// Note: no need to call start() since the new Riak.Client object
// will start the cluster connection
var client  new Riak.Client(riakNodes);



There is also a method to shut the cluster down:


client.shutdown(function (state) {
    if (state === Riak.Cluster.State.SHUTDOWN) {
        // Do whatever steps are necessary now that client is shut down
        // like process.exit()
    }
});



For some Node.js code samples to get you started, see our tutorials on
[[the basics of Riak|The Basics]], [[Riak Data Types|Using Data Types]],
and [[Riak Search 2.0|Using Search]], as well as a variety of other
pages in the Riak for Developers section of the documentation (in
the navbar on the left).





Erlang


How you connect to Riak with the Erlang client depends on whether you’re
using Riak in a development environment with a one-node
[[cluster|Clusters]] or if you’re using multiple nodes, as you would in
any production environment.


If you’re developing using a single-node cluster, you can specify a
single process identifier (i.e.
pid [http://www.erlang.org/doc/reference_manual/data_types.html#id66818])
to which your client will connect on the basis of the host and Protocol
Buffers port you provide. The example below connects the Erlang client
to a one-node cluster running on the host 101.0.0.1 and the port 8087:


{ok, Pid} = riakc_pb_socket:start_link("101.0.0.1", 8087).



If connecting to multiple nodes, you can specify the connection
information for those nodes and produce multiple process identifiers.
Let’s say that your cluster consists of three nodes, each with a
[[Protocol Buffers|PBC API]] port of 8087 and IPs of 101.0.0.1,
101.0.0.2, and 101.0.0.3, respectively. The following would produce
separate process identifiers for each:


{ok, Pid1} = riakc_pb_socket:start_link("101.0.0.1", 8087),
{ok, Pid2} = riakc_pb_socket:start_link("101.0.0.2", 8087),
{ok, Pid3} = riakc_pb_socket:start_link("101.0.0.3", 8087).



For some Erlang code samples to get you started, see our tutorials on
[[the basics of Riak|The Basics]], [[Riak Data Types|Using Data Types]],
and [[Riak Search 2.0|Using Search]], as well as a variety of other
pages in the Riak for Developers section of the documentation (in
the navbar on the left).





PHP


How you connect to Riak with the PHP client depends on whether you’re
using Riak in a development environment with a one-node
[[cluster|Clusters]] or if you’re using multiple nodes, as you would in
any production environment.


If you’re developing using a single-node cluster, you can create a
client object and specify the host and [[HTTP|HTTP API]]
port. The example below connects the PHP client to a one-node cluster
running on host 101.0.0.1 and port 8098:


use Basho\Riak;
use Basho\Riak\Node;

$node = (new Node\Builder)
        ->atHost('101.0.0.1')
        ->onPort(8098)
        ->build();

$riak = new Riak([$node]);



If connecting to multiple nodes, you can specify the connection
information for those nodes when you instantiate the client object (or
whatever you wish to call this object). Let’s say that your cluster
consists of three nodes, each with a HTTP port of 8098 and
IPs of 101.0.0.1, 101.0.0.2, and 101.0.0.3, respectively. We can specify
this information in the hash that we pass to the client:


use Basho\Riak;
use Basho\Riak\Node;

$nodeBuilder = (new Node\Builder)->onPort(8098);
$node1 = $nodeBuilder->withHost('101.0.0.1')->build();
$node2 = $nodeBuilder->withHost('101.0.0.2')->build();
$node3 = $nodeBuilder->withHost('101.0.0.3')->build();

$client = new Riak([$node1, $node2, $node3]);



For some PHP code samples to get you started, see our tutorials on
[[the basics of Riak|The Basics]], [[Riak Data Types|Using Data Types]],
and [[Riak Search 2.0|Using Search]], as well as a variety of other
pages in the Riak for Developers section of the documentation (in
the navbar on the left).








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/http/status.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: HTTP Status
project: riak
version: 0.10.0+
document: api
toc: true
audience: advanced
keywords: [api, http]
group_by: “Server-related Operations”
moved: {
‘1.4.0-‘: ‘/references/apis/http/HTTP-Status’
}




Reports about the performance and configuration of the Riak node to which it was requested. You must have the {riak_kv_stat,true} configuration setting in app.config for this endpoint to be active.



Performance


{{#1.2.0-1.2.1}}
Requests to the /stats endpoint should not be executed more than once
a minute as statistics are recalculated every time the command is
executed.
{{/1.2.0-1.2.1}}


{{#1.3.0+}}
Repeated requests to the /stats endpoint do not have a negative
performance impact as the statistics are cached internally in Riak.
{{/1.3.0+}}





Request


GET /stats



Important headers:



		Accept - determines whether the response will be formatted in application/json or text/plain.








Response


Normal status codes:



		200 OK





Typical error codes:



		404 Not Found - if riak_kv_stat is not enabled





Important headers:



		Content-Type - application/json or text/plain (JSON with added line-breaks)








Example


$ curl -v http://127.0.0.1:8098/stats -H "Accept: text/plain"
* About to connect() to 127.0.0.1 port 8098 (#0)
*   Trying 127.0.0.1... connected
* Connected to 127.0.0.1 (127.0.0.1) port 8098 (#0)
> GET /stats HTTP/1.1
> User-Agent: curl/7.19.7 (universal-apple-darwin10.0) libcurl/7.19.7 OpenSSL/0.9.8l zlib/1.2.3
> Host: 127.0.0.1:8098
> Accept: text/plain
>
< HTTP/1.1 200 OK
< Vary: Accept, Accept-Encoding
< Server: MochiWeb/1.1 WebMachine/1.9.0 (participate in the frantic)
< Date: Fri, 30 Sep 2011 15:24:35 GMT
< Content-Type: text/plain
< Content-Length: 2102
<
{
    "vnode_gets": 0,
    "vnode_puts": 0,
    "read_repairs": 0,
    "vnode_gets_total": 0,
    "vnode_puts_total": 0,
    "node_gets": 0,
    "node_gets_total": 0,
    "node_get_fsm_time_mean": "undefined",
    "node_get_fsm_time_median": "undefined",
    "node_get_fsm_time_95": "undefined",
    "node_get_fsm_time_99": "undefined",
    "node_get_fsm_time_100": "undefined",
    "node_puts": 0,
    "node_puts_total": 0,
    "node_put_fsm_time_mean": "undefined",
    "node_put_fsm_time_median": "undefined",
    "node_put_fsm_time_95": "undefined",
    "node_put_fsm_time_99": "undefined",
    "node_put_fsm_time_100": "undefined",
    "read_repairs_total": 0,
    "cpu_nprocs": 84,
    "cpu_avg1": 251,
    "cpu_avg5": 174,
    "cpu_avg15": 110,
    "mem_total": 7946684000.0,
    "mem_allocated": 4340880000.0,
    "nodename": "riak@127.0.0.1",
    "connected_nodes": [

    ],
    "sys_driver_version": "1.5",
    "sys_global_heaps_size": 0,
    "sys_heap_type": "private",
    "sys_logical_processors": 2,
    "sys_otp_release": "R13B04",
    "sys_process_count": 189,
    "sys_smp_support": true,
    "sys_system_version": "Erlang R13B04 (erts-5.7.5) [[source]] [[64-bit]] [[smp:2:2]] [[rq:2]] [[async-threads:5]] [[hipe]] [[kernel-poll:true]]",
    "sys_system_architecture": "i386-apple-darwin10.3.0",
    "sys_threads_enabled": true,
    "sys_thread_pool_size": 5,
    "sys_wordsize": 8,
    "ring_members": [
        "riak@127.0.0.1"
    ],
    "ring_num_partitions": 64,
    "ring_ownership": "[{'riak@127.0.0.1',64}]",
    "ring_creation_size": 64,
    "storage_backend": "riak_kv_bitcask_backend",
    "pbc_connects_total": 0,
    "pbc_connects": 0,
    "pbc_active": 0,
    "riak_kv_version": "0.11.0",
    "riak_core_version": "0.11.0",
    "bitcask_version": "1.0.1",
    "luke_version": "0.1",
    "webmachine_version": "1.7.1",
    "mochiweb_version": "1.7.1",
    "erlang_js_version": "0.4",
    "runtime_tools_version": "1.8.3",
    "crypto_version": "1.6.4",
    "os_mon_version": "2.2.5",
    "sasl_version": "2.1.9",
    "stdlib_version": "1.16.5",
    "kernel_version": "2.13.5"
}
* Connection #0 to host 127.0.0.1 left intact
* Closing connection #0






Output Explanation


The output of /stats contains the output of riak-admin status detailed in the [[Inspecting a Node|Inspecting a Node]] doc, plus the below stats generated by the Riak Core application.


Stat                          | Description
——————————|—————————————————
riak_core_stat_ts             | The last time (in Epoch time) Riak Core stats were generated
ignored_gossip_total          | Total number of ignored gossip messages since node was started
rings_reconciled_total        | Total number of ring reconciliation operations since node was started
rings_reconciled              | Number of ring reconciliation operations in the last minute
gossip_received               | Number of gossip messages received in the last minute
rejected_handoffs             | Total number of ownership handoff operations rejected by the node since it was started
handoff_timeouts              | Total number of handoff timeouts encountered by this node since it was started
dropped_vnode_requests_total  | Total number of requests dropped by local vnodes since the node was started
converge_delay_min            | Minimum time in milliseconds describing time taken for the ring to converge after ring changes
converge_delay_max            | Maximum time in milliseconds describing time taken for the ring to converge after ring changes
converge_delay_mean           | Mean time in milliseconds describing time taken for the ring to converge after ring changes
converge_delay_last           | Last observed histogram value in milliseconds describing time taken for the ring to converge after ring changes
rebalance_delay_min           | Minimum time in milliseconds taken to calculate partition rebalance during a cluster membership change
rebalance_delay_max           | Maximum time in milliseconds taken to calculate partition rebalance during a cluster membership change
rebalance_delay_mean          | Mean time in milliseconds describing time taken for the ring to converge after ring changes
rebalance_delay_last          | Last observed histogram value in milliseconds describing time taken for the ring to converge after ring changes
riak_kv_vnodes_running        | Number of local Riak KV virtual nodes running
riak_kv_vnodeq_min            | Minimum queue size of all local Riak KV virtual nodes in the last minute
riak_kv_vnodeq_median         | Median queue size of all local Riak KV virtual nodes in the last minute
riak_kv_vnodeq_mean           | Mean queue size of all local Riak KV virtual nodes in the last minute
riak_kv_vnodeq_max            | Max queue size of all local Riak KV virtual nodes in the last minute
riak_kv_vnodeq_total          | Total queue size of all local Riak KV virtual nodes in the last minute
riak_pipe_vnodes_running      | Number of local Riak Pipe virtual nodes running
riak_pipe_vnodeq_min          | Minimum queue size of local Riak Pipe virtual nodes in the last minute
riak_pipe_vnodeq_median       | Median queue size of local Riak Pipe virtual nodes in the last minute
riak_pipe_vnodeq_mean         | Mean queue size of local Riak Pipe virtual nodes in the last minute
riak_pipe_vnodeq_max          | Max queue size of local Riak Pipe virtual nodes in the last minute
riak_pipe_vnodeq_total        | Total queue size of all local Riak Pipe virtual nodes in the last minute






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/community/product-advisories/template.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title:
project: riak
version: 1.0.0+
versions: false
document: reference




Info | Value
:—-|:—–
Date issued |
Product |
Affected versions



Overview





Description





Mitigation Strategy






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/building/configuration.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Basic Configuration
project: riak
version: 1.4.0+
document: tutorial
toc: true
audience: beginner
keywords: [operators, building, configuration]




This document covers the parameters that are commonly adjusted when
setting up a new cluster. We recommend that you also review the detailed
[[Configuration Files]] document before moving a cluster into
production.


All configuration values discussed here are managed via the
configuration file on each node, and a node must be restarted for any
changes to take effect.



Note

If you are upgrading to Riak version 2.0 or later from an pre-2.0
release, you can use either your old `app.config` configuration file or
the newer `riak.conf` if you wish.If you have installed Riak 2.0 directly, you should use only
riak.conf.


More on configuring Riak can be found in the [[configuration files]]
doc.



We advise that you make as many of the changes below as practical
before joining the nodes together into a cluster. Once your
configuration has been set on each node, follow the steps in [[Basic
Cluster Setup]] to complete the clustering process.


Use [[riak-admin member-status|riak-admin Command Line#member-status]]
to determine whether any given node is a member of a cluster.



Erlang VM Tunings


Prior to building and starting a cluster, there are some
Erlang-VM-related changes that you should make to your configuration
files. If you are using the older, vm.args-based Erlang VM tunings,
you should set the following:


+sfwi 500
+scl false



If you are using the newer, riak.conf-based configuration system, we
recommend the following settings:


erlang.schedulers.force_wakeup_interval = 500
erlang.schedulers.compaction_of_load = false



More information can be found in [[Erlang VM Tuning]].





Ring Size


The ring size, in Riak parlance, is the number of data partitions that
comprise the cluster. This quantity impacts the scalability and
performance of a cluster and, importantly, it should established
before the cluster starts receiving data.


If the ring size is too large for the number of servers, disk I/O will
be negatively impacted by the excessive number of concurrent databases
running on each server; if the ring size is too small, the servers’ other
resources (primarily CPU and RAM) will go underutilized.


See [[Planning for a Riak System]] and [[Scaling and Operating Riak
Best Practices]] for more details on choosing a ring size.


The steps involved in changing the ring size depend on whether the
servers (nodes) in the cluster have already been joined together.



Cluster joined, but no data needs to be preserved



		Change the ring creation size parameter by uncommenting it and then
setting it to the desired value, for example 64:


ring_size = 64



%% In the riak_core section:
{ring_creation_size, 64}






		Stop all nodes





		Remove the ring data file on each node (see [[Backing up Riak]] for
the location of this file) 4.  Start all nodes





		Re-add each node to the cluster (see [[Adding and Removing
Nodes|Adding and Removing Nodes#Add-a-Node-to-an-Existing-Cluster]]) or
finish reviewing this document and proceed to [[Basic Cluster Setup]]











New servers, have not yet joined a cluster



		Change the ring creation size parameter by uncommenting it and then
setting it to the desired value, for example 64:


ring_size = 64



%% In the riak_core section:
{ring_creation_size, 64}






		Stop all nodes





		Remove the ring data file on each node (see [[Backing up Riak]] for
the location of this file)





		Finish reviewing this document and proceed to [[Basic Cluster
Setup]]











Verifying ring size


You can use the riak-admin command can verify the ring size:


riak-admin status | grep ring



Console output:


ring_members : ['riak@10.160.13.252']
ring_num_partitions : 8
ring_ownership : <<"[{'riak@10.160.13.252',8}]">>
ring_creation_size : 8



If ring_num_partitions and ring_creation_size do not agree, that
means that the ring_creation_size value was changed too late and that
the proper steps were not taken to start over with a new ring.


Note: Riak will not allow two nodes with different ring sizes to be
joined into a cluster.







Backend


Another critical decision to be made is the backend to use. The choice
of backend strongly influences the performance characteristics and
feature set for a Riak environment.


See [[Choosing a Backend]] for a list of supported backends. Each
referenced document includes the necessary configuration bits.


As with ring size, changing the backend will result in all data being
effectively lost, so spend the necessary time up front to evaluate and
benchmark backends.


If still in doubt, consider using the [[Multi]] backend for future
flexibility.


If you do change backends from the default ([[Bitcask]]), make sure you
change it across all nodes. It is possible but generally unwise to use
different backends on different nodes, as this would limit the
effectiveness of backend-specific features.





Default Bucket Properties


Bucket properties are also very important factors in Riak’s performance
and general behavior. The properties for any individual bucket can be
configured dynamically [[using bucket types]], but default values for
those properties can be defined in your [[configuration
files|Configuration Files]].


Below is an example of setting last_write_wins to true and r to 3.


buckets.default.last_write_wins = true
buckets.default.r = 3



{default_bucket_props, [
    {last_write_wins,true},
    {r,3},
    ...
    ]}



For more on bucket properties, we recommend reviewing our docs on
[[buckets]], [[bucket types|Using Bucket Types]], [[replication
properties]], and [[eventual consistency]], as well as Basho’s five-part
blog series, “Understanding Riak’s Configurable Behaviors.”



		Part 1 [http://basho.com/understanding-riaks-configurable-behaviors-part-1/]


		Part 2 [http://basho.com/riaks-config-behaviors-part-2/]


		Part 3 [http://basho.com/riaks-config-behaviors-part-3/]


		Part 4 [http://basho.com/riaks-config-behaviors-part-4/]


		Epilogue [http://basho.com/riaks-config-behaviors-epilogue/]





If the default bucket properties are modified in your configuration
files and the node is restarted, any existing buckets will not be
directly impacted, although the mechanism described in [[HTTP Reset
Bucket Properties]] can be used to force them to pick up the new
defaults.





System tuning


Please review the following documents before conducting any
[[benchmarking|Basho Bench]] and/or rolling out a live production
cluster.



		[[Open Files Limit]]


		[[System Performance Tuning]]


		[[AWS Performance Tuning]]


		[[Configuration Files]]








Joining the nodes together


Please see [[Basic Cluster Setup]] for the cluster creation process.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/building/benchmarking.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Basho Bench
project: riak
version: 0.10.0+
document: cookbook
toc: true
audience: beginner
keywords: [operator, benchmark]
moved: {
‘1.4.0-‘: ‘/cookbooks/Benchmarking’
}




Basho Bench is a benchmarking tool created to conduct accurate and
repeatable performance tests and stress tests, and to produce
performance graphs.


Basho Bench exposes a pluggable driver interface and has been extended
to serve as a benchmarking tool against a variety of projects. New
drivers can be written in Erlang and are generally less than 200 lines
of code.



Installation


You will need:



		One or more load-generating machines on which to install
basho_bench.  Especially when testing larger clusters, a
single machine cannot generate enough load to properly exercise
the cluster.  Do not run the basho_bench instances on the
Riak nodes themselves, since the load generation will compete with
Riak for resources.


		The R statistics language [http://www.r-project.org/] must be
installed (somewhere available to you) if you wish to generate
graphs (see the [[Generating Benchmark Graphs|Basho
Bench#Generating-Benchmark-Graphs]] section, below).






Download basho_bench


You can download the pre-built packages below, or build it from source.



		Ubuntu 14.04 LTS:
basho-bench_0.10.0.53-1_amd64.deb [http://ps-tools.s3.amazonaws.com/basho-bench_0.10.0.53.g0e15158-ubuntu14.04LTS-1_amd64.deb]


		CentOS 7:
basho-bench-0.10.0.53-1.el7.centos.x86_64.rpm [http://ps-tools.s3.amazonaws.com/basho-bench-0.10.0.53.g0e15158-1.el7.centos.x86_64.rpm]








Building from Source



Prerequisites



		Erlang must be installed. See [[Installing Erlang]] for instructions
and versioning requirements. Note: Unless you’re an experienced
Erlang developer, we recommend that you use Ubuntu 14.04 LTS (and
not CentOS), when building basho_bench from source.  Later
versions of CentOS (6 and 7) have difficulty with installing and
enabling certain parts of the erlang-crypto package, which
is required by basho_bench.


		Install git (to check out the basho_bench code)








Compiling


git clone git://github.com/basho/basho_bench.git
cd basho_bench
make










Usage


Run the basho_bench script, pass in the config file and the
directory to generate the results into:


basho_bench --results-dir <results dir> <config file>



If you’ve installed basho_bench from a pre-built package, you
must specify full paths for the test results directory and config
file. (Also, don’t use the common ~/ shell notation, specify the
user’s home directory explicitly)


basho_bench --results-dir /home/username/bench_results/ /etc/basho_bench/riakc_pb.config 



The example above will generate results in
/home/username/bench_results/current/.


If you built basho_bench from source, you can get away with
relative paths (and the results directory will be created in the
current directory):


./basho_bench myconfig.config



This will generate results in tests/current/. You will need to
create a configuration file. The recommended approach is to start from
a file in the examples directory and modify settings using the
[[Configuration|Basho Bench#Configuration]] section below for
reference.





Generating Benchmark Graphs


The output of from running the basho_bench script can be used to
create graphs showing the following:



		Throughput — Operations per second over the duration of the test.


		Latency at 99th percentile, 99.9th percentile and max latency for
the selected operations.


		Median latency, mean latency, and 95th percentile latency for the
selected operations.






Prerequisites


The R statistics language is needed to generate graphs. Note: If
necessary, R can be installed on a different machine than the one
running basho_bench, and the performance data can be copied (via
rsync, for example) from the load testing machine to the one that will
be generating and viewing the graphs (such as a desktop).



Installing R on Ubuntu


sudo apt-get install r-base






Installing R on Other Platforms



		More information: [[http://www.r-project.org/]]


		Download R: [[http://cran.r-project.org/mirrors.html]]





Follow the instructions for your platform to install R.







Generating Graphs


If you have installed basho_bench from a pre-built package, and
you also have R installed on the same machine, you can generate the
current result graph with the following:


Rscript --vanilla /usr/lib/basho_bench/lib/basho_bench*/priv/summary.r /home/username/bench_results/current/



This will create a results file in
/home/username/bench_results/summary.png.


If you have built basho_bench from source, you can just use
make.  To generate a benchmark graph against the current
results, run:


make results



This will create a results file in tests/current/summary.png.


You can also run this manually:


priv/summary.r -i tests/current






Troubleshooting Graph Generation


For additional help, see the [[Troubleshooting Graph
Generation|https://github.com/basho/basho_bench#troubleshooting-graph-generation]]
section of the basho_bench/README.







How does it work?


When Basho Bench starts (basho_bench.erl), it reads the
configuration (basho_bench_config.erl), creates a new results
directory, and then sets up the test (basho_bench_app.erl and
basho_bench_sup.erl).


During test setup, Basho Bench creates the following:



		One stats process (basho_bench_stats.erl). This process
receives notifications when an operation completes, plus the
elapsed time of the operation, and stores it in a histogram. At
regular intervals, the histograms are dumped to summary.csv as
well as operation-specific latency CSVs (e.g. put_latencies.csv
for the PUT operation).


		N workers, where N is specified by the [[concurrent|Basho
Bench#concurrent]] configuration setting
(basho_bench_worker.erl). The worker process wraps a driver
module, specified by the [[driver|Basho Bench#driver]]
configuration setting. The driver is randomly invoked using the
distribution of operations as specified by the [[operations|Basho
Bench#operations]] configuration setting. The rate at which the
driver invokes operations is governed by the [[mode|Basho
Bench#mode]] setting.





Once these processes have been created and initialized, Basho Bench
sends a run command to all worker processes, causing them to begin the
test. Each worker is initialized with a common seed value for random
number generation to ensure that the generated workload is reproducible
at a later date.


During the test, the workers repeatedly call driver:run/4, passing in
the next operation to run, a keygen function, a valuegen function, and
the last state of the driver. The worker process times the operation,
and reports this to the stats process when the operation has completed.


Finally, once the test has been run for the duration specified in the
config file, all workers and stats processes are terminated and the
benchmark ends. The measured latency and throughput of the test can be
found in ./tests/current/. Previous results are in timestamped
directories of the form ./tests/YYYYMMDD-HHMMSS/.





Configuration


Basho Bench ships with a number of sample configuration files, available
in the /examples directory.



Global Config Settings



mode


The mode setting controls the rate at which workers invoke the
{driver:run/4} function with a new operation. There are two possible
values:



		{max} — generate as many ops per second as possible


		{rate, N} — generate N ops per second, with exponentially distributed interarrival times





Note that this setting is applied to each driver independently. For
example, if {rate, 5} is used with 3 concurrent workers, Basho Bench
will be generating 15 (i.e. 5 * 3) operations per second.


% Run at max, i.e.: as quickly as possible
{mode, max}

% Run 15 operations per second per worker
{mode, {rate, 15}}






concurrent


The number of concurrent worker processes. The default is 3 worker
processes. This determines the number of concurrent clients running
requests on API under test.


% Run 10 concurrent processes
{concurrent, 10}






duration


The duration of the test, in minutes. The default is 5 minutes.


% Run the test for one hour
{duration, 60}






operations


The possible operations that the driver will run, plus their “weight,”
or likelihood of being run. The default is [{get,4},{put,4},{delete, 1}], which means that out of every 9 operations, GET will be called
four times, PUT will be called four times, and DELETE will be called
once, on average.


{operations, [{get, 4}, {put, 1}]}.



Operations are defined on a per-driver basis. Not all drivers will
implement the GET/PUT operations discussed above. Consult the driver
source to determine the valid operations. If you’re testing the HTTP
interface, for example, the corresponding operations are GET and
UPDATE, respectively.


If a driver does not support a specified operation (asdfput in this
example), you may see errors like this:


DEBUG:Driver basho_bench_driver_null crashed: {function_clause,
                                          [{{{basho_bench_driver_null,run,
                                            [asdfput,
                                             #Fun<basho_bench_keygen.4.4674>,
                                             #Fun<basho_bench_valgen.0.1334>,
                                             undefined]}}},
                                           {{{basho_bench_worker,
                                            worker_next_op,1}}},
                                           {{{basho_bench_worker,
                                            max_worker_run_loop,1}}}]}






driver


The module name of the driver that Basho Bench will use to generate
load. A driver may simply invoke code in-process (such as when
measuring the performance of DETS) or may open network connections and
generate load on a remote system (such as when testing a Riak
server/cluster).


Available drivers include:



		basho_bench_driver_http_raw — Uses Riak’s HTTP interface to
get/update/insert data on a Riak server


		basho_bench_driver_riakc_pb — Uses Riak’s Protocol Buffers
interface to get/put/update/delete data on a Riak serve


		basho_bench_driver_riakclient — Uses Riak’s Distributed Erlang
interface to get/put/update/delete data on a Riak server


		basho_bench_driver_bitcask — Directly invokes the Bitcask API


		basho_bench_driver_dets — Directly invokes the DETS API





On invocation of the driver:run/4 method, the driver may return one of
the following results:



		{ok, NewState} — operation completed successfully


		{error, Reason, NewState} — operation failed but the driver can
continue processing (i.e. recoverable error)


		{stop, Reason} — operation failed; driver can’t/won’t continue
processing


		{'EXIT', Reason} — operation failed; driver crashed








code_paths


Some drivers need additional Erlang code in order to run. Specify the
paths to this code using the code_paths configuration setting.





key_generator


The generator function to use for creating keys. Generators are defined
in basho_bench_keygen.erl. Available generators include:



		{sequential_int, MaxKey} — generates integers from 0..MaxKey
in order and then stops the system. Note that each instance of
this keygen is specific to a worker.


		{partitioned_sequential_int, MaxKey} — the same as
{sequential_int}, but splits the keyspace evenly among the
worker processes. This is useful for pre-loading a large dataset.


		{partitioned_sequential_int, StartKey, NumKeys} — the same as
partitioned_sequential_int, but starting at the defined
StartKey and going up to StartKey + NumKeys.


		{uniform_int, MaxKey} — selects an integer from uniform
distribution of 0..MaxKey, i.e. all integers are equally probable.


		{pareto_int, MaxKey} — selects an integer from a Pareto
distribution, such that 20% of the available keys get selected 80%
of the time. Note that the current implementation of this
generator may yield values larger than MaxKey due to the
mathematical properties of the Pareto distribution.


		{truncated_pareto_int, MaxKey} — the same as {pareto_int}, but
will _not> yield values above MaxKey.


		{function, Module, Function, Args} — specifies an external
function that should return a key generator function. The worker
Id will be prepended to Args when the function is called.


		{int_to_bin, Generator} — takes any of the above _int
generators and converts the number to a 32-bit binary. This is
needed for some drivers that require a binary key.


		{int_to_str, Generator} — takes any of the above _int
generators and converts the number to a string. This is needed for
some drivers that require a string key.





The default key generator is {uniform_int, 100000}.


Examples:


% Use a randomly selected integer between 1 and 10,000
{key_generator, {uniform_int, 10000}}.

% Use a randomly selected integer between 1 and 10,000, as binary.
{key_generator, {int_to_bin, {uniform_int, 10000}}}.

% Use a pareto distributed integer between 1 and 10,000; values < 2000
% will be returned 80% of the time.
{key_generator, {pareto_int, 10000}}.






value_generator


The generator function to use for creating values. Generators are
defined in basho_bench_valgen.erl. Available generators include:



		{fixed_bin, Size} — generates a random binary of Size
bytes. Every binary is the same size, but varies in content.


		{exponential_bin, MinSize, Mean} — generates a random binary
which has an exponentially distributed size. Most values will be
approximately MinSize + Mean bytes in size, with a long tail
of larger values.


		{uniform_bin, MinSize, MaxSize} — generates a random binary
which has an evenly distributed size between MinSize and
MaxSize.


		{function, Module, Function, Args} — specifies an external
function that should return a value generator function. The worker
Id will be prepended to Args when the function is called.





The default value generator is {value_generator, {fixed_bin, 100}}.


Examples:


% Generate a fixed size random binary of 512 bytes
{value_generator, {fixed_bin, 512}}.

% Generate a random binary whose size is exponentially distributed
% starting at 1000 bytes and a mean of 2000 bytes
{value_generator, {exponential_bin, 1000, 2000}}.






rng_seed


The initial random seed to use. This is explicitly seeded, rather than
seeded from the current time, so that a test can be run in a
predictable, repeatable fashion.


Default is {rng_seed, {42, 23, 12}}.


% Seed to {12, 34, 56}
{rng_seed, {12, 34, 56}.






log_level


The log_level setting determines which messages Basho Bench will log
to the console and to disk.


The default level is debug.


| Valid levels
|:————
| debug
| info
| warn
| error





report_interval


How often, in seconds, the stats process should write histogram data
to disk. The default is 10 seconds.





test_dir


The directory in which result data is written. The default is /tests.







basho_bench_driver_riakclient Settings


These configuration settings apply to the
basho_bench_driver_riakclient driver.



riakclient_nodes


List of Riak nodes to use for testing.


{riakclient_nodes, ['riak1@127.0.0.1', 'riak2@127.0.0.1']}.






riakclient_cookie


The Erlang cookie to use to connect to Riak clients. The default is riak.


{riakclient_cookie, riak}.






riakclient_mynode


The name of the local node. This is passed into
net_kernel:start/1 [http://erlang.org/doc/man/net_kernel.html].


{riakclient_mynode, ['basho_bench@127.0.0.1', longnames]}.






riakclient_replies


This value is used for R-values during a get operation, and W-values
during a put operation.


% Expect 1 reply.
{riakclient_replies, 1}.






riakclient_bucket


The Riak bucket to use for reading and writing values. The Default is
<<"test">>.


% Use the "bench" bucket.
{riakclient_bucket, <<"bench">>}.








basho_bench_driver_riakc_pb Settings



riakc_pb_ips


A list of IP addresses to connect the workers to. A random IP will be
chosen for each worker.


The default is {riakc_pb_ips, [{127,0,0,1}]}


% Connect to a cluster of 3 machines
{riakc_pb_ips, [{10,0,0,1},{10,0,0,2},{10,0,0,3}]}






riakc_pb_port


The port on which to connect to the PBC interface.


The default is {riakc_pb_port, 8087}





riakc_pb_bucket


The bucket to use for testing.


The default is {riakc_pb_bucket, <<"test">>}







basho_bench_driver_http_raw Settings



http_raw_ips


A list of IP addresses to connect the workers to. Each worker makes
requests to each IP in a round-robin fashion.


The default is {http_raw_ips, ["127.0.0.1"]}


% Connect to a cluster of machines in the 10.x network
{http_raw_ips, ["10.0.0.1", "10.0.0.2", "10.0.0.3"]}.






http_raw_port


Select the default port to connect to for the HTTP server.


The default is {http_raw_port, 8098}.


% Connect on port 8090
{http_raw_port, 8090}.






http_raw_path


The base path to use for accessing Riak, usually "/riak/<bucket>".


The default is {http_raw_path, "/riak/test"}.


% Place test data in another_bucket
{http_raw_path, "/riak/another_bucket"}.






http_raw_params


Additional parameters to add to the end of the URL. This can be used
to set the r/w/dw/rw parameters as desired.


The default is {http_raw_params, ""}.


% Set R=1, W=1 for testing a system with n_val set to 1
{http_raw_params, "?r=1&w=1"}.






http_raw_disconnect_frequency


How often, in seconds or number of operations, the HTTP clients
(workers) should forcibly disconnect from the server.


The default is {http_raw_disconnect_frequency, infinity} (which
means that Basho Bench should never forcibly disconnect).


% Disconnect after 60 seconds
{http_raw_disconnect_frequency, 60}.

% Disconnect after 200 operations
{http_raw_disconnect_frequency, {ops, 200}}.










Custom Driver


A custom driver must expose the following callbacks.


% Create the worker
% ID is an integer
new(ID) -> {ok, State} or {error, Reason}.

% Run an operation
run(Op, KeyGen, ValueGen, State) -> {ok, NewState} or {error, Reason, NewState}.



See the existing
drivers [https://github.com/basho/basho_bench/tree/master/src] for
more details.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/http/store-object.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: HTTP Store Object
project: riak
version: 0.10.0+
document: api
toc: true
audience: advanced
keywords: [api, http]
group_by: “Object-related Operations”
moved: {
‘1.4.0-‘: ‘/references/apis/http/HTTP-Store-Object/’
}




Stores an object under the specified bucket / key. Storing an object comes in
two forms, depending on whether you want to use a key of your choosing, or let
Riak assign a key to a new object.



Request


POST /buckets/bucket/keys       # Riak-defined key
PUT /buckets/bucket/keys/key    # User-defined key



For the sake of compatibility with older clients, POST is also acceptable in
the form where the key is specified.


Important headers:



		Content-Type must be set for the stored object. Set what you expect to
receive back when next requesting it.


		X-Riak-Vclock if the object already exists, the vector clock attached to the
object when read.


		X-Riak-Meta-* - any additional metadata headers that should be stored with
the object.


		X-Riak-Index-* - index entries under which this object should be indexed.
[[Read more about Secondary Indexing.|HTTP Secondary Indexes]]


		Link - user and system-defined links to other resources. [[Read more about
Links.|Links]]





Optional headers (only valid on PUT):



		If-None-Match, If-Match, If-Modified-Since, and If-Unmodified-Since
invoke conditional request semantics, matching on the ETag and Last-Modified
of the existing object.  These can be used to prevent overwriting a modified
object.  If the test fails, you will receive a 412 Precondition Failed
response. This does not prevent concurrent writes; it is possible for the
condition to evaluate to true for multiple requests if the requests occur at the
same time.





Optional query parameters:



		w (write quorum) how many replicas to write to before returning a successful
response (default is defined by the bucket level)


		dw (durable write quorum) how many replicas to commit to durable storage
before returning a successful response (default is defined at the bucket level)


		pw how many primary replicas must be online to attempt a write (default is
defined at the bucket level)


		returnbody=[true|false] whether to return the contents of the stored object.





This request must include a body (entity).





Response


Normal status codes:



		201 Created (when submitting without a key)


		200 OK


		204 No Content


		300 Multiple Choices





Typical error codes:



		400 Bad Request - e.g. when r, w, or dw parameters are invalid (> N)


		412 Precondition Failed if one of the conditional request headers failed to
match (see above)





Important headers:



		Location a relative URL to the newly-created object (when submitting without
a key)





If returnbody=true, any of the response headers expected from [[HTTP Fetch
Object|HTTP-Fetch-Object]] may be present. Like when fetching the object, 300 Multiple Choices
may be returned if siblings existed or were created as part of the operation,
and the response can be dealt with similarly.





Example: Storing Without Key


$ curl -v http://127.0.0.1:8098/buckets/test/keys \
       -H "Content-Type: text/plain" -d 'this is a test'
* About to connect() to 127.0.0.1 port 8098 (#0)
*   Trying 127.0.0.1... connected
* Connected to 127.0.0.1 (127.0.0.1) port 8098 (#0)
> POST /buckets/test/keys HTTP/1.1
> User-Agent: curl/7.19.4 (universal-apple-darwin10.0) libcurl/7.19.4 OpenSSL/0.9.8l zlib/1.2.3
> Host: 127.0.0.1:8098
> Accept: */*
> Content-Type: text/plain
> Content-Length: 14
>
< HTTP/1.1 201 Created
< Vary: Accept-Encoding
< Server: MochiWeb/1.1 WebMachine/1.9.0 (participate in the frantic)
< Location: /buckets/test/keys/bzPygTesROPtGGVUKfyvp2RR49
< Date: Fri, 30 Sep 2011 15:24:35 GMT
< Content-Type: application/json
< Content-Length: 0
<
* Connection #0 to host 127.0.0.1 left intact
* Closing connection #0






Example: Storing With Key


$ curl -v -XPUT -d '{"bar":"baz"}' -H "Content-Type: application/json" -H "X-Riak-Vclock: a85hYGBgzGDKBVIszMk55zKYEhnzWBlKIniO8mUBAA==" http://127.0.0.1:8098/buckets/test/keys/doc?returnbody=true
* About to connect() to 127.0.0.1 port 8098 (#0)
*   Trying 127.0.0.1... connected
* Connected to 127.0.0.1 (127.0.0.1) port 8098 (#0)
> PUT /buckets/test/keys/doc?returnbody=true HTTP/1.1
> User-Agent: curl/7.19.4 (universal-apple-darwin10.0) libcurl/7.19.4 OpenSSL/0.9.8l zlib/1.2.3
> Host: 127.0.0.1:8098
> Accept: */*
> Content-Type: application/json
> X-Riak-Vclock: a85hYGBgzGDKBVIszMk55zKYEhnzWBlKIniO8mUBAA==
> Content-Length: 13
>
< HTTP/1.1 200 OK
< X-Riak-Vclock: a85hYGBgymDKBVIszMk55zKYEhnzWBlKIniO8kGF2TyvHYIKfwcJZwEA
< Vary: Accept-Encoding
< Server: MochiWeb/1.1 WebMachine/1.9.0 (participate in the frantic)
< Link: </buckets/test>; rel="up"
< Date: Fri, 30 Sep 2011 15:24:35 GMT
< Content-Type: application/json
< Content-Length: 13
<
* Connection #0 to host 127.0.0.1 left intact
* Closing connection #0
{"bar":"baz"}







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

_static/comment-bright.png





_static/file.png





search.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

_static/minus.png





source/languages/en/riakcs/tutorials/fast-track/index.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: The Riak CS Fast Track
project: riakcs
version: 1.2.0+
toc: false
document: tutorial
audience: beginner
keywords: [tutorial, fast-track, installing]
next: “[[What is Riak CS?|What is Riak CS]]“
interest: false
versions: false




Riak CS (Cloud Storage) is simple, open source storage software built on
top of Riak. It can be used to build public or private clouds, or as
reliable storage to power applications and services. It features:



		Highly available, fault-tolerant storage


		Large object support and multipart upload


		S3-compatible API and authentication


		OpenStack Swift API (not covered in this fast track)


		Multi-tenancy and per-user reporting


		Simple operational model for adding capacity


		Robust stats for monitoring and metrics






What is the Riak CS Fast Track?


The Riak CS Fast Track aims to get you up and running with Riak as
quickly as possible, so that you can learn by doing.  It presents
alternatives to configuration and deployment of a local test environment
and enumerates performing basic operations that illustrate Riak CS core
concepts.


The Fast Track is designed for people with little or no experience with
Riak CS, but can still be useful for more experienced users as well.





What does the Fast Track Cover?


The Fast Track takes you through the following sections:



		[[What is Riak CS?|What is Riak CS]] — A high-level overview of Riak
CS and its architecture


		[[Building a Local Test Environment]] — Instructions on setting up a
local environment on your machine


		[[Building a Virtual Testing Environment]] — Instructions on setting
up a virtual environment on your machine


		[[Testing the Riak CS Installation]] —  Using s3cmd to test your
local Riak CS installation









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/tutorials/fast-track/What-is-Riak-CS.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: What is Riak CS
project: riakcs
document: tutorial
audience: beginner
keywords: [tutorial, fast-track, installing]
prev: “[[The Riak CS Fast Track]]“
up:   “[[The Riak CS Fast Track]]“
next: “[[Building a Local Test Environment]]“
versions: false




This page introduces the architecture behind Riak CS. If you already
know this, you can skip it and progress to [[Building a Local Test
Environment]] or [[Building a Virtual Testing Environment]]



Architecture


Riak CS is built on Riak. When an object is uploaded, Riak CS breaks the
object into smaller blocks that are streamed, stored, and replicated in
the underlying Riak cluster. Each block is associated with metadata for
retrieval. Since data is replicated, and other nodes automatically take
over responsibilities of nodes that go down, data remains available even
in failure conditions.



How It Works


In a Riak CS system, any node can respond to client requests - there is
no master node and each node has the same responsibilities. Since data
is replicated (three replicas per object by default), and other nodes
automatically take over the responsibility of failed or
non-communicative nodes, data remains available even in the event of
node failure or network partition.


When an object is uploaded via the [[storage API|Riak CS Storage API]],
Riak CS breaks the object into smaller chunks that are streamed,
written, and replicated in Riak. Each chunk is associated with metadata
for later retrieval. The diagram below provides a visualization.


[image: Riak CS Chunking]







Riak CS Enterprise


Riak CS Enterprise extends Riak CS with Multi-Datacenter Replication,
monitoring, and 24×7 support. Customers use Multi-Datacenter Replication
to serve global traffic, create availability zones, maintain active
backups, or meet disaster recovery and regulatory requirements.
Multi-Datacenter Replication can be used in two or more sites. Data can
be replicated across data centers using realtime or fullsync
replication. To try out Riak CS Enterprise, sign up for a developer
trial [http://info.basho.com/RiakCS1.1_DeveloperTrialRequest.html].






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/references/appendices/comparisons/Riak-Compared-to-Atmos.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Riak CS Compared to Atmos
project: riakcs
version: 1.2.0+
document: appendix
toc: true
index: true
keywords: [comparisons, emc, atmos]




The purpose of this comparison is not to serve as an introduction to Riak CS and EMC Atmos, or their commonalities, but rather to enumerate interesting differences between the two systems. This document is intended for those who already have a basic understanding of both systems.


If you feel that this comparison is unfair to either of these technologies, please submit an issue on GitHub [https://github.com/basho/basho_docs/issues/new] or send an email to docs@basho.com.



Feature/Capability Comparison


The table below gives a high-level comparison of Riak CS and Atmos features and capabilities. For low-level details, please refer to the Riak CS and Atmos docs [https://community.emc.com/community/edn/atmos].



    
        		Feature/Capability
        		Riak
        		Atmos
    


    
        		Interfaces
        		Riak CS offers an S3-compatible interface that can be used with existing S3 clients and libraries. 
        
        		Atmos offers a REST and SOAP API, an S3-compatible API, and an Atmos SDK as well as interfaces to traditional storage solutions, including NFS/CIF and CAS.
        
    


    
        		Availability and Architecture for Reads/Writes
        		On write, Riak CS breaks large objects into blocks. Riak CS distributes data across physical machines using consistent hashing and replicates objects a default of 3 times in the underlying Riak storage system. A manifest is maintained for each object that points to which blocks comprise the object. The manifest is used to retrieve all blocks and present them to a client on read. 

        Riak CS is a masterless system in that any node can receive and route client requests, making it highly resilient to failure conditions like network partition and hardware failure. Riak uses a request serializer for globally unique entities like users and buckets. This request serializer runs on a single node and in the event of failure, a portion of write operations (specifically, creating new buckets and users) will be unavailable until service is restored.

        In Riak, by default, objects (including their manifests) are replicated 3 times in the underlying system. Riak can also be configured to store more replicas in a given site.
        
        		EMC Atmos stores objects and their metadata separately. The
        Metadata Service is responsible for storing all of an object's metadata, including policy and user-defined data, and for providing the object layout which is required for both writes and reads to the underlying storage service. On read, the client will connect with a Resource Management Service to talk to a Metadata Location Service, which then locates the correct Metadata Service for the object.
  
        The Metadata Location Service, responsible for finding a local Metadata Service on read, is deployed on two nodes of the first rack in an EMC Atmos implementation. The Metadata Service itself is a master/slave system with a primary and secondary node. The use of a master/slave architecture for metadata services that are required for reads and writes may compromise availability in the event of hardware failure or network partition. Additionally, Atmos stores only two copies of the metadata for an object at a site, which may also cause availability problems in certain failure conditions.
        
    


    
        		Users and Multitenancy
        		Riak exposes multitenancy using S3 conventions for user provisioning and management. Administrators can create users which are then able to authenticate, create buckets, upload and download data, retrieve account information and other user privileges.
        
        		EMC Atmos implements a more complex tenant scheme. Atmos recommends implementing 1-2 tenants in a system and using multiple sub-tenants underneath each tenant. The number of tenants is limited to the number of physical nodes, as front-end nodes are assigned to a specific tenant for client access. Configuring tenants and subtenants may be operationally complex, while assigning specific tenants to specific front-end nodes may cause end-user availability issues in the event of node failure.
        
    


    
        		Hardware
        		Riak CS ships as software and can be installed from source or with packages, including Ubuntu and CentOS. There is no hardware lock-in to specific vendors, and Riak CS is designed to be run on commodity hardware so that enterprises can achieve economies of scale.
        
        		EMC Atmos can be deployed as a software/hardware bundle on Atmos Hardware or as a virtual edition deployed on a VMware-certified third-party storage system.
        
    


    
        		Multi-Datacenter Replication
        		For multi-site replication in Riak CS, global information for users, bucket information, and manifests are streamed in real time from a primary implementation to a secondary site, so that global state is maintained across locations. Objects can then be replicated in either fullsync or realtime sync mode. The secondary site will replicate the object as in normal operations. Additional datacenters can be added in order to create availability zones or additional data redundancy and locality. Riak CS can also be configured for bi-directional replication. 
        
        		In EMC Atmos, object replication to secondary sites is done via synchronous or asynchronous replication configured by policies. These policies are implemented as part of the Metadata Service. A read-only copy of the metadata is maintained at secondary sites.      
     
    








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/references/appendices/comparisons/Riak-Compared-to-Swift.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Riak CS Compared to Swift
project: riakcs
version: 1.2.0+
document: appendix
toc: true
index: true
keywords: [comparisons, swift]




Riak CS and Swift—the object storage component of OpenStack—are both cloud storage systems that hold many design and implementation details in common. The purpose of this document is not to serve as an introduction to Riak CS and Swift or to their commonalities, but rather to enumerate important differences between the two systems. This document is intended for those who already have a basic understanding of both systems.


If you feel that this comparison is unfair to either of these technologies, please submit an issue on GitHub [https://github.com/basho/basho_docs/issues/new] or send an email to docs@basho.com.



Feature/Capability Comparison


The table below gives a high-level comparison of Riak CS and Swift features and capabilities.  For low-level details, please refer to the Riak CS and Swift docs [http://docs.openstack.org/developer/swift/].



    
        		Feature/Capability
        		Riak
        		Swift
    


    
        		Anti-Entropy
        		Riak CS supports Active Anti-Entropy, which monitors and repairs inconsistencies between divergent replicas. Riak CS also supports "passive" read-time anti-entropy, which provides repair of inconsistencies immediately at client-read time. Swift does not perform repair at read or write time, but rather resolves such issues during its next rsync cycle.
        		Swift has a continuous anti-entropy process via frequent invocation of "rsync" for repairing any inconsistencies between data node file systems.
    


    
        		Write-Time Communication & Host Failures
        		Riak CS always writes to the full number of desired hosts, using fallback nodes to perform hinted handoff and stand in for any missing or failing hosts in order to immediately reach full redundancy. As soon as the primary Riak CS nodes are once again reachable, copies on the fallbacks will be sent to them, quickly repairing the state of the cluster.
        		Swift will write at least a majority/quorum of replicas before declaring success, and will allow anti-entropy to bring the number of replicas up to the full count later if needed due to node failures.
    


    
        		Quorum Models
        		Riak CS’s underlying quorum model is not only about availability, it also provides a latency-smoothing effect by replying to the user without the need to block on the slowest host in the replication set. This prevents brief per-host performance problems from affecting end-users.
        		Swift, despite replying only with the "best" single response, will wait for all relevant storage nodes to finish before sending a response to a write request. This can adversely impact latency. However, Swift's read requests do not wait for a quorum; they simply try one replica at a time at random until they get a response with a fairly short timeout before moving on to try another. There are plans to improve the latency of Swift’s write requests.
    


    
        		Full-Stack Integration
        		Riak CS stands alone as a storage service that has no specific related services for compute, VM image management, etc.
        		Though it can run on its own, Swift is part of the OpenStack project, a highly regarded and well-defined "stack" of services.
    


    
        		Languages
        		Riak CS is written in Erlang, a language and platform engineered for extremely high availability, making it easier to build Riak CS on industry-tested distributed systems components, and to attract engineers that specialize in such systems.
        		Swift is written in Python, a language with a very large, accessible developer community who could readily contribute to Swift without the need to learn a new language.
    


    
        		Installation
        		Riak CS is designed for easy installation, with a relatively small number of independent components to manage. A minimal installation requires installing just three components and editing fewer than 10 lines of configuration data.
        		Swift’s "toolbox" approach requires the installation and ongoing operational supervision of various components, including Memcached, SQLite, and Keystone (the OpenStack authentication server), each of which have deep dependency trees of their own. An upside of this approach is that the system’s overall behavior is extremely modifiable by changing the behavior of any of the many dependencies.
    


    
        		Operations
        		With Riak CS, a single administrative command on a newly provisioned host tells the system to automatically integrate the new device. Well-defined underlying system components ensure correct behavior during transitions.
        		Swift requires a high degree of manual management. Devices are added to the definition of the ring by defining their node, name and zone. To change the definitions, mapping must be regenerated and new definitions must be pushed out to every node with whichever means is available (rsync appears to be the most common). When these files fall out of sync, the system will experience strange behavior or cease to function altogether.
    


    
        		Support For Amazon S3 API
        		Riak CS directly and natively supports the widely adopted S3 API, including such commonly used aspects as S3-keyed ACLs, hostname-to-bucket translation, etc.
        		Swift has its own custom (non-S3) API with its own strengths. Optional, externally developed middleware that emulates the S3 API on top of Swift is, however, available.
    


    
        		Governance
        		Riak CS is open source and is managed by Basho. It is available under the Apache 2 License.            
        		Swift is entirely open source and is managed by the OpenStack Foundation. No license is required in any way and no single company can either block or cause any changes to it on their own.
    







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

LICENSE.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  This license is a copy of the Creative Commons Attribution License
Human Readable Version: http://creativecommons.org/licenses/by/3.0/
Original Source: http://creativecommons.org/licenses/by/3.0/legalcode



License


THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS PUBLIC LICENSE (“CCPL” OR “LICENSE”). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.


BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.



1. Definitions


“Adaptation” means a work based upon the Work, or upon the Work and other pre-existing works, such as a translation, adaptation, derivative work, arrangement of music or other alterations of a literary or artistic work, or phonogram or performance and includes cinematographic adaptations or any other form in which the Work may be recast, transformed, or adapted including in any form recognizably derived from the original, except that a work that constitutes a Collection will not be considered an Adaptation for the purpose of this License. For the avoidance of doubt, where the Work is a musical work, performance or phonogram, the synchronization of the Work in timed-relation with a moving image (“synching”) will be considered an Adaptation for the purpose of this License.
“Collection” means a collection of literary or artistic works, such as encyclopedias and anthologies, or performances, phonograms or broadcasts, or other works or subject matter other than works listed in Section 1(f) below, which, by reason of the selection and arrangement of their contents, constitute intellectual creations, in which the Work is included in its entirety in unmodified form along with one or more other contributions, each constituting separate and independent works in themselves, which together are assembled into a collective whole. A work that constitutes a Collection will not be considered an Adaptation (as defined above) for the purposes of this License.
“Distribute” means to make available to the public the original and copies of the Work or Adaptation, as appropriate, through sale or other transfer of ownership.
“Licensor” means the individual, individuals, entity or entities that offer(s) the Work under the terms of this License.
“Original Author” means, in the case of a literary or artistic work, the individual, individuals, entity or entities who created the Work or if no individual or entity can be identified, the publisher; and in addition (i) in the case of a performance the actors, singers, musicians, dancers, and other persons who act, sing, deliver, declaim, play in, interpret or otherwise perform literary or artistic works or expressions of folklore; (ii) in the case of a phonogram the producer being the person or legal entity who first fixes the sounds of a performance or other sounds; and, (iii) in the case of broadcasts, the organization that transmits the broadcast.
“Work” means the literary and/or artistic work offered under the terms of this License including without limitation any production in the literary, scientific and artistic domain, whatever may be the mode or form of its expression including digital form, such as a book, pamphlet and other writing; a lecture, address, sermon or other work of the same nature; a dramatic or dramatico-musical work; a choreographic work or entertainment in dumb show; a musical composition with or without words; a cinematographic work to which are assimilated works expressed by a process analogous to cinematography; a work of drawing, painting, architecture, sculpture, engraving or lithography; a photographic work to which are assimilated works expressed by a process analogous to photography; a work of applied art; an illustration, map, plan, sketch or three-dimensional work relative to geography, topography, architecture or science; a performance; a broadcast; a phonogram; a compilation of data to the extent it is protected as a copyrightable work; or a work performed by a variety or circus performer to the extent it is not otherwise considered a literary or artistic work.
“You” means an individual or entity exercising rights under this License who has not previously violated the terms of this License with respect to the Work, or who has received express permission from the Licensor to exercise rights under this License despite a previous violation.
“Publicly Perform” means to perform public recitations of the Work and to communicate to the public those public recitations, by any means or process, including by wire or wireless means or public digital performances; to make available to the public Works in such a way that members of the public may access these Works from a place and at a place individually chosen by them; to perform the Work to the public by any means or process and the communication to the public of the performances of the Work, including by public digital performance; to broadcast and rebroadcast the Work by any means including signs, sounds or images.
“Reproduce” means to make copies of the Work by any means including without limitation by sound or visual recordings and the right of fixation and reproducing fixations of the Work, including storage of a protected performance or phonogram in digital form or other electronic medium.





2. Fair Dealing Rights.


Nothing in this License is intended to reduce, limit, or restrict any uses free from copyright or rights arising from limitations or exceptions that are provided for in connection with the copyright protection under copyright law or other applicable laws.





3. License Grant.


Subject to the terms and conditions of this License, Licensor hereby grants You a worldwide, royalty-free, non-exclusive, perpetual (for the duration of the applicable copyright) license to exercise the rights in the Work as stated below:


to Reproduce the Work, to incorporate the Work into one or more Collections, and to Reproduce the Work as incorporated in the Collections;
to create and Reproduce Adaptations provided that any such Adaptation, including any translation in any medium, takes reasonable steps to clearly label, demarcate or otherwise identify that changes were made to the original Work. For example, a translation could be marked “The original work was translated from English to Spanish,” or a modification could indicate “The original work has been modified.”;
to Distribute and Publicly Perform the Work including as incorporated in Collections; and,
to Distribute and Publicly Perform Adaptations.
For the avoidance of doubt:


Non-waivable Compulsory License Schemes. In those jurisdictions in which the right to collect royalties through any statutory or compulsory licensing scheme cannot be waived, the Licensor reserves the exclusive right to collect such royalties for any exercise by You of the rights granted under this License;
Waivable Compulsory License Schemes. In those jurisdictions in which the right to collect royalties through any statutory or compulsory licensing scheme can be waived, the Licensor waives the exclusive right to collect such royalties for any exercise by You of the rights granted under this License; and,
Voluntary License Schemes. The Licensor waives the right to collect royalties, whether individually or, in the event that the Licensor is a member of a collecting society that administers voluntary licensing schemes, via that society, from any exercise by You of the rights granted under this License.
The above rights may be exercised in all media and formats whether now known or hereafter devised. The above rights include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. Subject to Section 8(f), all rights not expressly granted by Licensor are hereby reserved.





4. Restrictions.


The license granted in Section 3 above is expressly made subject to and limited by the following restrictions:


You may Distribute or Publicly Perform the Work only under the terms of this License. You must include a copy of, or the Uniform Resource Identifier (URI) for, this License with every copy of the Work You Distribute or Publicly Perform. You may not offer or impose any terms on the Work that restrict the terms of this License or the ability of the recipient of the Work to exercise the rights granted to that recipient under the terms of the License. You may not sublicense the Work. You must keep intact all notices that refer to this License and to the disclaimer of warranties with every copy of the Work You Distribute or Publicly Perform. When You Distribute or Publicly Perform the Work, You may not impose any effective technological measures on the Work that restrict the ability of a recipient of the Work from You to exercise the rights granted to that recipient under the terms of the License. This Section 4(a) applies to the Work as incorporated in a Collection, but this does not require the Collection apart from the Work itself to be made subject to the terms of this License. If You create a Collection, upon notice from any Licensor You must, to the extent practicable, remove from the Collection any credit as required by Section 4(b), as requested. If You create an Adaptation, upon notice from any Licensor You must, to the extent practicable, remove from the Adaptation any credit as required by Section 4(b), as requested.
If You Distribute, or Publicly Perform the Work or any Adaptations or Collections, You must, unless a request has been made pursuant to Section 4(a), keep intact all copyright notices for the Work and provide, reasonable to the medium or means You are utilizing: (i) the name of the Original Author (or pseudonym, if applicable) if supplied, and/or if the Original Author and/or Licensor designate another party or parties (e.g., a sponsor institute, publishing entity, journal) for attribution (“Attribution Parties”) in Licensor’s copyright notice, terms of service or by other reasonable means, the name of such party or parties; (ii) the title of the Work if supplied; (iii) to the extent reasonably practicable, the URI, if any, that Licensor specifies to be associated with the Work, unless such URI does not refer to the copyright notice or licensing information for the Work; and (iv) , consistent with Section 3(b), in the case of an Adaptation, a credit identifying the use of the Work in the Adaptation (e.g., “French translation of the Work by Original Author,” or “Screenplay based on original Work by Original Author”). The credit required by this Section 4 (b) may be implemented in any reasonable manner; provided, however, that in the case of a Adaptation or Collection, at a minimum such credit will appear, if a credit for all contributing authors of the Adaptation or Collection appears, then as part of these credits and in a manner at least as prominent as the credits for the other contributing authors. For the avoidance of doubt, You may only use the credit required by this Section for the purpose of attribution in the manner set out above and, by exercising Your rights under this License, You may not implicitly or explicitly assert or imply any connection with, sponsorship or endorsement by the Original Author, Licensor and/or Attribution Parties, as appropriate, of You or Your use of the Work, without the separate, express prior written permission of the Original Author, Licensor and/or Attribution Parties.
Except as otherwise agreed in writing by the Licensor or as may be otherwise permitted by applicable law, if You Reproduce, Distribute or Publicly Perform the Work either by itself or as part of any Adaptations or Collections, You must not distort, mutilate, modify or take other derogatory action in relation to the Work which would be prejudicial to the Original Author’s honor or reputation. Licensor agrees that in those jurisdictions (e.g. Japan), in which any exercise of the right granted in Section 3(b) of this License (the right to make Adaptations) would be deemed to be a distortion, mutilation, modification or other derogatory action prejudicial to the Original Author’s honor and reputation, the Licensor will waive or not assert, as appropriate, this Section, to the fullest extent permitted by the applicable national law, to enable You to reasonably exercise Your right under Section 3(b) of this License (right to make Adaptations) but not otherwise.





5. Representations, Warranties and Disclaimer


UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.





6. Limitation on Liability.


EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.





7. Termination


This License and the rights granted hereunder will terminate automatically upon any breach by You of the terms of this License. Individuals or entities who have received Adaptations or Collections from You under this License, however, will not have their licenses terminated provided such individuals or entities remain in full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any termination of this License.
Subject to the above terms and conditions, the license granted here is perpetual (for the duration of the applicable copyright in the Work). Notwithstanding the above, Licensor reserves the right to release the Work under different license terms or to stop distributing the Work at any time; provided, however that any such election will not serve to withdraw this License (or any other license that has been, or is required to be, granted under the terms of this License), and this License will continue in full force and effect unless terminated as stated above.





8. Miscellaneous


Each time You Distribute or Publicly Perform the Work or a Collection, the Licensor offers to the recipient a license to the Work on the same terms and conditions as the license granted to You under this License.
Each time You Distribute or Publicly Perform an Adaptation, Licensor offers to the recipient a license to the original Work on the same terms and conditions as the license granted to You under this License.
If any provision of this License is invalid or unenforceable under applicable law, it shall not affect the validity or enforceability of the remainder of the terms of this License, and without further action by the parties to this agreement, such provision shall be reformed to the minimum extent necessary to make such provision valid and enforceable.
No term or provision of this License shall be deemed waived and no breach consented to unless such waiver or consent shall be in writing and signed by the party to be charged with such waiver or consent.
This License constitutes the entire agreement between the parties with respect to the Work licensed here. There are no understandings, agreements or representations with respect to the Work not specified here. Licensor shall not be bound by any additional provisions that may appear in any communication from You. This License may not be modified without the mutual written agreement of the Licensor and You.
The rights granted under, and the subject matter referenced, in this License were drafted utilizing the terminology of the Berne Convention for the Protection of Literary and Artistic Works (as amended on September 28, 1979), the Rome Convention of 1961, the WIPO Copyright Treaty of 1996, the WIPO Performances and Phonograms Treaty of 1996 and the Universal Copyright Convention (as revised on July 24, 1971). These rights and subject matter take effect in the relevant jurisdiction in which the License terms are sought to be enforced according to the corresponding provisions of the implementation of those treaty provisions in the applicable national law. If the standard suite of rights granted under applicable copyright law includes additional rights not granted under this License, such additional rights are deemed to be included in the License; this License is not intended to restrict the license of any rights under applicable law.








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/tutorials/fast-track/Testing-the-Installation.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Testing the Riak CS Installation
project: riakcs
version: 1.2.0+
document: tutorial
toc: true
index: true
audience: beginner
keywords: [tutorial, fast-track, installing]
prev: “[[Building a Virtual Testing Environment]]“
up:   “[[The Riak CS Fast Track]]“





Installing & Configuring s3cmd



Installation


The simplest way to test the installation is using the s3cmd script.
We can install it on Ubuntu by typing:


sudo apt-get -y install s3cmd



For OS X users, either use the package manager of your preference or
download the S3 cmd package at [[http://s3tools.org/download]]. You will
need to extract the .tar file, change directories into the folder, and
build the package. The process should look something like this:


tar -xvzf s3cmd-1.5.0-alpha1.tar.gz
cd s3cmd-1.5.0-alpha1
sudo python setup.py install



You will be prompted to enter your system password. Enter it and then
wait for the installation to complete.





Configuration


We need to configure s3cmd to use our Riak CS server rather than S3 as
well as our user keys. To do that interactively, type the following:


s3cmd -c ~/.s3cfgfasttrack --configure



If you are already using s3cmd on your local machine, the -c switch
allows you to specify a .s3cfg file without overwriting anything you
may have presently configured.


There are 4 default settings you should change:



		Access Key — Use the Riak CS user access key you generated above.


		Secret Key — Use the Riak CS user secret key you generated above.


		Proxy Server — Use your Riak CS IP. If you followed the virtual
environment configuration, use localhost.


		Proxy Port — The default Riak CS port is 8080.





You should have copied your Access Key and Secret Key from the prior
installation steps.







Interacting with Riak CS via S3cmd


Once s3cmd is configured, we can use it to create a test bucket:


s3cmd -c ~/.s3cfgfasttrack mb s3://test-bucket



We can see if it was created by typing:


s3cmd -c ~/.s3cfgfasttrack ls



We can now upload a test file to that bucket:


dd if=/dev/zero of=test_file bs=1m count=2 # Create a test file
s3cmd -c ~/.s3cfgfasttrack put test_file s3://test-bucket



We can see if it was properly uploaded by typing:


s3cmd -c ~/.s3cfgfasttrack ls s3://test-bucket



We can now download the test file. First, let’s remove the file we
generated previously:


rm test_file



Now, we can download the test_filestored in Riak CS:


s3cmd -c ~/.s3cfgfasttrack get s3://test-bucket/test_file



We should immediately see output like this:


s3://test-bucket/test_file -> ./test_file  [1 of 1]
 2097152 of 2097152   100% in    0s    59.63 MB/s  done



To verify that the file has been downloaded into the current directory:


ls -lah test_file






What’s Next


If you have made it this far, congratulations! You now have a working
Riak CS test instance (either virtual or local). There is still a fair
bit of learning to be done, so make sure and check out the Reference
section (click “Reference” on the nav on the left side of this page). A
few items that may be of particular interest:



		[[Details about API operations|Riak CS Storage API]]


		[[Information about the Ruby Fog client|Fog on Riak CS]]


		[[Release Notes]]









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

releasenotestemplate.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  
z-release


#[Product Name] [x.y.z] Release Notes


Released [Month] [Day], [Year].


[Summary - This is a bugfix release addressing.../This is a bugfix release that includes some changes to prepare for.../etc.]


OPTIONAL: If there are any Upgrade changes as a result of fixed bugs, notes about product advisories, or other notes/warnings/information a user must know about before proceeding, add it here. ##Upgrading or ##Product Advisory or ##Note.


##Bugs Fixed



		[Issue ##/PR ##] [Brief description of the bug and its fix.]


		[Issue ##/PR ##] [Brief description of the bug and its fix.]





##Other Changes



		[Brief description of the change, how it impacts the user, and either a link to docs about how to use it or a short note on how to use/implement the change (if applicable).] [PR ##]








y-release


#[Product Name] [x.y.z] Release Notes


Released [Month] [Day], [Year].


[Summary - This is a backwards-compatible release addressing.../This is a backwards-compatible release that introduces.../This is a backwards-compatible release that includes some changes to prepare for.../etc.]


OPTIONAL: If there are any Upgrade changes or other notes/warnings/information a user must know about before proceeding, add it here. ##Upgrading or ##Note.


##New Features



		[Brief description of the new feature/functionality, what it does for the user, and either a link to docs about how to use it or a short note on how to use it. It is OK for these to be a bit longer.]
		[PR ##]


		[PR ##]











OPTIONAL: For Riak KV, this section may be subdivided based on projects. So:
###Core
###Protocol Buffers
###etc


##Additions



		[Brief description of the addition, how it impacts the user, and either a link to docs about how to use it or a short note on how to use it (if applicable). If this addition was prompted by an issue, link to it in the description.] [PR ##]





##Changes



		[Brief description of the change, how it impacts the user, and either a link to docs about how to use it or a short note on how to use/implement the change (if applicable). If this change was prompted by an issue, link to it in the description.] [PR ##]





##Bugs Fixed



		[Issue ##/PR ##] [Brief description of the bug and its fix.]


		[Issue ##/PR ##] [Brief description of the bug and its fix.]








x-release


#[Product Name] [x.y.z] Release Notes


Released [Month] [Day], [Year].


[Product Name] [x.y.z] is the first release of the [Product Name] [x]-series. It includes breaking changes, new features, bug fixes, and additions to make [Product Name] even [better/faster/whatever].


[List of new features/additions/breaking changes here (I’m working on getting an auto-generated TOC here).]


##Upgrading


[Expectations around upgrading from various previous verions and links to where a user can go for instructions/help. Any known issues around upgrading should be listed here.]


##New Features


###[Short Name of Feature (e.g. Write-Once Buckets)]
[Brief description of the new feature/functionality, what it does for the user, and either a link to docs about how to use it or a short note on how to use it. It is OK for these to be a bit longer.]
* [PR ##]
* [PR ##]


OPTIONAL: For Riak KV, this section may be subdivided based on projects. So:
###Core
####[Short Name of Feature]
###Protocol Buffers
####[Short Name of Feature]
###etc


##Breaking Changes


###[Short Description Referencing Change (e.g. No more riak-admin backup)]
[Brief description of the change, how it impacts the user, what it is incompatible with, and either a link to docs about how to use it or a short note on how to use/implement the change (if applicable). If this change was prompted by an issue, link to it in the description.] [PR ##]


##Additions & Other Changes



		[Short Name of Addition/Change]. [Brief description of the addition or change, how it impacts the user, and either a link to docs about how to use it or a short note on how to use it (if applicable). If this addition was prompted by an issue, link to it in the description.] [PR ##]





##Bug Fixes



		[Issue ##/PR ##] [Brief description of the bug and its fix.]


		[Issue ##/PR ##] [Brief description of the bug and its fix.]









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/cookbooks/logging.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Riak CS Logging
project: riakcs
version: 1.5.0+
document: cookbook
audience: advanced
keywords: [riak-cs, logging, lager]




In versions 1.5.0 and later, you can use Riak CS in conjunction with
Lager [https://github.com/basho/lager], the logging framework used for
Riak. By default, all Riak CS logs can be found in the /log directory
of each node.


You can configure Lager for Riak CS in the advanced.config configuration
file in each Riak CS node, in the section of that file named lager.
That section looks something like this:


{lager, [
    {handlers, [
    ...

    %% Other configs
]}



{lager, [
    {handlers, [
    ...

    %% Other configs
]}



A full description of all available parameters can be found in the
[[configuration files]] document for Riak.




          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/tutorials/fast-track/Building-a-Local-Test-Environment.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Building a Local Test Environment
project: riakcs
version: 1.2.0+
document: tutorial
toc: true
index: true
audience: beginner
keywords: [tutorial, fast-track, installing]
prev: “[[What is Riak CS]]“
up:   “[[The Riak CS Fast Track]]“
next: “[[Building a Virtual Testing Environment]]“




The following instructions will guide you through installing a Riak CS
test environment. This guide does not cover system/service tuning and it
does not attempt to optimize your installation for your particular
architecture.


If you want to build a testing environment with a minimum of
configuration, there is an option for [[Building a Virtual Testing
Environment]].



Installing Your First Node


You should complete the following preparatory steps before installing
and running Riak and Riak CS.



Step 1: Raise your system’s open file limits


Riak can consume a large number of open file handles during normal
operation. See the [[Open Files Limit]] document for more information on
how to increase your system’s open files limit.


If you are the root user, you can increase the system’s open files limit
for the current session with this command:


ulimit -n 65536



For this setting to persist in most Linux distributions, you also need
to save it for the root and riak users in
/etc/security/limits.conf:


# ulimit settings for Riak CS
root soft nofile 65536
root hard nofile 65536
riak soft nofile 65536
riak hard nofile 65536



For Mac OS X, consult the [[open files limit|Open Files Limit#Mac-OS-X]]
documentation.





Step 2: Download and install packages


This guide uses curl for downloading packages and interacting with the
Riak CS API, so let’s make sure that it’s installed:


sudo apt-get install -y curl



Note: If you’re running Riak CS on a non-Debian/Ubuntu OS,
substitute the appropriate CLI commands.


If you are running Ubuntu 11.10 or later, you will also need the
libssl0.9.8 package. See [[Installing on Debian and Ubuntu]] for more
information.


sudo apt-get install -y libssl0.9.8



Now, grab the appropriate packages: Riak, Riak CS, and Stanchion. See
[[Download Riak|Downloads]] and [[Download Riak CS]]. You can skip Riak
CS Control for now.


Once you have the packages, install them per the instructions below.



First, install Riak


The following links provide platform-specific instructions for
installing Riak.


Do not attempt to configure or start Riak until step 3 in this
document.



		[[Debian and Ubuntu|Installing on Debian and Ubuntu]]


		[[RHEL and CentOS|Installing on RHEL and CentOS]]


		[[Mac OS X|Installing on Mac OS X]]


		[[FreeBSD|Installing on FreeBSD]]


		[[SUSE|Installing on SUSE]]


		[[Windows Azure|Installing on Windows Azure]]


		[[AWS Marketplace|Installing on AWS Marketplace]]


		[[From Source|Installing Riak from Source]]








Next, install Riak CS


For Mac OS X:


curl -O http://s3.amazonaws.com/downloads.basho.com/<riak-cs-os-x.tar.gz>
tar -xvzf <riak-cs-os-x.tar.gz>



Replace <riak-cs-os-x.tar.gz> with the actual filename for the package
you are installing.


For RedHat Enterprise distributions (and similar):


rpm -Uvh <riak-cs-package.rpm>



Replace <riak-cs-package.rpm> with the actual filename for the package
you are installing.


Ubuntu distributions and similar:


sudo dpkg -i <riak-cs-package.deb>



Replace <riak-cs-package.deb> with the actual filename for the package
you are installing.





Finally, install Stanchion


For Mac OS X:


curl -O http://s3.amazonaws.com/downloads.basho.com/<stanchion-os-x.tar.gz>
tar -xvzf <stanchion-os-x.tar.gz>



Replace <stanchion-os-x.tar.gz> with the actual filename for the
package you are installing.


For RedHat Enterprise distributions (and similar):


sudo rpm -Uvh <stanchion-package.rpm>



Replace <stanchion-package.rpm> with the actual filename for the
package you are installing.


For Ubuntu distributions:


sudo dpkg -i <stanchion-package.deb>



Replace <stanchion-package.deb> with the actual filename for the
package you are installing.







Step 3: Set service configurations and start the services


You will need to make changes to several configuration files.



/etc/riak/riak.conf


Be sure the default bucket properties allow siblings, and that the storage
backend is not set:


## Delete this line
storage_backend = . . .
. . .
buckets.default.allow_mult = true



Next, you need to expose the necessary Riak CS modules to Riak and instruct Riak
to use the custom backend provided by Riak CS. You’ll have to use the old-style
/etc/riak/advanced.config for these settings. The file should look like:


[
 {riak_kv, [
              {add_paths, ["/usr/lib/riak-cs/lib/riak_cs-{{VERSION}}/ebin"]},
              {storage_backend, riak_cs_kv_multi_backend},
              {multi_backend_prefix_list, [{<<"0b:">>, be_blocks}]},
              {multi_backend_default, be_default},
              {multi_backend, [
                  {be_default, riak_kv_eleveldb_backend, [
                      {total_leveldb_mem_percent, 30},
                      {data_root, "/var/lib/riak/leveldb"}
                  ]},
                  {be_blocks, riak_kv_bitcask_backend, [
                      {data_root, "/var/lib/riak/bitcask"}
                  ]}
              ]}
  ]}
].



Note on OS-specific paths

The path for `add_paths` may be `/usr/lib/riak-cs` or `/usr/lib64/riak-cs`
depending on your operating system.

Next, set your interface IP addresses in the riak.conf file. In a
production environment, you’d likely have multiple NICs, but for this
test cluster, assume one NIC with an example IP address of 10.0.2.10.


Change the following lines in /etc/riak/riak.conf


listener.http.internal = 127.0.0.1:8098
listener.protobuf.internal = 127.0.0.1:8097



to


listener.http.internal = 10.0.2.10:8098
listener.protobuf.internal = 10.0.2.10:8097






/etc/riak-cs/riak-cs.conf


Change the following lines in /etc/riak-cs/riak-cs.conf


listener = 127.0.0.1:8080
riak_host = 127.0.0.1:8087
stanchion_host = 127.0.0.1:8085



to


listener = 10.0.2.10:8080
riak_host = 10.0.2.10:8087
stanchion_host = 10.0.2.10:8085



The listener could also be set to 0.0.0.0if you prefer Riak CS to listen on
all interfaces.





/etc/stanchion/stanchion.conf


Change the following lines in /etc/stanchion/stanchion.conf


stanchion_host = 127.0.0.1:8085
riak_host = 127.0.0.1:8087



to


stanchion_host = 10.0.2.10:8085
riak_host = 10.0.2.10:8087






Service names


Next, set your service names, using either use the local IP address for
this or set hostnames. If you choose to set hostnames, you should ensure
that the hostnames are resolvable by DNS or set in /etc/hosts on all
nodes. Note: Service names require at least one period in the name.


Change the following line in /etc/riak/riak.conf


nodename = riak@127.0.0.1



to


nodename = riak@10.0.2.10



Then change the following line in /etc/riak-cs/riak-cs.conf


nodename = riak-cs@127.0.0.1



to


nodename = riak-cs@10.0.2.10



Change the following line in /etc/stanchion/stanchion.conf


nodename = stanchion@127.0.0.1



to


nodename = stanchion@10.0.2.10






Start the services


That is the minimum amount of service configuration required to start a
complete node. To start the services, run the following commands in the
appropriate /bin directories:


sudo riak start
sudo stanchion start
sudo riak-cs start



The order in which you start the services is important, as each is a
dependency for the next. Make sure that you successfully start Riak
before Stanchion and Stanchion before Riak CS.


You can check the liveness of your Riak CS installation and its
connection to the supporting Riak node. If the Riak CS node is running,
the following command should return PONG.


riak-cs ping



To check that the Riak CS node is communicating with its supporting Riak
node, run a GET request against the riak-cs/ping endpoint of the
Riak CS node. For example:


curl http://localhost:8080/riak-cs/ping








Step 4: Create the admin user


Creating the admin user is an optional step, but it’s a good test of our
new services. Creating a Riak CS user requires two inputs:



		Name — A URL-encoded string, e.g. admin%20user


		Email — A unique email address, e.g. admin@admin.com





To create an admin user, we need to grant permission to create new users
to the anonymous user. This configuration setting is only required on
a single Riak CS node.


Add this entry to /etc/riak-cs/riak-cs.conf:


anonymous_user_creation = on



Then run riak-cs restart to put the new config setting into effect.


We can create the admin user with the following curl command, on the
same Riak CS machine where the anonymous_user_creation configuration
option was enabled:


curl -XPOST http://localhost:8080/riak-cs/user \
  -H 'Content-Type: application/json' \
  -d '{"email":"admin@admin.com", "name":"admin"}'



The output of this command will be a JSON object that looks something like this:


{
  "email": "admin@admin.com",
  "display_name": "admin",
  "name": "admin user",
  "key_id": "5N2STDSXNV-US8BWF1TH",
  "key_secret": "RF7WD0b3RjfMK2cTaPfLkpZGbPDaeALDtqHeMw==",
  "id": "4b823566a2db0b7f50f59ad5e43119054fecf3ea47a5052d3c575ac8f990eda7"
}



The user’s access key and secret key are returned in the key_id and
key_secret fields respectively. Take note of these keys as they will
be required in the testing step.


In this case, those keys are:



		Access key — 5N2STDSXNV-US8BWF1TH


		Secret key – RF7WD0b3RjfMK2cTaPfLkpZGbPDaeALDtqHeMw==





You can use this same process to create additional Riak CS users. To
make this user the admin user, we set these keys in the Riak CS
riak-cs.conf and stanchion.conf files.


Note on admin keys

The same admin keys will need to be set on all nodes of the cluster.

Change the following lines in /etc/riak-cs/riak-cs.conf on all Riak CS
machines:


admin.key = admin-key
admin.secret = admin-secret



to


admin.key = 5N2STDSXNV-US8BWF1TH
admin.secret = RF7WD0b3RjfMK2cTaPfLkpZGbPDaeALDtqHeMw==



Note: Make sure to set the anonymous_user_creation setting to
off at this point.


Change the following lines in /etc/stanchion/stanchion.conf


admin.key = admin-key
admin.secret = admin-secret



to


admin.key = 5N2STDSXNV-US8BWF1TH
admin.secret = RF7WD0b3RjfMK2cTaPfLkpZGbPDaeALDtqHeMw==



Now we have to restart the services for the change to take effect:


sudo stanchion restart
sudo riak-cs restart








Installing Additional Nodes


The process for installing additional nodes is identical to installing
your first node with two exceptions:



		Stanchion only needs to be installed on your first node; there is no
need to install it again on each node. The stanchion_ip setting in
your Riak CS app.config files should be set to the stanchion_ip
from your first node.





		To add additional nodes to the Riak cluster, use the following
command


sudo riak-admin cluster join riak@10.0.2.10



where riak@10.0.2.10 is the Riak node name set in your first
node’s /etc/riak/vm.args file








You will then need to verify the cluster plan with the riak-admin cluster plan command, and commit the cluster changes with riak-admin cluster commit to complete the join process. More information is
available in the [[Command Line Tools|riak-admin Command Line#cluster]]
documentation.



Note

**Riak CS is not designed to function directly on TCP port 80, and
should not be operated in a manner which exposes it directly to the
public internet**. Instead, consider a load balancing solution,
such as a dedicated device, HAProxy,
or Nginx between Riak CS and
the outside world.

Once you have completed this step, You can progress to [[testing the
Riak CS installation]] using s3cmd.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

README.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  
Riak Docs


This repo holds all the content (and other bits, e.g. CSS, JavaScript,
etc.) for the most-excellent Riak Docs [http://docs.basho.com], home of
the documentation for Riak and Riak CS. This document tells you how to
contribute to the docs (please do!) as well as to deploy them if you
have our secret key.



Prerequisites


We use Middleman [http://middlemanapp.com/], a Ruby-powered static site
generator, to generate the Riak Docs [http://docs.basho.com].


Another tool used with this repository is the Ruby Version Manager
(RVM). Get it here [https://rvm.io/].



Mac OS X


As with any Ruby project, Xcode & the Xcode CLI Tools are needed to
install and run everything smoothly on OS X.


You can install Xcode for free via the App Store. Once installed, run
xcode-select --install to get the Xcode CLI Tools installed as well.


If you don’t want Xcode, you can also download the OS X GCC
Installer [https://github.com/kennethreitz/osx-gcc-installer], which
gives you the essential compilers needed to build the docs.







How to Contribute


You can treat the basho_docs repo much like you would any other code
repo.  You can contribute in two ways:



		Submit a new issue [https://github.com/basho/basho_docs/issues]


		(bonus points) Make a change and submit a pull request.





To make a change

—


be it as simple as a typo fix or as weighty as
the creation of an entirely new page full of Python client code
snippets—


follow these instructions:



		Clone a copy of the docs to your local machine:


$ git clone https://github.com/basho/basho_docs.git






		Install Middleman








Navigate to the /basho_docs directory and execute the following
instructions. This should install Middleman and launch the Middleman
API:


```shell
$ sudo gem install bundler
$ bundle install
$ bundle exec middleman
```



If you run into errors, Middleman’s install
page [http://middlemanapp.com/basics/getting-started/] is a good place
to start.


Now point a browser at http://0.0.0.0:4567. Here
you’ll find Middleman serving up static HTML on the fly (generated from
Markdown source files).



		Create a new branch


$ git checkout -b <new-branch-name>






		Make changes on your branch





		Review your changes locally


$ bundle exec middleman






		Send us a pull request








If it’s a small or obvious change, we’re likely to merge it right away.
If we have questions, we’ll communicate with you using the pull
request’s issue page.





Writing Docs



Structure


All documents and resources (like images, CSS/SCSS,
JavaScript/CoffeeScript) live under the source directory.


Since part of the goal of this rewrite is to be more deliberate about
the type of documents we produce, docs are separated into directories
according to their types. A document should either be a fully realized
“reference” or a “guide” (thumb through A Short Guide to Writing
Guides [https://gist.github.com/coderoshi/3729593] for more on this
idea). Further distinctions can then be placed under subdirectories:
references contains apis and appendices; guides contains
tutorials and cookbooks.





Languages


Set the language in which you wish to generate the docs. The default is
en (English). To alter your document language, you can set an
environment variable like this:


export RIAK_DOCS_LANG=jp



All docs live under source/languages/en or source/languages/jp. In
general, you shouldn’t need to modify other directories.





Wiki Links


Besides the standard link styles relative to the given document type
(markdown, slim, org, etc), you can use wiki-style links, e.g. [[The Basics]] or [[Start Here|The Basics]]. Note that if you have a name
collision, it will just link to a random one.





Document Metadata


At the top of every document is a metadata block. This allows us to
append any information we want to a document and alter the page
generation accordingly.


Here is an example:


---
title: Loading Data and Running MapReduce
project: riak
version: 0.10.0+
document: tutorial
toc: true
index: false
audience: beginner
keywords: [tutorial, fast-track]
prev: "[[Basic HTTP Operations]]"
up:   "[[The Riak Fast Track]]"
next: "[[Links and Link Walking]]"
---



The title will dictate the page name rather than relying on the old
method of using the filename. This allows us more flexibility in our
URLs and in specifying names for wiki links (which will first use title
before dropping back to the filename). The title will appear at the top
of the document.


The project associates this file with a particular project. In most
cases the project will be riak, but it could also be riakcs (Riak
Cloud Storage) or riakee (Riak Enterprise Edition).


The version is a range for which this document is true. This allows
the system to trim out any unnecessary documents if we render earlier or
later versions (e.g. if we render documents for version 1.3.0 but a
document is no longer valid, in which case it won’t exist for that
version). The ranges are specified using either greater/less than or
plus/minus signs or a version range.



		{{1.0.0+}} (greater than 1.0.0, inclusive)


		{{1.0.0-}} (less than 1.0.0, exclusive)


		{{>=1.0.0}} (greater than 1.0.0, inclusive)


		{{<1.0.0}} (less than 1.0.0, exclusive)


		{{1.0.0-1.2.0}} (between 1.0 and 1.2, inclusive)





The document labels what kind of document this is. So far I’ve been
using the following labels: tutorial, cookbook, reference, api,
appendix. These allow alternative look/feel combinations for different
kinds of pages.


Set toc to false if you do not want a table of contents generated
for this page. Otherwise, a list of links will be generated for every
h2 tag on the main article (## in Markdown).


The index flag is just a marker that this page is largely an index
page for navigation and not really a content page. It’s useful for
downgrading its importance in code generation (see the HTTP/PBC API
page).


The audience value is either beginner, intermediate, or
advanced. We’re not doing much with this yet, but it’s a good note and
reminder on the target audience of the doc for the sake of future
updates.


keywords is an array of words associated with this page. There can be
any number of them. Each keyword links to a page that is an index of all
other pages with that matching keyword. For example, Commit-Hooks and
Eventual-Consistency pages both have the keyword concepts, so they
both are generated with a link to a page /keywords/concepts that
simply lists out and links to these two pages along with others.


prev, next, and up are intended for multi-page tutorial
navigation. They correspond to the previous page, the next page, and
moving up to the index (generally, the start of the tutorial). They
accept an array with two values: the first is the link text while the
second is a relative link.





Versioning


A big change in this rewrite was how we handle document versions. Each
version of the documents will be generated and deployed separately into
its own directory structure. This provides a few advantages:



		Clarifies to users exactly what version a given document is valid for,
without making footnotes or other indicators on specific pages


		Allows for adding and removing documents without breaking SEO


		Alters the site navigation/layout/style in a way that won’t break
older versions





The first thing to note is how the projects are structured on the
deployment server. When a version is deployed, all projects will be
placed under their project name followed by their version.


For example, API pages for Riak version 1.2.0 will be under this
directory: /riak/1.2.0/references/apis/. But for version 1.1.0:
/riak/1.1.0/references/apis/.


Besides versioning entire files, you can also version segments of a file
by enclosing a version in brackets, starting with a hash and ending with
a slash {{#version}}...{{/version}}.


For example:


{{#1.2.0+}}PBC includes an interface for Riak search.{{/1.2.0+}}



This sentence will only be rendered for versions greater than or equal
to 1.2.0.


Since you cannot wrap an individual list item in Markdown and in other
doc generation systems, placing a version on the same line as a list
item will remove that whole item. And so this


* PBC Secondary Indexes {{1.2.0+}}
* PBC MapReduce
* PBC Search {{1.2.0+}}



will render as this for version 1.1.0:


* PBC MapReduce



Finally, there is a data/version.yml file that provides a list of all
project versions. This is used to generate a link bar where readers can
click to view older versions of a document.





Navigation


There is also a file named ROOT/data/global_nav.yml. Change this file
to alter the global navigation menu.


Beyond the global navigation, there is also a secondary navigation of
pages that are related to the current page. So if you are reading an FAQ
other FAQs will be listed as well. It currently populates based on
matching keywords, but it could be improved to be based on social or
traffic metrics.


Tutorials optionally have multi-page navigation. They can be specified
by the prev, next, and up metadata values.


There is also the time-based version navigation mentioned previously
(this may later be rewritten to be generated on the client-side by
JavaScript).


Each page can optionally generate an inline table of contents (see the
toc setting above). A list of links will be generated for every h2
tag on the main article.


Finally, there is keyword-based navigation. Every page with a keyword
contains a link to an index which lists other links to pages sharing
that keyword.





Style Guide



Notes and Asides


Inline notes and conversational asides should be denoted by italics (in
Markdown, single asterisk): *Note: Keep also in mind ... etc*.


Paragraph-level block notes should use a div with the class `note:


<div class="note">my note</div>












Deploying



Testing deploy mode


Note that the layout will look ugly. At the moment shared files like
.css or .js files won’t show up here because of the way deployment
pushes to production.


To try out the thin server in the way production functions, first build
the static files:


$ RIAK_VERSION=1.3.1 bundle exec middleman build



Then you can run the thin server locally:


$ thin start -p 4567



Or alternatively:


$ bundle exec thin start -p 4567






New Releases



Downloads


To update the downloads page for a new release, edit the contents of
data/versions.yml. Assuming X.Y.Z, releases incrementing to Z
append to existing arrays for that version. Releases incrementing Y go
on a new line with a single element array containing the version number
as a string:


riak:
  - ['1.0.0']
  - ['1.1.0', '1.1.4']
  - ['1.2.0', '1.2.1']
  - ['1.3.0', '1.3.1', '1.3.2']



Running bundle exec middleman build after that should update
data/downloads_gen.yml, which drives the downloads page.





Tagging


You should provide a tag any time a new version is released, for the
sake of future reference and for easing the co-existence of multiple
long-running branches. To tag, say, version 1.2.3:


git tag -a 1.2.3








Deploying to S3


Before deployment, you must specify an environment variable with Basho’s
S3 access/secret key. You also must specify the S3 bucket to which we’re
deploying as well as the CloudFront ID (the CDN that we must invalidate
to force a publication to be found).


In Bash, something like this in your ~/.bash_login, ~/.bashrc, or
~/.bash_profile file should do the trick:


export AWS_ACCESS_KEY_ID="XXXXX"
export AWS_SECRET_ACCESS_KEY="XXXXX"
export AWS_S3_BUCKET='riakdocs.en'
export AWS_CLOUDFRONT_DIST_ID="E2Q6TQ5O0XT58T"
export RIAK_DOCS_LANG=en



Note: The bucket and CloudFront values are per language. For the
foreseeable future, you’ll typically only need to worry about English.


Language | Bucket      | CloudFront ID  | Language
———|————-|—————-|———-
English  | riakdocs.en | E2Q6TQ5O0XT58T | en
Japanese | riakdocs.jp | ENDQVZ5Y7OVJN  | jp
Chinese  | riakdocs.cn | E3NADMYQ20Y7EJ | cn


Keep it secret. Keep it safe.


Then to deploy, run the deploy.rb scripts with a Riak version:


./deploy.rb



If you need to deploy riak and riakcs with different versions, add
the CS version at the end. This would be riak 1.3.1 and riakcs 1.1:


./deploy.rb 1.3.1 1.1.0



Note: this does more than deploy to S3; it also invalidates the
cache for CloudFront (CF), our CDN. Even if all of the files are
successfully pushed to S3, you won’t see the new files on
docs.basho.com [http://docs.basho.com] until the CF cache is
invalidated.





Ad-hoc Changes in S3


There are times when it doesn’t make a lot of sense to run a full docs
deploy to S3, for example if you need to make a change to a single doc
that you know will be ephemeral. In those cases, you can use a tool like
s3cmd [http://s3tools.org/s3cmd] to manually fetch files, modify them
locally, and upload them to S3. All files are located in the bucket
located at s3://riakdocs.en. The following would fetch an HTML file:


s3cmd get s3://riakdocs.en/riak/latest/dev/using/basics/index.html



Once you’ve modified the HTML locally, you can use a PUT operation to
upload the file:


s3cmd put index.html s3://riakdocs.en/riak/latest/dev/using/basics/index.html



To explore the contents of a given subdirectory, you can use the ls
command:


s3cmd ls s3://riakdocs.en/riak/latest/ops/






Deploying the Search Index


This is still a work in progress, but adding INDEX=true will deploy
the docs to Yokozuna [https://github.com/basho/yokozuna], the Riak/Solr
tool used to power the docs’ search engine:


RIAK_VERSION=1.4.0 INDEX=true DEPLOY=true bundle exec middleman build









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/tutorials/fast-track/Building-a-Virtual-Test-Environment.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Building a Virtual Testing Environment
project: riakcs
version: 1.2.0+
document: tutorial
toc: true
index: true
audience: beginner
keywords: [tutorial, fast-track, installing]
prev: “[[Building a Local Test Environment]]“
up:   “[[The Riak CS Fast Track]]“
next: “[[Testing The Riak CS Installation]]“




This option for building an environment uses a Vagrant project powered
by Chef to bring up a local Riak CS cluster. Each node can run either
Ubuntu 12.04 or CentOS 6.5 64-bit with 1536MB of RAM by default. If you
want to tune the OS or node/memory count, you’ll have to edit the
Vagrantfile directly.


If you want to build a testing environment with more flexibility in
configuration and durability across environment resets, there are
instructions for [[Building a Local Test Environment]].



Configuration



Install Prerequisites



		Download and install VirtualBox from VirtualBox
Downloads [https://www.virtualbox.org/wiki/Downloads].


		Download and install Vagrant via the Vagrant
Installer [http://downloads.vagrantup.com/].





Note: Please make sure to install Vagrant 1.1.0 and above.





Install Vagrant plugins


Install the following Vagrant plugins:


vagrant plugin install vagrant-berkshelf
vagrant plugin install vagrant-omnibus
vagrant plugin install vagrant-cachier # Use RIAK_CS_USE_CACHE to enable






Clone the Repository


In order to begin, it is necessary to clone a GitHub repository to your
local machine and change directories into the cloned folder.


git clone https://github.com/basho/vagrant-riak-cs-cluster
cd vagrant-riak-cs-cluster






Launch Cluster


With VirtualBox and Vagrant installed, it’s time to launch our virtual
environment. The command below will initiate the Vagrant project:


RIAK_CS_CREATE_ADMIN_USER=1 vagrant up



If you haven’t already downloaded the Ubuntu or CentOS Vagrant box, this
step will download it.





Recording Admin User credentials


In the Chef provisioning output, you will see entries that look like
this:


[2013-03-27T11:59:12+00:00] INFO: Riak CS Key: 5N2STDSXNV-US8BWF1TH
[2013-03-27T11:59:12+00:00] INFO: Riak CS Secret: RF7WD0b3RjfMK2cTaPfLkpZGbPDaeALDtqHeMw==



Take note of these keys as they will be required in the testing step.


In this case, those keys are:


Access key: 5N2STDSXNV-US8BWF1TH
Secret key: RF7WD0b3RjfMK2cTaPfLkpZGbPDaeALDtqHeMw==








Next Steps


Congratulations! You have deployed a virtualized environment of Riak CS.
You are ready to progress to [[Testing the Riak CS Installation]].



Stopping Your Virtual Environment


When you are done testing or simply want to start again from scratch,
you can end the current virtualized environment:


vagrant destroy



Note: Executing this command will reset the environment to a clean
state, removing any and all changes that you have committed.








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/cookbooks/Keystone-Setup.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Keystone Setup
project: riakcs
version: 1.4.0+
document: api
toc: true
index: true
audience: advanced
keywords: [authentication, openstack]




Keystone is a Python application that requires a number of dependencies
to be installed. This document covers how to use Python,
pip [https://github.com/basho/stanchion], and
virtualenv [https://github.com/basho/stanchion] to set up an isolated
test environment for running and testing Keystone.



Prerequisites



		Make sure Python is installed.





		Install pip, the Python package tool. Installation instructions can
be found here [http://guide.python-distribute.org/installation.html#installing-pip].
pip can also be installed via Homebrew [http://brew.sh/] for Mac OS
X users.





		Install virtualenv and virtualenvwrapper:


pip install virtualenv virtualenvwrapper`






		Set up virtualenvwrapper. Add the following lines to your
.bash_profile to get the virtualenvwrapper scripts in the path.


export WORKON_HOME=$HOME/.virtualenvs
source /usr/local/bin/virtualenvwrapper.sh






		Clone the Keystone repo:


git clone https://github.com/openstack/keystone.git






		Navigate to the Keystone repo and checkout the proper tag:


git checkout grizzly-2












Create a Virtual Environment for Keystone


Run the following command to create a virtual environment:


mkvirtualenv keystone-test



The keystone-test virtual environment is now created, activated, and
ready to use.





Install the Keystone dependencies


The dependencies for running Keystone can be found in
tools/pip-requires.  At the time of this writing, grizzly-2 is the
latest tag of Keystone and the dependencies are based on versions that
work with that tag. Use pip to install the dependencies as follows:


pip install -r tools/pip-requires






Configure Keystone


The next step is to select the appropriate options in the
keystone.conf configuration file. A sample configuration that is
useful for local testing with Riak CS can be found [[here|Keystone
Configuration Sample]]. This configuration file sets up logging to
./log/keystone/keystone.log and uses the templated catalog backend to
set up the Riak CS object store service. This catalog backend uses a
local file to populate the service catalog.


The default file in the previously referenced sample keystone.conf
file uses etc/default_catalog.templates, but this can be changed. Set
the contents of etc/default_catalog.templates to be the following:


# config for TemplatedCatalog, using camelCase
catalog.RegionOne.identity.publicURL = http://localhost:$(public_port)s/v2.0
catalog.RegionOne.identity.adminURL = http://localhost:$(admin_port)s/v2.0
catalog.RegionOne.identity.internalURL = http://localhost:$(public_port)s/v2.0
catalog.RegionOne.identity.name = Identity Service

catalog.RegionOne.object-store.publicURL = http://localhost:8080/v1/AUTH_$(tenant_id)s
catalog.RegionOne.object-store.adminURL = http://localhost:8080/
catalog.RegionOne.object-store.internalURL = http://localhost:8080/v1/AUTH_$(tenant_id)s
catalog.RegionOne.object-store.name = 'Object Store Service'






Optional configuration


For testing, it can be easier to configure keystone to use UUID as the
token format. To do this, edit keystone.conf and set the following:


token_format = UUID






Prepare the database


./bin/keystone-manage db_sync






Run Keystone


./bin/keystone-all --config-file \
  /<absolute-path-to-keystone-repo>/keystone/etc/keystone.conf -d --debug



The following script can be used to set a number of useful environment
variables to make using the Keystone client less cumbersome.


#!/bin/bash

export OS_SERVICE_TOKEN=ADMIN
export OS_SERVICE_ENDPOINT=http://localhost:35357/v2.0
export OS_IDENTITY_API_VERSION=2.0
export OS_AUTH_URL=http://localhost:5000/v2.0
export OS_USERNAME=test
export OS_PASSWORD=test
export OS_TENANT_NAME=test







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/search/search-data-types.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Riak Data Types and Search
project: riak
version: 2.0.0+
document: tutorials
audience: advanced
keywords: [developers, search, crdts, data-types]




Although [[Riak Data Types|Data Types]] function differently from other
Riak objects in some respects, when you’re using Search you can think of
them as normal Riak objects with special metadata attached (metadata
that you don’t need to worry about as a user). Riak’s [[counters|Data
Types#Counters]], [[sets|Data Types#Sets]], and [[maps|Data Types#Maps]]
can be indexed and have their contents searched just like other Riak
objects.



Data Type MIME Types


Like all objects stored in Riak, Riak Data Types are assigned content
types. Unlike other Riak objects, this happens automatically. When you
store, say, a counter in Riak, it will automatically be assigned the
type application/riak_counter. The table below provides the full list
of content types:


Data Type | Content Type
:———|:————
Counters | application/riak_counter
Sets | application/riak_set
Maps | application/riak_map


When using Search, you won’t need to worry about this, as Riak Data
Types are automatically indexed on the basis of these content types.





Data Type Schemas


There are two types of schemas related to Riak Data Types:



		Top-level schemas relate to Data Types that are stored at the key
level (counters and sets)


		Embedded schemas relate to Data Types nested inside of maps
(flags, counters, registers, and sets)





As you can see from the default Search
schema [https://github.com/basho/yokozuna/blob/develop/priv/default_schema.xml#L96],
each of the Data Types has its own default schema, with the exception of
maps, which means that the _yz_default schema will automatically index
Data Types on the basis of their assigned content type. This means that
there is no extra work involved in indexing Riak Data Types. You can
simply store them and begin querying, provided that they are properly
indexed, which is covered in the [[examples|Using
Search#Riak-Data-Types-and-Search]] section below.


As mentioned above, there are no default schemas available for maps.
This is because maps are essentially carriers for the other Data Types.
Even when maps are embedded within other maps, all of the data that you
might wish to index and search is contained in counters, sets,
registers, and flags.


The sections immediately below provide the default schemas for each Riak
Data Type. Because you will not need to manipulate these default schemas
to search Data Types, they are provided only for reference.



Top-level Schemas


The default schema for [[counters|Data Types#Counters]] indexes each
counter as an integer.


<field name="counter" type="int" indexed="true" stored="true" multiValued="false" />



Constructing queries for counters involves prefacing the query with
counter. Below are some examples:


Query | Syntax
:—–|:——
Counters with a value over 10 | counter:[10 TO *]
Counters with a value below 10 and above 50 | counter:[* TO 10] AND counter:[50 TO *]
Counters with a value of 15 | counter:15
All counters within the index | counter:*


The schema for [[sets|Data Types#Sets]] indexes each element of a set as
a string and indexes the set itself as multi-valued.


<field name="set" type="string" indexed="true" stored="false" multiValued="true" />



To query sets, preface the query with set. The table below shows some
examples:


Query | Syntax
:—–|:——
Sets that contain the value apple | set:apple
Sets that contain an item beginning with level | set:level*
Sets that contain both apple and orange | set:apple AND set:orange
All sets within the index | set:*





Embedded Schemas


For searching within [[maps|Data Types#Maps]], there are four schemas
for embedded, aka dynamic, fields. Flags are indexed as booleans:


<dynamicField name="*_flag" type="boolean" indexed="true" stored="true" multiValued="false" />



Counters, like their top-level counterparts, are indexed as integers:


<dynamicField name="*_counter" type="int" indexed="true" stored="true" multiValued="false" />



Registers are indexed as strings, but unlike sets they are not
multi-valued.


<dynamicField name="*_register" type="string" indexed="true" stored="true" multiValued="false" />



Finally, sets at the embedded level are indexed as multi-valued strings.


<dynamicField name="*_set" type="string" indexed="true" stored="true" multiValued="true" />



To query embedded fields, you must provide the name of the field. The
table below provides some examples:


Query | Syntax
:—–|:——
Maps containing a set called hobbies | hobbies_set:*
Maps containing a score counter over 50 | score_counter:[50 TO *]
Maps containing disabled advanced flags | advanced_flag:false
Maps containing enabled advanced flags and score counters under 10 | advanced_flag:true AND score_counter:[* TO 10]


You can also query maps within maps, which is covered in the Querying
maps within maps section below.







Data Types and Search Examples


In this section, we’ll start with two simple examples, one involving
counters and the other involving sets. Later on, we’ll introduce a
slightly more complex map example.





Counters Example


Let’s say that we’re storing scores in a multiplayer online game in
Riak. The game is called Boulderdash and it involves smashing digital
boulders armed with nothing but witty retorts and arcane trivia
knowledge. We’ll create and activate a [[bucket type|Using Bucket
Types]] for [[storing counters|Using Data Types#Counters]] simply called
counters, like so:


riak-admin bucket-type create counters '{"props":{"datatype":"counter"}}'
riak-admin bucket-type activate counters



Now, we’ll create a search index called scores that uses the default
schema (as in some of the examples above):


YokozunaIndex scoresIndex = new YokozunaIndex("scores", "_yz_default");
StoreIndex storeIndex = new StoreIndex.Builder(scoresIndex)
        .build();
client.execute(storeIndex);



client.create_search_index('scores', '_yz_default')



$response = (new \Basho\Riak\Command\Builder\Search\StoreIndex($riak))
  ->withName('scores')
  ->usingSchema('_yz_default')
  ->build()
  ->execute();



client.create_search_index('scores', '_yz_default')



var idx = new SearchIndex("scores", "_yz_default");
var rslt = client.PutSearchIndex(idx);



var options = {
    schemaName: '_yz_default',
    indexName: 'scores'
};
client.storeIndex(options, function (err, rslt) {
});



riakc_pb_socket:create_search_index(Pid, <<"scores">>, <<"_yz_default">>, []).



curl -XPUT $RIAK_HOST/search/index/hobbies \
  -H 'Content-Type: application/json' \
  -d '{"schema":"_yz_default"}'



Now, we can modify our counters bucket type to associate that bucket
type with our scores index:


riak-admin bucket-type update counters '{"props":{"search_index":"scores"}}'



At this point, all of the counters that we stored in any bucket with the
bucket type counters will be indexed in our scores index. So let’s
start playing with some counters. All counters will be stored in the
bucket people, while the key for each counter will be the username of
each player:


Namespace peopleBucket = new Namespace("counters", "people");

Location christopherHitchensCounter = new Location(peopleBucket, "christ_hitchens");
CounterUpdate cu = new CounterUpdate(10);
UpdateCounter update = new UpdateCounter.Builder(christopherHitchensCounter, cu)
        .build();
client.execute(update);

Location joanRiversCounter = new Location(peopleBucket, "joan_rivers");
CounterUpdate cu = new CounterUpdate(25);
UpdateCounter update = new UpdateCounter.Builder(joanRiversCounter, cu)
        .build();
client.execute(update);



bucket = client.bucket('people')

christopher_hitchens_counter = Riak::Crdt::Counter.new(bucket, 'chris_hitchens', 'counters')
christopher_hitchens_counter.increment(10)

joan_rivers_counter = Riak::Crdt::Counter.new(bucket, 'joan_rivers', 'counters')
joan_rivers_counter.increment(25)



$builder = (new \Basho\Riak\Command\Builder\IncrementCounter($riak))
    ->withIncrement(10)
    ->buildLocation('chris_hitchens', 'people', 'counters');

$builder->build->execute();

$builder->withIncrement(25)
    ->buildLocation('joan_rivers', 'people', 'counters')
    ->build()
    ->execute();



from riak.datatypes import Counter

bucket = client.bucket_type('counters').bucket('people')

christopher_hitchens_counter = Counter(bucket, 'chris_hitchens')
christopher_hitchens_counter.increment(10)
christopher_hitchens_counter.store()

joan_rivers_counter = Counter(bucket, 'joan_rivers')
joan_rivers_counter.increment(25)
joan_rivers_counter.store()



var christopherHitchensId = new RiakObjectId("counters", "people", "christ_hitchens");
var hitchensRslt = client.DtUpdateCounter(christopherHitchensId, 10);

var joanRiversId = new RiakObjectId("counters", "people", "joan_rivers");
var joanRiversRslt = client.DtUpdateCounter(joanRiversId, 25);



var funcs = [
    function (async_cb) {
        var options = {
            bucketType: 'counters',
            bucket: 'people',
            key: 'christ_hitchens',
            increment: 10
        };

        client.updateCounter(options, function (err, rslt) {
            throwIfErr(err);
            async_cb();
        });
    },
    function (async_cb) {
        var options = {
            bucketType: 'counters',
            bucket: 'people',
            key: 'joan_rivers',
            increment: 25
        };

        client.updateCounter(options, function (err, rslt) {
            throwIfErr(err);
            async_cb();
        });
    }
];

async.parallel(funcs, function (err, rslts) {
    throwIfErr(err);
});



ChristopherHitchensCounter = riakc_counter:new(),
HitchensCounter1 = riakc_counter:increment(10, ChristopherHitchensCounter),
JoanRiversCounter = riakc_counter:new(),
RiversCounter1 = riakc_counter:increment(25, JoanRiversCounter),
riakc_pb_socket:update_type(Pid,
                            {<<"counters">>, <<"people">>},
                            <<"chris_hitchens">>,
                            riakc_counter:to_op(HitchensCounter1)),
riakc_pb_socket:update_type(Pid,
                            {<<"counters">>, <<"people">>},
                            <<"joan_rivers">>,
                            riakc_counter:to_op(RiversCounter1)).



# We do not recommend working with Riak Data Types via curl. Try using
# one of our client libraries instead.



So now we have two counters, one with a value of 10 and the other with a
value of 25. Let’s query to see how many counters have a value greater
than 20, just to be sure:


String index = "scores";
String query = "counter:[20 TO *]";
SearchOperation searchOp = new SearchOperation.Builder(BinaryValue.create(index), query)
        .build();
cluster.execute(searchOp);
SearchOperation.Response results = searchOp.get();



results = client.search('scores', 'counter:[20 TO *]')
# This should return a Hash with fields like 'num_found' and 'docs'

results['num_found']
# 1



$response = (new \Basho\Riak\Command\Builder\Search\FetchObjects($riak))
  ->withIndexName('scores')
  ->withQuery('counter:[20 TO *]')
  ->build()
  ->execute();

$response->getNumFound(); // 1



results = client.fulltext_search('scores', 'counter:[20 TO *]')
# This should return a dict with fields like 'num_found' and 'docs'

results['num_found']
# 1



var search = new RiakSearchRequest("scores", "counter:[20 TO *]");
var rslt = client.Search(search);
RiakSearchResult searchResult = rslt.Value;
Console.WriteLine("Num found: {0}", searchResult.NumFound);



function search_cb(err, rslt) {
    logger.info("counter numFound: '%d', docs: '%s'",
        rslt.numFound, JSON.stringify(rslt.docs));

    var doc = rslt.docs[0];
    var key = doc['_yz_rk'];
    var bucket = doc['_yz_rb'];
    var bucketType = doc['_yz_rt'];
}

var searchCmd = new Riak.Commands.YZ.Search.Builder()
    .withIndexName('scores')
    .withQuery('counter:[20 TO *]')
    .withCallback(search_cb)
    .build();

client.execute(searchCmd);



{ok, Results} = riakc_pb_socket:search(Pid, <<"scores">>, <<"counter:[20 TO *]">>),
NumberFound = Results#search_results.num_found.
%% 1



curl "$RIAK_HOST/search/query/scores?wt=json&q=counter:[20 TO *]" | jsonpp



And there we are: only one of our two stored sets has a value over 20.
To find out which set that is, we can dig into our results:


// Using the "results" object from above:
int numberFound = results.numResults();
Map<String, List<String>> foundObject = results.getAllResults().get(0);
String key = foundObject.get("_yz_rk").get(0); // "joan_rivers"
String bucket = foundObject.get("_yz_rb").get(0); // "people"
String bucketType = foundObject.get("_yz_rt").get(0); // "counters"



doc = results['docs'][0]

# The key
doc['_yz_rk'] # 'joan_rivers'

# The bucket
doc['_yz_rb'] # 'people'

# The bucket type
doc['_yz_rt'] # 'counters'



$doc = $response->getDocs()[0];

# The key
$doc['_yz_rk'] # 'joan_rivers'

# The bucket
$doc['_yz_rb'] # 'people'

# The bucket type
$doc['_yz_rt'] # 'counters'



doc = results['docs'][0]

# The key
doc['_yz_rk'] # 'joan_rivers'

# The bucket
doc['_yz_rb'] # 'people'

# The bucket type
doc['_yz_rt'] # 'counters'



var search = new RiakSearchRequest("scores", "counter:[20 TO *]");
var rslt = client.Search(search);

RiakSearchResult searchResult = rslt.Value;
Console.WriteLine("Num found: {0}", searchResult.NumFound);

var firstDoc = searchResult.Documents.First();
Console.WriteLine("Key: {0} Bucket: {1} Type: {2}",
    firstDoc.Key, firstDoc.Bucket, firstDoc.BucketType);



var doc = rslt.docs[0];

var key = doc['_yz_rk'];
var bucket = doc['_yz_rb'];
var bucketType = doc['_yz_rt'];



Doc = lists:nth(1, Docs),
Key = proplists:get_value(<<"_yz_rk">>, Doc),
Bucket = proplists:get_value(<<"_yz_rb">>, Doc),
BucketType = proplists:get_value(<<"_yz_rt", Doc).



# Use the JSON object from above to locate bucket, key, and bucket type
# information



Alternatively, we can see how many counters have values below 15:


String index = "scores";
String query = "counter:[* TO 15]";
SearchOperation searchOp = new SearchOperation
        .Builder(BinaryValue.create("scores"), "counter:[* TO 15]")
        .build();
cluster.execute(searchOp);
SearchOperation.Response results = searchOp.get();



results = client.search('scores', 'counter:[* TO 15]')



$response = (new \Basho\Riak\Command\Builder\Search\FetchObjects($riak))
  ->withIndexName('scores')
  ->withQuery('counter:[* TO 15]')
  ->build()
  ->execute();

$response->getNumFound(); // 1



results = client.fulltext_search('scores', 'counter:[* TO 15]')



var search = new RiakSearchRequest("scores", "counter:[* TO 15]");
var rslt = client.Search(search);



var searchCmd = new Riak.Commands.YZ.Search.Builder()
    .withIndexName('scores')
    .withQuery('counter:[* TO 15]')
    .withCallback(search_cb)
    .build();

client.execute(searchCmd);



{ok, Results} = riakc_pb_socket:search(Pid, <<"scores">>, <<"counter:[* TO 15]").



curl "$RIAK_HOST/search/query/scores?wt=json&q=counter:[* TO 15]" | jsonpp



Or we can see how many counters have a value of 17 exactly:


// Using the same method as above, just changing the query:
String query = "counter:17";



results = client.search('scores', 'counter:17')



$response = (new \Basho\Riak\Command\Builder\Search\FetchObjects($riak))
  ->withIndexName('scores')
  ->withQuery('counter:17')
  ->build()
  ->execute();



results = client.fulltext_search('scores', 'counter:17')



var search = new RiakSearchRequest("scores", "counter:17");
var rslt = client.Search(search);



var searchCmd = new Riak.Commands.YZ.Search.Builder()
    .withIndexName('scores')
    .withQuery('counter:17')
    .withCallback(search_cb)
    .build();

client.execute(searchCmd);



{ok, Results} = riakc_pb_socket:search(Pid, <<"scores">>, <<"counter:17">>).



curl "$RIAK_HOST/search/query/scores?wt=json&q=counter:17" | jsonpp






Sets Example


Let’s say that we’re storing information about the hobbies of a group of
people in sets. We’ll create and activate a [[bucket type|Using Bucket
Types]] for [[storing sets|Using Data Types#Sets]] simply called sets,
like so:


riak-admin bucket-type create sets '{"props":{"datatype":"set"}}'
riak-admin bucket-type activate sets



Now, we’ll create a Search index called hobbies that uses the default
schema (as in some of the examples above):


YokozunaIndex hobbiesIndex = new YokozunaIndex("hobbies");
StoreIndex storeIndex =
  new StoreIndex.Builder(hobbiesIndex).build();
client.execute(storeIndex);



client.create_search_index('hobbies', '_yz_default')



$response = (new \Basho\Riak\Command\Builder\Search\StoreIndex($riak))
  ->withName('hobbies')
  ->usingSchema('_yz_default')
  ->build()
  ->execute();



client.create_search_index('hobbies', '_yz_default')



var searchIndex = new SearchIndex("hobbies", "_yz_default");
var rslt = client.PutSearchIndex(searchIndex);



var options = {
    schemaName: '_yz_default',
    indexName: 'hobbies'
};
client.storeIndex(options, function (err, rslt) {
});



riakc_pb_socket:create_search_index(Pid, <<"hobbies">>, <<"_yz_default">>).



curl -XPUT $RIAK_HOST/search/index/hobbies \
  -H 'Content-Type: application/json' \
  -d '{"schema": "_yz_default"}'



Now, we can modify our sets bucket type to associate that bucket type
with our hobbies index:


riak-admin bucket-type update sets '{"props":{"search_index":"hobbies"}}'



Now, all of the sets that we store in any bucket with the bucket type
sets will be automatically indexed as a set. So let’s say that we
store three sets for two different people describing their respective
hobbies, in the bucket people:


Namespace peopleBucket = new Namespace("sets", "people");

Location mikeDitkaSet = new Location(peopleBucket, "ditka");
SetUpdate su1 = new SetUpdate()
        .add("football")
        .add("winning");
UpdateSet update1 = new UpdateSet.Builder(mikeDitkaSet, su1).build();

Location ronnieJamesDioSet = new Location(peopleBucket, "dio");
SetUpdate su2 = new SetUpdate()
        .add("wailing")
        .add("rocking")
        .add("winning");
UpdateSet update2 = new UpdateSet.Builder(ronnieJamesDioSet, su2).build();

client.execute(update1);
client.execute(update2);



bucket = client.bucket('people')

mike_ditka_set = Riak::Crdt::Set.new(bucket, 'ditka', 'sets')
mike_ditka_set.add('football')
mike_ditka_set.add('winning')

ronnie_james_dio_set = Riak::Crdt::Set.new(bucket, 'dio', 'sets')
ronnie_james_dio_set.add('wailing')
ronnie_james_dio_set.add('rocking')
ronnie_james_dio_set.add('winning')



$builder = (new \Basho\Riak\Command\Builder\UpdateSet($riak))
    ->add('football')
    ->add('winning')
    ->buildLocation('ditka', 'people', 'counters');

$builder->build->execute();

$builder->add('wailing')
    ->add('rocking')
    ->add('winning')
    ->buildLocation('dio', 'people', 'counters');
    ->build()
    ->execute();



from riak.datatypes import Set

bucket = client.bucket_type('sets').bucket('people')

mike_ditka_set = Set(bucket, 'ditka')
mike_ditka_set.add('football')
mike_ditka_set.add('winning')
mike_ditka_set.store()

ronnie_james_dio_set = Set(bucket, 'dio')
ronnie_james_dio_set.add('wailing')
ronnie_james_dio_set.add('rocking')
ronnie_james_dio_set.add('winning')
ronnie_james_dio_set.store()



var mikeDitkaId = new RiakObjectId("sets", "people", "ditka");
var ditkaAdds = new List<string> { "football", "winning" };
var ditkaRslt = client.DtUpdateSet(mikeDitkaId, Serializer, null, ditkaAdds);

var dioId = new RiakObjectId("sets", "people", "dio");
var dioAdds = new List<string> { "wailing", "rocking", "winning" };
var dioRslt = client.DtUpdateSet(dioId, Serializer, null, dioAdds);



var funcs = [
    function (async_cb) {
        var options = {
            bucketType: 'sets',
            bucket: 'people',
            key: 'ditka',
            additions: ['football', 'winning']
        };

        client.updateSet(options, function (err, rslt) {
            throwIfErr(err);
            async_cb();
        });
    },
    function (async_cb) {
        var options = {
            bucketType: 'sets',
            bucket: 'people',
            key: 'dio',
            additions: ['wailing', 'rocking', 'winning']
        };

        client.updateSet(options, function (err, rslt) {
            throwIfErr(err);
            async_cb();
        });
    }
];

async.parallel(funcs, function (err, rslts) {
    throwIfErr(err);
});



MikeDitkaSet = riakc_set:new(),
riakc_set:add_element(<<"football">>, MikeDitkaSet),
riakc_set:add_element(<<"winning">>, MikeDitkaSet),
RonnieJamesDioSet = riakc_set:new(),
riakc_set:add_element(<<"wailing">>, RonnieJamesDioSet),
riakc_set:add_element(<<"rocking">>, RonnieJamesDioSet),
riakc_set:add_element(<<"winning">>, RonnieJamesDioSet),

riakc_pb_socket:update_type(Pid,
                            {<<"sets">>, <<"people">>},
                            <<"ditka">>,
                            riakc_set:to_op(MikeDitkaSet)),
riakc_pb_socket:update_type(Pid,
                            {<<"sets">>, <<"people">>},
                            <<"dio">>,
                            riakc_set:to_op(RonnieJamesDioSet)).



Now, we can query our hobbies index to see if anyone has the hobby
football:


// Using the same method explained above, just changing the query:
String query = "set:football";



results = client.search('hobbies', 'set:football')
# This should return a dict with fields like 'num_found' and 'docs'



$response = (new \Basho\Riak\Command\Builder\Search\FetchObjects($riak))
  ->withIndexName('hobbies')
  ->withQuery('set:football')
  ->build()
  ->execute();



results = client.fulltext_search('hobbies', 'set:football')
# This should return a dict with fields like 'num_found' and 'docs'



var search = new RiakSearchRequest("hobbies", "set:football");
var rslt = client.Search(search);

RiakSearchResult searchResult = rslt.Value;
Console.WriteLine("Num found: {0}", searchResult.NumFound);

var firstDoc = searchResult.Documents.First();
Console.WriteLine("Key: {0} Bucket: {1} Type: {2}",
    firstDoc.Key, firstDoc.Bucket, firstDoc.BucketType);



function search_cb(err, rslt) {
    logger.info("sets numFound: '%d', docs: '%s'",
        rslt.numFound, JSON.stringify(rslt.docs));

    var doc = rslt.docs[0];
    var key = doc['_yz_rk'];
    var bucket = doc['_yz_rb'];
    var bucketType = doc['_yz_rt'];
}

var searchCmd = new Riak.Commands.YZ.Search.Builder()
    .withIndexName('hobbies')
    .withQuery('set:football')
    .withCallback(search_cb)
    .build();

client.execute(searchCmd);



{ok, Results} = riakc_pb_socket:search(Pid, <<"hobbies">>, <<"set:football">>).



curl "$RIAK_HOST/search/query/hobbies?wt=json&q=set:football" | jsonpp



Let’s see how many sets contain the element football:


// Using the same method explained above for getting search results:
int numberFound = results.numResults(); // 1



results['num_found']
# 1



$response->getNumFound(); // 1



results['num_found']
# 1



RiakSearchResult searchResult = rslt.Value;
Console.WriteLine("Num found: {0}", searchResult.NumFound);



rslt.numFound;
// 1



NumberFound = Results#search_results.num_found.
%% 1









Success! We stored two sets, only one of which contains the element
football. Now, let’s see how many sets contain the element winning:


// Using the same method explained above, just changing the query:
String query = "set:winning";

// Again using the same method from above:
int numberFound = results.numResults(); // 2



results = client.search('hobbies', 'set:winning')
results['num_found']
# 2



$response = (new \Basho\Riak\Command\Builder\Search\FetchObjects($riak))
  ->withIndexName('hobbies')
  ->withQuery('set:winning')
  ->build()
  ->execute();

$response->getNumFound(); // 2



results = client.fulltext_search('hobbies', 'set:winning')
results['num_found']
# 2



var search = new RiakSearchRequest("hobbies", "set:winning");



var searchCmd = new Riak.Commands.YZ.Search.Builder()
    .withIndexName('hobbies')
    .withQuery('set:winning')
    .withCallback(search_cb)
    .build();

client.execute(searchCmd);



{ok, Results} = riakc_pb_socket:search(Pid, <<"hobbies">>, <<"set:winning">>).
NumberFound = Results#search_results.num_found.
%% 2



Just as expected, both sets we stored contain the element winning.





Maps Example


This example will build on the example in the [[Using Data Types]]
tutorial. That tutorial walks you through storing CMS-style user data in
Riak [[maps|Using Data Types#Maps]], and we’d suggest that you
familiarize yourself with that tutorial first. More specifically, user
data is stored in the following fields in each users’s map:



		first name in a first_name register


		last name in a last_name register


		whether the user is an enterprise customer in an enterprise_customer
flag


		the number of times the user has visited the company page in a
page_visits counter


		a list of the user’s interests in an interests set





First, let’s create and activate a bucket type simply called maps that
is set up to store Riak maps:


riak-admin bucket-type create maps '{"props":{"datatype":"map"}}'
riak-admin bucket-type activate maps



Now, let’s create a search index called customers using the default
schema:


YokozunaIndex customersIndex = new YokozunaIndex("customers", "_yz_default");
StoreIndex storeIndex =
  new StoreIndex.Builder(customersIndex).build();
client.execute(storeIndex);



client.create_search_index('customers', '_yz_default')



(new Command\Builder\Search\StoreIndex($riak))
  ->withName('customers')
  ->usingSchema('_yz_default')
  ->build()
  ->execute();



client.create_search_index('customers', '_yz_default')



var searchIndex = new SearchIndex("customers", "_yz_default");
var rslt = client.PutSearchIndex(searchIndex);



var options = {
    schemaName: '_yz_default',
    indexName: 'customers'
};
client.storeIndex(options, function (err, rslt) {
});



riakc_pb_socket:create_search_index(Pid, <<"customers">>, <<"_yz_default">>).



curl -XPUT $RIAK_HOST/search/index/customers \
  -H 'Content-Type: application/json' \
  -d '{"schema":"_yz_default"}'



With our index created, we can associate our new customers index with
our maps bucket type:


riak-admin bucket-type update maps '{"props":{"search_index":"customers"}}'



Now we can create some maps along the lines suggested above:


Namespace customersBucket = new Namespace("maps", "customers");

Location idrisElbaMap = new Location(customersBucket, "idris_elba");
MapUpdate mu = new MapUpdate()
        .update("first_name", new RegisterUpdate("Idris"))
        .update("last_name", new RegisterUpdate("Elba"))
        .update("enterprise_customer", new FlagUpdate(false))
        .update("page_visits", new CounterUpdate(10))
        .update("interests", new SetUpdate().add("acting", "being Stringer Bell"));

Location joanJettMap = new Location(customersBucket, "joan_jett");
MapUpdate mu2 = new MapUpdate()
        .update("first_name", new RegisterUpdate("Joan"))
        .update("last_name", new RegisterUpdate("Jett"))
        // Joan Jett is not an enterprise customer, so we don't need to
        // explicitly disable the "enterprise_customer" flag, as all
        // flags are disabled by default
        .update("page_visits", new CounterUpdate(25))
        .update("interests", new SetUpdate().add("loving rock and roll").add("being in the Blackhearts"));

UpdateMap update1 = new UpdateMap.Builder(idrisElbaMap, mu1).build();
UpdateMap update2 = new UpdateMap.Builder(joanJettMap, mu2).build();
client.execute(update1);
client.execute(update2);



bucket = client.bucket('customers')

idris_elba = Riak::Crdt::Map.new(bucket, 'idris_elba', 'maps')

idris_elba.batch do |ie|
  ie.registers['first_name'] = 'Idris'
  ie.registers['last_name'] = 'Elba'
  ie.flags['enterprise_customer'] = true
  ie.counters['page_visits'].increment(10)
  ['acting', 'being Stringer Bell'].each do |interest|
    ie.sets['interests'].add(interest)
  end
end

joan_jett = Riak::Crdt::Map.new(bucket, 'joan_jett', 'maps')
joan_jett.batch do |jj|
  jj.registers['first_name'] = 'Joan'
  jj.registers['last_name'] = 'Jett'
  ## Joan Jett is not an enterprise customers, so we don't need to
  ## explicitly disable this flag, as all flags are disabled by default
  jj.counters['page_visits'].increment(25)
  ['loving rock and roll', 'being in the Blackhearts'].each do |interest|
    jj.sets['interests'].add(interest)
  end
end



$counterBuilder = (new \Basho\Riak\Command\Builder\IncrementCounter($riak))
  ->withIncrement(10);

$setBuilder = (new \Basho\Riak\Command\Builder\UpdateSet($riak));
  
foreach(['acting', 'being Stringer Bell'] as $interest) {
  $setBuilder->add($interest);
}

(new \Basho\Riak\Command\Builder\UpdateMap($riak))
  ->updateRegister('first_name', 'Idres')
  ->updateRegister('last_name', 'Elba')
  ->updateFlag('enterprise_customer', true)
  ->updateSet('interests', $setBuilder)
  ->updateCounter('page_visits', $counterBuilder)
  ->buildLocation('idris_elba', 'customers', 'maps')
  ->build()
  ->execute();

$setBuilder = (new \Basho\Riak\Command\Builder\UpdateSet($riak));
  
foreach(['loving rock and roll', 'being in the Blackhearts'] as $interest) {
  $setBuilder->add($interest);
}

(new \Basho\Riak\Command\Builder\UpdateMap($riak))
  ->updateRegister('first_name', 'Joan')
  ->updateRegister('last_name', 'Jett')
  ->updateSet('interests', $setBuilder)
  ->updateCounter('page_visits', $counterBuilder->withIncrement(25))
  ->buildLocation('joan_jett', 'customers', 'maps')
  ->build()
  ->execute();



bucket = client.bucket_type('maps').bucket('customers')

idris_elba = Map(bucket, 'idris_elba')
idris_elba.registers['first_name'].assign('Idris')
idris_elba.registers['last_name'].assign('Elba')
idris_elba.flags['enterprise_customer'].enable()
idris_elba.counters['page_visits'].increment(10)
for interest in ['acting', 'being Stringer Bell']:
    idris_elba.sets['interests'].add(interest)
idris_elba.store()

joan_jett = Map(bucket, 'joan_jett')
joan_jett.registers['first_name'].assign('Joan')
joan_jett.registers['last_name'].assign('Jett')
# Joan Jett is not an enterprise customers, so we don't need to
# explictly disable this flag, as all flags are disabled by default
idris_elba.counters['page_visits'].increment(25)
for interest in ['loving rock and roll', 'being in the Blackhearts']:
    joan_jett.sets['interests'].add(interest)
joan_jett.store()



const string firstNameRegister = "first_name";
const string lastNameRegister = "last_name";
const string enterpriseCustomerFlag = "enterprise_customer";
const string pageVisitsCounter = "page_visits";
const string interestsSet = "interests";

var idrisElbaId = new RiakObjectId("maps", "customers", "idris_elba");
var idrisMapUpdates = new List<MapUpdate>();
idrisMapUpdates.Add(new MapUpdate
{
    register_op = Serializer("Idris"),
    field = new MapField
    {
        name = Serializer(firstNameRegister),
        type = MapField.MapFieldType.REGISTER
    }
});

idrisMapUpdates.Add(new MapUpdate
{
    register_op = Serializer("Elba"),
    field = new MapField
    {
        name = Serializer(lastNameRegister),
        type = MapField.MapFieldType.REGISTER
    }
});

idrisMapUpdates.Add(new MapUpdate
{
    flag_op = MapUpdate.FlagOp.DISABLE,
    field = new MapField
    {
        name = Serializer(enterpriseCustomerFlag),
        type = MapField.MapFieldType.FLAG
    }
});

idrisMapUpdates.Add(new MapUpdate
{
    counter_op = new CounterOp { increment = 10 },
    field = new MapField
    {
        name = Serializer(pageVisitsCounter),
        type = MapField.MapFieldType.COUNTER
    }
});

var idrisAdds = new[] { "acting", "being Stringer Bell" };
var idrisSetOp = new SetOp();
idrisSetOp.adds.AddRange(idrisAdds.Select(x => Serializer(x)));
idrisMapUpdates.Add(new MapUpdate
{
    set_op = idrisSetOp,
    field = new MapField
    {
        name = Serializer(interestsSet),
        type = MapField.MapFieldType.SET
    }
});

var idrisRslt = client.DtUpdateMap(idrisElbaId, Serializer, null, null, idrisMapUpdates);



var funcs = [
    function (async_cb) {
        var options = {
            bucketType: 'maps',
            bucket: 'customers',
            key: 'idris_elba'
        };

        var mapOp = new Riak.Commands.CRDT.UpdateMap.MapOperation();
        mapOp.setRegister('first_name', 'Idris');
        mapOp.setRegister('last_name', 'Elba');
        mapOp.setFlag('enterprise_customer', false);
        mapOp.incrementCounter('page_visits', 10);
        mapOp.addToSet('interests', 'acting');
        mapOp.addToSet('interests', 'being Stringer Bell');

        options.op = mapOp;

        client.updateMap(options, function (err, rslt) {
            throwIfErr(err);
            async_cb();
        });
    },
    function (async_cb) {
        var options = {
            bucketType: 'maps',
            bucket: 'customers',
            key: 'joan_jett'
        };

        var mapOp = new Riak.Commands.CRDT.UpdateMap.MapOperation();
        mapOp.setRegister('first_name', 'Joan');
        mapOp.setRegister('last_name', 'Jett');
        mapOp.setFlag('enterprise_customer', false);
        mapOp.incrementCounter('page_visits', 25);
        mapOp.addToSet('interests', 'loving rock and roll');
        mapOp.addToSet('interests', 'being in the Blackhearts');

        options.op = mapOp;

        client.updateMap(options, function (err, rslt) {
            throwIfErr(err);
            async_cb();
        });
    }
];

async.parallel(funcs, function (err, rslts) {
    throwIfErr(err);
});




Searching Counters Within Maps


We now have two maps stored in Riak that we can query. Let’s query to
see how many users have page visit counters above 15. Unlike the
counters example above, we have to specify which counter we’re
querying:


// Using the same method explained above, just changing the query:
String query = "page_visits_counter:[15 TO *]";

// Again using the same method from above:
int numberFound = results.numResults(); // 1



results = client.search('customers', 'page_visits_counter:[15 TO *]')
results['num_found']
# 1



$response = (new \Basho\Riak\Command\Builder\Search\FetchObjects($riak))
  ->withIndexName('customers')
  ->withQuery('page_visits_counter:[15 TO *]')
  ->build()
  ->execute();

$response->getNumFound(); // 1



results = client.fulltext_search('customers', 'page_visits_counter:[15 TO *]')
results['num_found']
# 1



var search = new RiakSearchRequest("customers", "page_visits_counter:[15 TO *]");
var rslt = client.Search(search);



function search_cb(err, rslt) {
    logger.info("numFound: '%d', docs: '%s'",
        rslt.numFound, JSON.stringify(rslt.docs));

    var doc = rslt.docs[0];
    var key = doc['_yz_rk'];
    var bucket = doc['_yz_rb'];
    var bucketType = doc['_yz_rt'];
}

var searchCmd = new Riak.Commands.YZ.Search.Builder()
    .withIndexName('customers')
    .withQuery('page_visits_counter:[15 TO *]')
    .withCallback(search_cb)
    .build();

client.execute(searchCmd);



As expected, one of our two stored maps has a page_visits counter
above 15. Let’s make sure that we have the right result:


// Using the same method from above:
String query = "page_visits_counter:[15 TO *]";

// Again using the same method from above:
String registerValue =
  results.getAllResults().get(0).get("first_name_register").get(0); // Joan



results['docs'][0]['first_name_register']
# 'Joan'



$response->getDocs()[0]->first_name_register']; // Joan



results['docs'][0]['first_name_register']
# u'Joan'



var search = new RiakSearchRequest("customers", "page_visits_counter:[15 TO *]");
var rslt = client.Search(search);
var firstDoc = searchResult.Documents.First();



var doc = rslts.docs[0];
doc.page_visits_register;



Success! Now we can test out searching sets.





Searching Sets Within Maps


Each of the maps we stored thus far had an interests set. First, let’s
see how many of our maps even have sets called interests using a
wildcard query:


// Using the same method from above:
String query = "interests_set:*";



results = client.search('customers', 'interests_set:*')
# 2



$response = (new \Basho\Riak\Command\Builder\Search\FetchObjects($riak))
  ->withIndexName('customers')
  ->withQuery('interests_set:*')
  ->build()
  ->execute();

$response->getNumFound(); // 2



results = client.fulltext_search('customers', 'interests_set:*')
results['num_found']
# 2



var search = new RiakSearchRequest("customers", "interests_set:*");
var rslt = client.Search(search);



var searchCmd = new Riak.Commands.YZ.Search.Builder()
    .withIndexName('customers')
    .withQuery('interests_set:*')
    .withCallback(search_cb)
    .build();

client.execute(searchCmd);



As expected, both stored maps have an interests set. Now let’s see how
many maps have items in interests sets that begin with loving:


// Using the same method from above:
String query = "interests_set:loving*";

// Again using the same method from above:
int numberFound = results.numResults(); // 1
String registerValue =
  results.getAllResults().get(0).get("first_name_register").get(0); // Joan



results = client.search('customers', 'interests_set:loving*')
results['num_found'] # 1
results['docs'][0]['first_name_register'] # 'Joan'



$response = (new \Basho\Riak\Command\Builder\Search\FetchObjects($riak))
  ->withIndexName('customers')
  ->withQuery('interests_set:loving*')
  ->build()
  ->execute();

$response->getDocs()[0]->first_name_register']; // Joan



results = client.fulltext_search('customers', 'interests_set:loving*')
results['num_found'] # 1
results['docs'][0]['first_name_register'] # u'Joan'



var search = new RiakSearchRequest("customers", "interests_set:loving*");
var rslt = client.Search(search);



var searchCmd = new Riak.Commands.YZ.Search.Builder()
    .withIndexName('customers')
    .withQuery('interests_set:loving*')
    .withCallback(search_cb)
    .build();

client.execute(searchCmd);



As expected, only our Joan Jett map has one item in its interests set
that starts with loving.





Searching Maps Within Maps


Before we can try to search maps within maps, we need to actually store
some. Let’s add a alter_ego map to both of the maps we’ve stored thus
far. Each person’s alter ego will have a first name only.


Location idrisElbaMap = new Location(customersBucket, "idris_elba");
MapUpdate alterEgoUpdateName = new MapUpdate()
        .update("name", new RegisterUpdate("John Luther"));
MapUpdate alterEgoUpdate = new MapUpdate()
        .update("alter_ego", alterEgoUpdateName);
UpdateMap addSubMap = new UpdateMap.Builder(idrisElbaMap, alterEgoUpdate);
client.execute(addSubMap);



idris_elba.maps['alter_ego'].registers['name'] = 'John Luther'

joan_jett.maps['alter_ego'].registers['name'] = 'Robert Plant'



$mapBuilder = (new \Basho\Riak\Command\Builder\UpdateMap($riak))
  ->updateRegister('name', 'John Luther')

(new \Basho\Riak\Command\Builder\UpdateMap($riak))
  ->updateMap('alter_ego', $mapBuilder)
  ->buildLocation('idris_elba', 'customers', 'maps')
  ->build()
  ->execute();

$mapBuilder->updateRegister('name', 'Robert Plant')

(new \Basho\Riak\Command\Builder\UpdateMap($riak))
  ->updateMap('alter_ego', $mapBuilder)
  ->buildLocation('joan_jett', 'customers', 'maps')
  ->build()
  ->execute();



idris_elba.maps['alter_ego'].registers['name'].assign('John Luther')
idris_elba.store()

joan_jett.maps['alter_ego'].registers['name'].assign('Robert Plant')
joan_jett.store()



const string nameRegister = "name";
const string alterEgoMap = "alter_ego";

idrisElbaId = new RiakObjectId("maps", "customers", "idris_elba");
var idrisGetRslt = client.DtFetchMap(idrisElbaId);

var alterEgoMapOp = new MapOp();
alterEgoMapOp.updates.Add(new MapUpdate
{
    register_op = Serializer("John Luther"),
    field = new MapField
    {
        name = Serializer(nameRegister),
        type = MapField.MapFieldType.REGISTER
    }
});

var alterEgoMapUpdate = new MapUpdate
{
    map_op = alterEgoMapOp,
    field = new MapField
    {
        name = Serializer(alterEgoMap),
        type = MapField.MapFieldType.MAP
    }
};

var idrisUpdateRslt = client.DtUpdateMap(idrisElbaId, Serializer,
    idrisGetRslt.Context, null, new List<MapUpdate> { alterEgoMapUpdate });



var funcs = [
    function (async_cb) {
        var options = {
            bucketType: 'maps',
            bucket: 'customers',
            key: 'idris_elba'
        };

        var mapOp = new Riak.Commands.CRDT.UpdateMap.MapOperation();
        var alterEgoMap = mapOp.map('alter_ego');
        alterEgoMap.setRegister('name', 'John Luther');

        options.op = mapOp;

        client.updateMap(options, function (err, rslt) {
            throwIfErr(err);
            async_cb();
        });
    },
    function (async_cb) {
        var options = {
            bucketType: 'maps',
            bucket: 'customers',
            key: 'joan_jett'
        };

        var mapOp = new Riak.Commands.CRDT.UpdateMap.MapOperation();
        var alterEgoMap = mapOp.map('alter_ego');
        alterEgoMap.setRegister('name', 'Robert Plant');

        options.op = mapOp;

        client.updateMap(options, function (err, rslt) {
            throwIfErr(err);
            async_cb();
        });
    }
];

async.parallel(funcs, function (err, rslts) {
    throwIfErr(err);
});



Querying maps within maps involves construct queries that separate the
different levels of depth with a single dot. Here’s an example query for
finding maps that have a name register embedded within an alter_ego
map:


// Using the same method from above:
String query = "alter_ego_map.name_register:*";

// Again using the same method from above:
int numberFound = results.numResults(); // 2



results = client.search('customers', 'alter_ego_map.name_register:*')
results['num_found'] # 2



$response = (new \Basho\Riak\Command\Builder\Search\FetchObjects($riak))
  ->withIndexName('customers')
  ->withQuery('alter_ego_map.name_register:*')
  ->build()
  ->execute();

$response->getNumFound(); // 2



results = client.fulltext_search('customers', 'alter_ego_map.name_register:*')
results['num_found'] # 2



var search = new RiakSearchRequest("customers", "alter_ego_map.name_register:*");
var rslt = client.Search(search);



var searchCmd = new Riak.Commands.YZ.Search.Builder()
    .withIndexName('customers')
    .withQuery('alter_ego_map.name_register:*')
    .withCallback(search_cb)
    .build();

client.execute(searchCmd);



Once we know how to query embedded fields like this, we can query those
just like any other. Let’s find out which maps have an alter_ego
sub-map that contains a name register that ends with PLant, and
display that customer’s first name:


// Using the same method from above:
String query = "alter_ego_map.name_register:*Plant";

// Again using the same method from above:
int numberFound = results.numResults(); // 1
String registerValue =
  results.getAllResults().get(0).get("first_name_register").get(0); // Joan



results = client.search('customers', 'alter_ego_map.name_register:*Plant')
results['num_found'] # 1
results['docs'][0]['first_name_register'] # 'Joan'



$response = (new \Basho\Riak\Command\Builder\Search\FetchObjects($riak))
  ->withIndexName('customers')
  ->withQuery('alter_ego_map.name_register:*Plant')
  ->build()
  ->execute();

$response->getNumFound(); // 1
$response->getDocs()[0]->first_name_register']; // Joan



results = client.fulltext_search('customers', 'alter_ego_map.name_register:*Plant')
results['num_found'] # 1
results['docs'][0]['first_name_register'] # u'Joan



var search = new RiakSearchRequest("customers", "alter_ego_map.name_register:*Plant");
var rslt = client.Search(search);



var searchCmd = new Riak.Commands.YZ.Search.Builder()
    .withIndexName('customers')
    .withQuery('alter_ego_map.name_register:*Plant')
    .withCallback(search_cb)
    .build();

client.execute(searchCmd);



Success! We’ve now queried not just maps but also maps within maps.








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/community/index.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Community Overview
project: riak
version: 0.10.0+
document: appendix
toc: true
index: true
keywords: [community]
moved: {
‘1.4.0-‘: ‘/references/appendices/community’
}




Our Community is an eclectic group of engineers, architects, academics and enthusiasts who care about solving the hardest problems of distributed systems with open source software. Riak, written in Erlang, tackles the continuing complexity of persisting unstructured data with an architecture uniquely designed to scale.


As a Community, our core belief is that there is no question too simple. You can freely share questions, answers and feedback without hesitation. Whether you need help or simply want to get involved, we are easy to contact.



Platforms


We’re big on answering questions for beginner and veteran users alike. To make sure we can answer them, we curate a number of discussions on a daily basis.



Mailing List


The Riak Users Mailing
List [http://lists.basho.com/mailman/listinfo/riak-users_lists.basho.com]
is highly trafficked and a great resource for technical discussions, Riak issues and questions, and community events and announcements.


We pride ourselves on answering every email that comes over the Riak User mailing list. Sign up [http://lists.basho.com/mailman/listinfo/riak-users_lists.basho.com] and send away. If you prefer points for your questions, you can always tag Riak on StackOverflow [http://stackoverflow.com/questions/tagged/riak].





Code


Basho uses GitHub for the development of all of our
code. Our core products are developed under the Basho organization [http://github.com/basho/]. We also have Basho Labs [http://github.com/basho-labs/], where we curate the rich ecosystem of contributors from our community. We also make use of GitHub for the submission and integration of all internal code and community pull requests. If you have general feedback beyond the scope of a single repo, open an issue under The Riak Community [https://github.com/basho-labs/the-riak-community/issues].





Events on Meetup.com


We have local meetups everywhere from Paris to San Francisco and back again. To find the one closest to you, search for Riak on Meetup.com [http://www.meetup.com/find/riak/].





Riak on IRC


The #riak IRC room on irc.freenode.net [http://irc.lc/freenode/riak] is a great place for real-time help with your Riak issues and questions.





The Basho Blog


Members of the Basho team write frequently on The Basho
Blog [http://blog.basho.com].





Videos


You can watch all the Basho-curated videos on YouTube [https://www.youtube.com/user/BashoTechnologies] and a few others on the Basho Vimeo Page [http://vimeo.com/bashotech/videos].





Other Social


We are easy to find on social media sites. Like us on Facebook [http://www.facebook.com/pages/Riak/143599935667217], chat on the Riak
LinkedIn Group [http://www.linkedin.com/groups?mostPopular=&gid=2913983] and follow us on Twitter [http://twitter.com/basho]. We have a growing following on Reddit as well.







Programs


Our platforms are complemented by the amazing efforts of the Basho team and the greater contributor community. Here are a few you don’t want to miss.



The Riak Recap


The Riak Recap is a periodic email to the Riak Users Mailing List to
keep subscribers up-to-date on what’s happening in and around the
Riak Community.





Meetups


We’re re-energizing meetups throughout the world. The most active are:



		San Francisco [http://www.meetup.com/San-Francisco-Riak-Meetup/]


		New York [http://www.meetup.com/NYC-Riak-Meetup]


		Boston [http://www.meetup.com/Boston-Riak]


		Paris [http://www.meetup.com/Paris-Riak-Meetup/]


		London [http://www.meetup.com/riak-london/]





The list of all related meetups are visible here [http://riak.meetup.com]. If you’re looking for assistance getting a meetup or user group started
in your area, or want to tell the community about one that you’re
starting, email community@basho.com.





RICON


RICON 2015 details are out [http://ricon.io/]!


If you’re as excited about distributed systems as we are, be sure to join our yearly conference known as RICON. It’s an intimate, multi-track day for sysadmins, developers and computer scientists alike. We welcome anyone, regardless of title or company, to join us.


You can see past talks [http://ricon.io/archive/2014/index.html] as well.







Process


A healthy community includes the right amount of processes for everyone to work together. Here is the short list of resources:



		[[Community FAQs]] has additional specifics to questions on contribution.


		[[Reporting Bugs]] for understanding bug process and triage.






Give Back


A Community is built around the code to help foster its growth, maturity, and adoption. Like the code, it needs to evolve, and unless it’s moving forward and being refined continuously, it ceases to be valuable.


You can give back as a member of our community by contributing to our public project: The Riak Community [https://github.com/basho-labs/the-riak-community]. You can help define our Meetup strategy [https://github.com/basho-labs/the-riak-community/blob/master/meetup-strategy.md] and Code of Conduct [https://github.com/basho-labs/the-riak-community/blob/master/code-of-conduct.md] or open GitHub issues [https://github.com/basho-labs/the-riak-community/issues] for other requests.


And thank you. We’re happy you’re here.







Professional Support


If you run into an issue you just can’t crack, Basho [http://basho.com]
sells support for Riak, as well as licenses for Riak
Enterprise [http://basho.com/riak-enterprise/]. Please contact
Basho [http://basho.com/contact/] at any time for more information.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/using/conflict-resolution/python.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Conflict Resolution: Python”
project: riak
version: 2.0.0+
document: tutorials
audience: intermediate
keywords: [developers, conflict-resolution, python]




For reasons explained in the [[Introduction to conflict
resolution|Conflict Resolution]], we strongly recommend adopting a
conflict resolution strategy that requires applications to resolve
siblings according to use-case-specific criteria. Here, we’ll provide a
brief guide to conflict resolution using the official Riak Python
client [https://github.com/basho/riak-python-client].



How the Python Client Handles Conflict Resolution


In the official Python client, every object of the RiakObject class
has a siblings property that provides access to a list of an object’s
sibling values. If there are no siblings, that property will return a
list with only one item. Here’s an example of an object with siblings:


bucket = client.bucket('seahawks')
obj = bucket.get('coach')
obj.siblings

# The output:
[<riak.content.RiakContent object at 0x106cc51d0>, <riak.content.RiakContent object at 0x108x1da62c1>]



So what happens if the length of obj.siblings is greater than 1, as in
the case above? The easiest way to resolve siblings automatically with
the Python client is to create a conflict-resolving function that takes
a list of sibling values and returns a single value. Such resolution
functions can be registered either at the object level or the bucket
level. A more complete explanation can be found in the section directly
below.





Basic Conflict Resolution Example


Let’s say that we’re building a social network application and storing
lists of usernames representing each user’s “friends.” Each user will
be of the class User, which we’ll create below. All of the data for our
application will be stored in buckets that bear the [[bucket type|Using
Bucket Types]] siblings, and for this bucket type allow_mult is set
to true, which means that Riak will generate siblings in certain
cases—siblings that our application will need to be equipped to
resolve when necessary.


The question that we need to ask ourselves at this point is the
following: if a given user has conflicting lists, which list should be
deemed more “correct?” What criteria should be applied? Should the lists
be merged? Should we pick a list at random and deem that list correct?
We’ll keep it simple here and say that the following criterion will
hold: if multiple conflict lists exist, the longer list will be the one
that our application deems correct. While this might not make sense in
real-world applications, it’s a good jumping-off point.



Creating Our Data Class


We’ll start by creating a User class for each user’s data. Each User
object will consist of a friends property that lists the usernames, as
strings, of the user’s friends. We will also create a to_json method,
as we’ll be storing each User object as JSON:


class User(object):
    def __init__(self, username, friends):
        self.username = username
        self.friends = friends

    def to_json(self):
        return vars(self)



Now, we can create User objects and see what they look like as JSON:


new_user = User('riakuser127', ['captheorem', 'siblingsrule572'])

new_user.to_json()
# {'username': 'riakuser127', 'friends': ['captheorem238', 'siblingsrule572']}






Implementing and Registering a Conflict Resolution Function


Let’s say that we’ve stored a bunch of User objects in Riak and that a
few concurrent writes have led to siblings. How is our application going
to deal with that? First, let’s say that there’s a User object stored
in the bucket users (which is of the bucket type siblings, as
explained above) under the key bashobunny. We can fetch the object
that is stored there and see if it has siblings:


bucket = client.bucket_type('siblings').bucket('users')
obj = bucket.get('bashobunny')

print len(obj.siblings) > 1



If we get True, then there are siblings. So what do we do in that
case? The Python client allows us to write a conflict resolution hook
function that will be triggered any time siblings are found, i.e. any
time len(obj.siblings) > 1. A hook function like this needs to take a
single RiakObject object as its argument, apply some sort of logic to
the list of values contained in the siblings property, and ultimately
return a list with a single “correct” value. For our example case, we’ll
return the value with the longest friends list:


def longest_friends_list_resolver(riak_object):
    # We'll specify a lambda function that operates on the length of
    # each sibling's "friends" list:
    lm = lambda sibling: len(sibling.data['friends'])
    # Then we'll return a list that contains only the object with the
    # maximum value for the length of the "friends" list:
    riak_object.siblings = [max(riak_object.siblings, key=lm), ]






Registering a Conflict Resolver Function


In the Python client, resolver functions can be registered at the object
level, as in this example:


bucket = client.bucket_type('siblings').bucket('users')
obj = RiakObject(client, bucket, 'bashobunny')
obj.resolver = longest_friends_list_resolver

# Now, when the object is loaded from Riak, it will resolve to a single
# value instead of multiple values:
obj.reload()



Alternatively, resolvers can be registered at the bucket level, so that
the resolution is applied to all objects in the bucket:


bucket = client.bucket_type('siblings').bucket('users')
bucket.resolver = longest_friends_list_resolver

obj = RiakObject(client, bucket, 'bashobunny')
obj.reload()

# The resolver will also be applied if you perform operations using the
# bucket object:

bucket.get('bashobunny')
bucket.get('some_other_user')








Conflict Resolution and Writes


In the above example, we created a conflict resolver that resolves a
list of discrepant User object values and returns a single value. It’s
important to note, however, that this resolver will only provide the
application with a single “correct” value; it will not write that
value back to Riak. That requires a separate step. When this step should
be undertaken depends on your application. In general, though, we
recommend writing objects to Riak only when the application is ready to
commit them, i.e. when all of the changes that need to be made to the
object have been made and the application is ready to persist the state
of the object in Riak.


Correspondingly, we recommend that updates to objects in Riak follow
these steps:



		Read the object from Riak


		Resolving sibling conflicts if they exist, allowing the
application to reason about one “correct” value for the object (this
step is the subject of this tutorial)


		Modify the object


		Write the object to Riak once the necessary changes have been
made





You can find more on writing objects to Riak, including code examples
from the official Python client library, in [[The Basics|The
Basics#Object-Key-Operations]].





More Advanced Example


Resolving sibling User values on the basis of which user has the
longest friends list has the benefit of being simple but it’s probably
not a good resolution strategy for our social networking application
because it means that unwanted data loss is inevitable. If one friend
list contains A, B, and C and the other contains D and E, the
list containing A, B, and C will be chosen. So what about friends
D and E? Those usernames are essentially lost. In the sections
below, we’ll implement an alternative strategy as an example.



Merging the Lists


To avoid losing data like this, a better strategy would be to merge the
lists. We can modify our original resolver function to accomplish
precisely that and will also store the resulting User object:


from riak.content import RiakContent

def longest_friends_list_resolver(riak_object):
    # We start with an empty set
    friends_list = set()

    # Then we add all the friends from all siblings to the set
    for user in riak_object.siblings:
        friends_list.update(user.data['friends'])

    # Then we make a new User object. First, we fetch the username from
    # any one of the siblings, then we pass in our new friends list.
    username = riak_object.siblings[0].data['username']
    new_user = User(username, list(friends_list))

    # Now we reuse the first sibling as a container for the merged data
    riak_object.siblings[0].data = new_user.to_json()

    # And finally we set the siblings property to include just the
    # single, resolved sibling
    riak_object.siblings = [riak_object.siblings[0]]



The drawback to this approach is the following: with a conflict
resolution strategy like this, it’s more or less inevitable that a user
will remove a friend from their friends list, and that that friend will
end up back on the list during a conflict resolution operation. While
that’s certainly not desirable, that is likely better than the
alternative proposed in the first example, which entails usernames being
simply dropped from friends lists. Sibling resolution strategies almost
always carry potential drawbacks of this sort.







Riak Data Types


An important thing to always bear in mind when working with conflict
resolution is that Riak offers a variety of [[Data Types]] that have
specific conflict resolution mechanics built in. If you have data that
can be modeled as a [[counter|Data Types#Counters]], [[set|Data
Types#Sets]], or [[map|Data Types#Maps]], then you should seriously
consider using those Data Types instead of creating your own
application-side resolution logic.


In the example above, we were dealing with conflict resolution within a
set, in particular the friends list associated with each User
object. The merge operation that we built to handle conflict resolution
is analogous to the resolution logic that is built into Riak sets. For
more information on how you could potentially replace the client-side
resolution that we implemented above, see our [[tutorial on Riak
sets|Using Data Types#Sets]].






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/cookbooks/configuration/Configuring-Riak-CS.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Configuring Riak CS
project: riakcs
version: 1.2.0+
document: cookbook
toc: true
audience: intermediate
keywords: [operator, configuration]




For Riak CS to operate properly it must know how to connect to Riak.
A Riak CS node typically runs on the same server as its corresponding
Riak node, which means that changes will only be necessary if Riak is
configured using non-default settings.


Riak CS’s settings typically reside in a CS node’s riak-cs.conf and
advanced.config files, both of which are typically located in the
/etc/riak-cs directory. The newer riak-cs.conf file is a simple list
of configuration = option pairs, but there are some configuration options
that can only be changed through the advanced.config file. That file looks
something like:


{riak_cs, [
    {parameter1, value},
    {parameter2, value},
    %% and so on...
]},



If you’re updating from a version of Riak CS prior to 2.0.0 – when the
riak-cs.conf file was introduced – you can still use the old-style
app.config configuration file in place of the riak-cs.conf/advanced.config
pair. The app.config file has identical syntax to the advanced.config file,
so any examples that use the advanced.config syntax can be directly translated
to the app.config file.


Please note that the older app.config file supersedes the newer configuration
files. If an app.config file is present, neither the riak-cs.config nor the
advanced.config will be used.


Note on Legacy app.config

If you are upgrading to Riak CS 2.0 from a previous version of Riak and plan
to continue usage of the legacy `app.config` file, please note that some
configuration options have changed names.  Most notably, the IP/Port format
has changed in 2.0 for Stanchion, Riak, and Riak CS.  To view these changes, 
please review the [[Rolling Upgrades|Rolling Upgrades for Riak CS]] Document. For a comprehensive listing of available parameters and a full list of app.config
parameters, see the [[Full Configuration Reference|Riak CS Configuration Reference]].



The sections below walk you through some of the main configuration categories
that you will likely encounter while operating Riak CS.



Host and Port


To connect Riak CS to Riak, make sure that the following parameter is set to the
host and port used by Riak:



		riak_host — Replace 127.0.0.1:8087 with the IP address and port number
of the Riak node you want Riak CS to connect to.





You will also need to set the host listener for Riak CS:



		listener — Replace 127.0.0.1:8080 with the IP address and port number
of the Riak CS node if you are running CS non-locally. Make sure that the
port number does not conflict with the riak_host port number of the Riak
node and the Riak CS node that are running on the same machine.






Note on IP addresses

The IP address you enter here must match the IP address specified for
the Protocol Buffers interface in the Riak riak.conf file
unless Riak CS is running on a completely different network, in which
case address translation is required.

After making any changes to the riak-cs.conf file in Riak CS,
[[restart|Riak CS Command-line Tools#riak-cs]] the node if it is already
running.





Specifying the Stanchion Node


If you’re running a single Riak CS node, you don’t have to change the
[[Stanchion|Configuring Stanchion]] settings because Stanchion runs on
the local host. If your Riak CS system has multiple nodes, however, you
must specify the IP address and port for the Stanchion node and whether
or not SSL is enabled.


The Stanchion settings reside in the Riak CS riak-cs.conf file, which is
located in the /etc/riak-cs directory of each Riak CS node.


To set the host and port for Stanchion, make sure the following parameter is set
to the host and port used by Stanchion:



		stanchion_host — replace 127.0.0.1:8085 with the IP address and port
number of the Stanchion node








Enabling SSL


SSL is disabled by default in Stanchion, i.e. the stanchion_ssl variable is
set to off. If Stanchion is configured to use SSL, change this variable to
on. The following example configuration would set the Stanchion host to
localhost, the port to 8085 (the default), and set up Stanchion to use SSL:


stanchion_host = 127.0.0.1:8085
stanchion_ssl = on



{riak_cs, [
    %% Other configs
    {stanchion_host, {"127.0.0.1", 8085}},
    {stanchion_ssl, true},
    %% Other configs
]}






Specifying the Node Name


You can also set a more useful name for the Riak CS node, which is helpful to
identify the node from which requests originate during troubleshooting. This
setting resides in the Riak CS riak-cs.conf configuration file, or the old-
style vm.args file which is also located in the /etc/riak-cs directory. This
would set the name of the Riak CS node to riak_cs@127.0.0.1:


nodename = riak_cs@127.0.0.1



-name riak_cs@127.0.0.1



Change 127.0.0.1 to the IP address or hostname for the server on which Riak CS
is running.





Specifying the Admin User


The admin user is authorized to perform actions such as creating users or
obtaining billing statistics. An admin user account is no different from any
other user account. You must create an admin user to use Riak CS.



Note on anonymous user creation

Before creating an admin user, you must first set `anonymous_user_creation = on`
in the Riak CS `riak-cs.conf` (or set `{anonymous_user_creation, true}` in the
old-style `advanced.config`/`app.config`). You may disable this again once the
admin user has been created.

To create an account for the admin user, use an HTTP POST request with the
username you want to use for the admin account. The following is an


curl -H 'Content-Type: application/json' \
  -XPOST http://<host>:<port>/riak-cs/user \
  --data '{"email":"foobar@example.com", "name":"admin_user"}'



The JSON response will look something like this:


{
  "Email": "foobar@example.com",
  "DisplayName": "adminuser",
  "KeyId": "324ABC0713CD0B420EFC086821BFAE7ED81442C",
  "KeySecret": "5BE84D7EEA1AEEAACF070A1982DDA74DA0AA5DA7",
  "Name": "admin_user",
  "Id":"8d6f05190095117120d4449484f5d87691aa03801cc4914411ab432e6ee0fd6b",
  "Buckets": []
}



You can optionally send and receive XML if you set the Content-Type to
application/xml, as in this example:


Once the admin user exists, you must specify the credentials of the admin user
on each node in the Riak CS system. The admin user credential settings reside in
the Riak CS riak-cs.conf file, which is located in the /etc/riak-cs
directory. Paste the key_id string between the quotes for the admin.key.
Paste the key_secret string into the admin.secret variable, as shown here:


admin.key = 324ABC0713CD0B420EFC086821BFAE7ED81442C
admin.secret = 5BE84D7EEA1AEEAACF070A1982DDA74DA0AA5DA7



{riak_cs, [
           %% Admin user credentials
           {admin_key, "324ABC0713CD0B420EFC086821BFAE7ED81442C"},
           {admin_secret, "5BE84D7EEA1AEEAACF070A1982DDA74DA0AA5DA7"},
           %% Other configs
          ]}






Bucket Restrictions


If you wish, you can limit the number of buckets created per user. The default
maximum is 100. Please note that if a user exceeds the bucket creation limit,
they are still able to perform other actions, including bucket deletion. You can
change the default limit using the max_buckets_per_user parameter in each
node’s advanced.config file—there is no equivalent configuration for the
riak-cs.conf file. The example configuration below would set the maximum to
1000:


{riak_cs, [
           %% Other configs
           {max_buckets_per_user, 1000},
           %% Other configs
          ]}



If you want to avoid setting a limit on per-user bucket creation, you can set
max_buckets_per_user to unlimited.





Connection Pools


Riak CS uses two distinct connection pools for communication with Riak: a
primary and a secondary pool.


The primary connection pool is used to service the majority of API requests
related to the upload or retrieval of objects. It is identified in the
configuration file as pool.request.size. The default size of this pool is 128.


The secondary connection pool is used strictly for requests to list the contents
of buckets. The separate connection pool is maintained in order to improve
performance. This secondary connection pool is identified in the configuration
file as pool.list.size. The default size of this pool is 5.


The following shows the connection_pools default configuration entry
that can be found in the app.config file:


pool.request.size = 128
pool.request.overflow = 0
pool.list.size = 5
pool.list.overflow = 0



{riak_cs, [
           %% Other configs
           {connection_pools,
           [
            {request_pool, {128, 0} },
            {bucket_list_pool, {5, 0} }
           ]},
           %% Other configs
]}



The value for each pool split into pairs, with the first number representing the
normal size of the pool. This is representative of the number of concurrent
requests of a particular type that a Riak CS node may service. The second number
represents the number of allowed overflow pool requests that are allowed. It is
not recommended that you use any value other than 0 for the overflow amount
unless careful analysis and testing has shown it to be beneficial for a
particular use case.



Tuning


We strongly recommend that you take care when setting the value of the
[[pb_backlog setting|Configuring Riak for
CS#Setting-Up-Riak-to-Use-Protocol-Buffers]] in Riak. When a Riak CS node is
started, each connection pool begins to establish connections to Riak. This can
result in a [[thundering
herd problem|http://en.wikipedia.org/wiki/Thundering_herd_problem]] in which
connections in the pool believe they are connected to Riak, but in reality some
of the connections have been reset. Due to TCP RST packet rate limiting
(controlled by net.inet.icmp.icmplim) some of the connections may not receive
notification until they are used to service a user’s request. This manifests
itself as an {error, disconnected} message in the Riak CS logs and an error
returned to the user.







Enabling SSL in Riak CS


ssl.certfile = "./etc/cert.pem"
ssl.keyfile = "./etc/key.pem"



{ssl, [
    {certfile, "./etc/cert.pem"},
    {keyfile, "./etc/key.pem"}
   ]},



Replace the text in quotes with the path and filename for your SSL encryption
files. By default, there’s a cert.pem and a key.pem in each node’s /etc
directory. You’re free to use those or to supply your own.


Please note that you may also need to provide a certificate
authority [http://en.wikipedia.org/wiki/Certificate_authority], aka a CA cert.
If you do, you must use the advanced.config file, and specify its location
using the cacertfile parameter.  Unlike certfile and keyfile, the
cacertfile parameter is not commented out. You will need to
add it yourself. Here’s an example configuration with this parameter included:


{ssl, [
       {certfile, "./etc/cert.pem"},
       {keyfile, "./etc/key.pem"},
       {cacertfile, "./etc/cacert.pem"}
      ]},
      %% Other configs



Instructions on creating your own CA cert can be found
here [http://www.akadia.com/services/ssh_test_certificate.html].





Proxy vs. Direct Configuration


Riak CS can interact with S3 clients in one of two ways:



		A proxy configuration [http://basho.com/riak-cs-proxy-vs-direct-configuration/]
enables an S3 client to communicate with Riak CS as if it were Amazon S3
itself, i.e. using typical Amazon URLs.


		A direct configuration requires that an S3 client connecting to Riak CS be
configured for an “S3-compatible service,” i.e. with a Riak CS endpoint that
is not masquerading as Amazon S3. Examples of such services include
Transmit [http://panic.com/transmit/], s3cmd [http://s3tools.org/s3cmd], and
DragonDisk [http://www.dragondisk.com/].






Proxy


To establish a proxy configuration, configure your client’s proxy settings to
point to Riak CS cluster’s address. Then configure your client with Riak CS
credentials.


When Riak CS receives the request to be proxied, it services the request itself
and responds back to the client as if the request went to S3.


On the server side, the root_host configuration in the riak-cs.conf file
must be set to s3.amazonaws.com because all of the bucket URLs request by the
client will be destined for s3.amazonaws.com. This is the default.


Note: One issue with proxy configurations is that many GUI clients only
allow for one proxy to be configured for all connections. For customers trying
to connect to both S3 and Riak CS, this can prove problematic.





Direct


The establish a direct configuration, the cs_root_host in the
riak_cs section of app.config must be set to the FQDN of your Riak
CS endpoint, as all of the bucket URLs will be destined for the FQDN
endpoint.


You will also need wildcard DNS entries for any child of the endpoint to
resolve to the endpoint itself. Here’s an example:


data.riakcs.net
*.data.riakcs.net








Garbage Collection Settings


The following options are available to make adjustments to the Riak CS garbage
collection system. More details about garbage collection in Riak CS are
available in [[Garbage Collection]].



		gc.leeway_period (leeway_seconds in advanced.config or app.config) —
The amount of time that must elapse before an object version that has been
explicitly deleted or overwritten is eligible for garbage collection. The
default value is 24h (24 hours).


		gc.interval (gc_interval in advanced.config or app.config) — The
interval at which the garbage collection daemon runs to search for and reap
eligible object versions. The default value is 15m (15 minutes). It is
important that you have only one garbage collection daemon running in a
cluster at any point in time. To disable the daemon on a node, set the
gc.interval parameter to infinity.


		gc.retry_interval (gc_retry_interval in advanced.config or app.config)
— The amount of time that must elapse before another attempt is made to
write a record for an object manifest in the pending_delete state to the
garbage collection eligibility bucket. In general, this timeout should never
expire, but may if an error condition caused the original record in the
garbage collection eligibility bucket to be removed prior to the reaping
process completing. The default value is 6h (6 hours).


		gc.max_workers (gc.max_workers in advanced.config or app.config) —
The maximum number of worker processes that may be started by the garbage
collection daemon to use for concurrent reaping of garbage-collection-eligible
objects. The default value is 2.





There are some additional settings that may only be configured in the
advanced.config or app.config configuration files. None of the below
settings are available through the riak-cs.conf configuration file.



		epoch_start — The time that the garbage collection daemon uses
to begin collecting keys from the garbage collection eligibility
bucket. Records in this bucket use keys based on the epoch time the
record is created + leeway_seconds. The default is 0 and should be
sufficient for general use. A case for adjusting this value is if the
secondary index query run by the garbage collection daemon continually
times out. Raising the starting value can decrease the range of the
query and make it more likely the query will succeed. The value must
be specified in Erlang binary format. e.g. to set it to 10, specify
<<"10">>.


		initial_gc_delay — The number of seconds to wait in addition to
the gc_interval value before the first execution of the garbage
collection daemon when the Riak CS node is started. Note:
Originally, this setting was used to stagger the execution of GC on
multiple nodes; we no longer recommend running multiple GC daemons.
Correspondingly, we do not recommend setting initial_gc_delay.


		max_scheduled_delete_manifests — The maximum number of
manifests (representative of object versions) that can be in the
scheduled_delete state for a given key. A value of unlimited means
there is no maximum, and pruning will not happen based on
count. An example of where this option is useful is a use case
involving a lot of churn on a fixed set of keys in a time frame that
is relatively short compared to the leeway_seconds value. This can
result in the manifest objects reaching a size that can negatively
impact system performance. The default value is unlimited.


		gc_batch_size — This option represents the size used for paginating the
results of the secondary index query. The default value is 1000.





Deprecated Configurations

While Riak CS 2.0.0 still allows the configuration of `gc_paginated_indexes`,
it is strongly recommended that these settings not be used. This setting has
been deprecated, and will be removed in the next major release.




Other Riak CS Settings


For a complete listing of configurable parameters for Riak CS, see the
[[configuration reference|Riak CS Configuration Reference]] document.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/backend-api.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Backend API
project: riak
version: 1.0.0+
document: appendix
toc: true
keywords: [api, backends]
moved: {
‘1.4.0-‘: ‘/references/appendices/Backend-API’
}




Riak’s storage API uniformly applies to all of the
[[supported backends|Choosing a Backend]]. This page presents the details of
the storage backend API in the form of
Erlang type specifications [http://www.erlang.org/doc/reference_manual/typespec.html]
(specs).


Specs are used by dialyzer [http://www.erlang.org/doc/man/dialyzer.html],
an Erlang static analysis tool. It is recommended to copy these specs into any
custom backend modules and use them as a guide for development to
avoid errors and ensure full compatibility with Riak.


Also included below is the function export list that can be pasted directly
into a custom storage backend module.


%% Riak Storage Backend API
-export([api_version/0,
         start/2,
         stop/1,
         get/3,
         put/5,
         delete/4,
         drop/1,
         fold_buckets/4,
         fold_keys/4,
         fold_objects/4,
         is_empty/1,
         status/1,
         callback/3]).

%% ===================================================================
%% Public API
%% ===================================================================

%% @doc Return the major version of the
%% current API and a capabilities list.
%% The current valid capabilities are async_fold
%% and indexes.
-spec api_version() -> {integer(), [atom()]}.

%% @doc Start the backend
-spec start(integer(), config()) -> {ok, state()} | {error, term()}.

%% @doc Stop the backend
-spec stop(state()) -> ok.

%% @doc Retrieve an object from the backend
-spec get(riak_object:bucket(), riak_object:key(), state()) ->
                 {ok, any(), state()} |
                 {ok, not_found, state()} |
                 {error, term(), state()}.

%% @doc Insert an object into the backend.
-type index_spec() :: {add, Index, SecondaryKey} | {remove, Index, SecondaryKey}.
-spec put(riak_object:bucket(), riak_object:key(), [index_spec()], binary(), state()) ->
                 {ok, state()} |
                 {error, term(), state()}.

%% @doc Delete an object from the backend
-spec delete(riak_object:bucket(), riak_object:key(), [index_spec()], state()) ->
                    {ok, state()} |
                    {error, term(), state()}.

%% @doc Fold over all the buckets
-spec fold_buckets(riak_kv_backend:fold_buckets_fun(),
                   any(),
                   [],
                   state()) -> {ok, any()} | {async, fun()}.

%% @doc Fold over all the keys for one or all buckets.
-spec fold_keys(riak_kv_backend:fold_keys_fun(),
                any(),
                [{atom(), term()}],
                state()) -> {ok, term()} | {async, fun()}.

%% @doc Fold over all the objects for one or all buckets.
-spec fold_objects(riak_kv_backend:fold_objects_fun(),
                   any(),
                   [{atom(), term()}],
                   state()) -> {ok, any()} | {async, fun()}.

%% @doc Delete all objects from this backend
%% and return a fresh reference.
-spec drop(state()) -> {ok, state()} | {error, term(), state()}.

%% @doc Returns true if this backend contains any
%% non-tombstone values; otherwise returns false.
-spec is_empty(state()) -> boolean() | {error, term()}.

%% @doc Get the status information for this backend
-spec status(state()) -> [{atom(), term()}].

%% @doc Register an asynchronous callback
-spec callback(reference(), any(), state()) -> {ok, state()}.





          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/community/release-notes.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Release Notes
project: riak
version: 1.0.0+
document: reference
toc: true
audience: beginner
keywords: [release-notes]
moved: {
‘1.4.0-‘: ‘/references/Release-Notes’
}





		Riak 2.1.0 Release Notes [https://github.com/basho/riak/blob/2.1/RELEASE-NOTES.md]


		Riak 2.0.5 Release Notes [https://github.com/basho/riak/blob/2.0/RELEASE-NOTES.md#riak-205-release-notes]


		Riak 2.0.4 Release Notes [https://github.com/basho/riak/blob/2.0/RELEASE-NOTES.md#riak-204-release-notes]


		Riak 2.0.3 Release Notes [https://github.com/basho/riak/blob/2.0/RELEASE-NOTES.md#riak-203-release-notes]


		Riak 2.0.2 Release Notes [https://github.com/basho/riak/blob/2.0/RELEASE-NOTES.md#riak-202-release-notes]


		Riak 2.0.1 Release Notes [https://github.com/basho/riak/blob/2.0/RELEASE-NOTES.md#riak-201-release-notes]


		Riak 2.0 Release Notes [https://github.com/basho/riak/blob/2.0/RELEASE-NOTES.md]


		Riak 1.4 Release Notes [https://github.com/basho/riak/blob/1.4/RELEASE-NOTES.md]


		Riak 1.3 Release Notes [https://github.com/basho/riak/blob/1.3/RELEASE-NOTES.md]


		Riak 1.2 Release Notes [https://github.com/basho/riak/blob/1.2/RELEASE-NOTES.md]


		Riak 1.1 Release Notes [https://github.com/basho/riak/blob/1.1/RELEASE-NOTES.org]


		Riak 1.0 Release Notes [https://github.com/basho/riak/blob/1.0/RELEASE-NOTES.org]


		Riak 0.14.2 Release Notes [https://github.com/basho/riak/blob/riak-0.14/RELEASE-NOTES]


		Riak 0.14.1 Release Notes [https://github.com/basho/riak/blob/riak-0.14/releasenotes/riak-0.14.1.txt]


		Riak 0.14 Release Notes [https://github.com/basho/riak/blob/master/releasenotes/riak-0.14.0.txt]







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/cookbooks/configuration/Configuring-Riak.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Configuring Riak for CS
project: riakcs
version: 1.2.0+
document: cookbook
toc: true
audience: intermediate
keywords: [operator, configuration]




Because Riak CS is an application built on top of Riak, it’s important
to pay special attention to your Riak configuration when running Riak
CS. This document is both a tutorial on Riak configuration as well as a
reference document listing important configurable parameters.



The Proper Backends for Riak CS


The default backend used by Riak is the [[Bitcask]] backend, but the
Riak CS package includes a special backend that should be used by the
Riak cluster that is part of the Riak CS system. It is a custom version
of the standard [[Multi]] backend that ships with Riak.


Some of the Riak buckets used internally by Riak CS use secondary
indexes, which currently requires the [[LevelDB]] backend. Other parts
of the Riak CS system can benefit from the use of the Bitcask backend.
The use of the custom [[Multi]] backend enables Riak CS to take
advantage of the strengths of both of these backends to achieve the best
blend of performance and features. The next section covers how to
properly set up Riak to use this Multi backend.


Additionally, the Riak CS storage calculation system uses Riak’s
[[MapReduce|Using MapReduce]] to sum the files in a bucket. This means
that you must tell all of your Riak nodes where to find Riak CS’s
compiled files before calculating storage.


A few other settings must be modified to configure a Riak node as part
of a Riak CS system, such as the node IP address and the IP address and
port to use for communicating through Protocol Buffers. Other settings
can be modified if necessary. The following sections describe how to
configure a Riak node to work as part of a Riak CS system.





Setting up the Proper Riak Backend


First, edit Riak’s riak.conf, or the old-style advanced.config or
app.config [[configuration file|Configuration Files]]. These files can be found
in the /etc/riak or /opt/riak/etc directories. By default, Riak uses the
[[Bitcask]] backend. The first thing we need to do is to change that by removing
the following line:


## Delete this line:
storage_backend = bitcask



{riak_kv, [
    %% Delete this line:
    {storage_backend, riak_kv_bitcask_backend},
]}



{riak_kv, [
    %% Delete this line:
    {storage_backend, riak_kv_bitcask_backend},
]}



Next, we need to expose the necessary Riak CS modules to Riak and instruct Riak
to use the custom backend provided by Riak CS. We need to use either the
advanced.config or app.config file and insert the following options:


{riak_kv, [
    %% Other configs
    {add_paths, ["/usr/lib/riak-cs/lib/riak_cs-{{VERSION}}/ebin"]},
    {storage_backend, riak_cs_kv_multi_backend},
    {multi_backend_prefix_list, [{<<"0b:">>, be_blocks}]},
    {multi_backend_default, be_default},
    {multi_backend, [
        {be_default, riak_kv_eleveldb_backend, [
            {total_leveldb_mem_percent, 30},
            {data_root, "/var/lib/riak/leveldb"}
        ]},
        {be_blocks, riak_kv_bitcask_backend, [
            {data_root, "/var/lib/riak/bitcask"}
        ]}
    ]},
    %% Other configs
]}



{riak_kv, [
    %% Other configs
    {add_paths, ["/usr/lib/riak-cs/lib/riak_cs-{{VERSION}}/ebin"]},
    {storage_backend, riak_cs_kv_multi_backend},
    {multi_backend_prefix_list, [{<<"0b:">>, be_blocks}]},
    {multi_backend_default, be_default},
    {multi_backend, [
        {be_default, riak_kv_eleveldb_backend, [
            {total_leveldb_mem_percent, 30},
            {data_root, "/var/lib/riak/leveldb"}
        ]},
        {be_blocks, riak_kv_bitcask_backend, [
            {data_root, "/var/lib/riak/bitcask"}
        ]}
    ]},
    %% Other configs
]}



It’s important to note that many of these values will depend on various
directories specific to your [[operating system|Installing and
Upgrading]], so make sure to adjust them accordingly. The add_paths
parameter, for example, assumes that Riak CS is installed in
/usr/lib/riak-cs, while the data_root parameters assume that Riak is
installed in /var/lib/.


This configuration also assumes that the Riak CS package is installed on
the same machine as Riak. If not, the package will need to be copied
onto the same box.





Allowing for Sibling Creation


Now, we need to set the allow_mult parameter to true. We can add this line
to the either the riak.conf configuration file, or to the riak_core section
of old-style advanced.config or app.config files:


buckets.default.allow_mult = true



{riak_core, [
    %% Other configs
    {default_bucket_props, [{allow_mult, true}]},
    %% Other configs
]}



{riak_core, [
    %% Other configs
    {default_bucket_props, [{allow_mult, true}]},
    %% Other configs
]}



This will enable Riak to create [[siblings|Causal Context#Siblings]],
which is necessary for Riak CS to function. If you are connecting to
Riak CS from a [[client library|Client Libraries]], don’t worry: you
will not have to manage [[conflict resolution]], as all Riak CS
operations are strongly consistent by definition.



Note on allow_mult

Any Riak node that also supports Riak CS should have `allow_mult` set to
`true` at all times. Riak CS will refuse to start if `allow_mult` is
set to `false`.




Specifying the Nodename and IP Address


Every Riak node has a name that can be specified in riak.conf using the
nodename option. If you are using the old-style app.config configuration
file, you will need to create a file named vm.args in the same directory as
the app.config file, and set the node name using the -name flag. We
recommend providing nodes a name of the form <name>@<host>. So if you have
three nodes running on the host 100.0.0.1, you could name them
riak1@100.0.0.1, riak2@100.0.0.1, and riak3@100.0.0.1, or you could give
them names that are more specific, such as test_cluster1@100.0.0.1,
user_data3@100.0.0.1, and so on. The example below demonstrates changing a
node’s name to riak1@127.0.0.1, which would work for a node running on
localhost:


nodename = riak1@127.0.0.1



-name riak1@127.0.0.1



You should name all nodes prior to starting them and connecting them
to a cluster.





Testing the Configuration


Now that the necessary changes have been made to the Riak node’s configuration,
we can attempt to start Riak:


riak start



This could take a second. We can then test whether the node is running:


riak ping



If the response is pong, then Riak is running; if the response is
Node not responding to pings, then something has gone wrong.


If the node has not started properly, look at the erlang.log.1 in the
/log directory of the node to see if the problem can be identified.
One common error is invalid_storage_backend, which indicates that the
path to the Riak CS library in advanced.config or in app.config is incorrect
(or that Riak CS is not installed on the server). In spite of this error, make
sure that you do not change the backend from riak_cs_kv_multi_backend to
riak_kv_multi_backend.





Setting Up Riak to Use Protocol Buffers


The Riak [[Protocol Buffers|PBC API]] settings reside in the Riak riak.conf,
or in the riak_api section of the the old-style advanced.config or
app.config files, which is located in the /etc/riak/ folder. The default host
is 127.0.0.1 and the default port is 8087. You will need to change this if
you plan on running Riak and Riak CS in a non-local environment. Replace
127.0.0.1 with the IP address of the Riak node and 8087 with the appropriate
port:


listener.protobuf.internal = 10.0.2.10:10001



{riak_api, [
    %% Other configs
    {pb, ["10.0.2.10", 10001]},
    %% Other configs
]}



{riak_api, [
    %% Other configs
    {pb, ["10.0.2.10", 10001]},
    %% Other configs
]}



Note: The listener.protobuf.internal values in the Riak riak.conf (or
the pb value in advanced.config/app.config) file must match the values for
riak_host in the Riak CS riak-cs.config and Stanchion stanchion.conf (or
riak_host the relative advanced.config/app.config) files.



Note on port numbers

A different port number might be required if the port number conflicts
with ports used by another application or if you use a load balancer or
proxy server.

It is also recommended that users insure that the size of Riak’s
protobuf.backlog (or in the advanced.config/app.config files, the
pb_backlog) is equal to or greater than the size of the
pool.request.size, specified in the Riak CS riak-cs.conf (or
the request_pool size in the advanced.config/app.config files).


If the pool.request.size value in Riak CS is changed, the protobuf.backlog
value in Riak should be updated as well.





Other Riak Settings


The riak.conf and advanced.config files includes other settings, such as
turning on the creation of log files and specifying where to store them. These
settings have default values that should work in most cases. For more
information, we recommend reading our configuration files [http://docs.basho.com/riak/2.0.5/ops/advanced/configs/configuration-files/]
documentation.





Specifying the Riak IP Address


By setting the Riak IP address you ensure that your Riak nodes have unique IP
addresses, whether you’re working with a single node or adding additional nodes
to the system. The Riak IP address setting resides in the Riak riak.conf or
– if you’re using the app.config file – in the vm.args configuration file,
which is located in the same /etc/riak/ directory (or in /opt/riak/etc/ on
some operating systems).


Initially, the line that specifies the riak node IP address is set to the local
host, as follows:


nodename = riak@127.0.0.1



-name riak@127.0.0.1



Replace 127.0.0.1 with the appropriate IP address or hostname for the Riak
node.



Performance and Capacity settings


For performance reasons, we strongly recommended that you insert the following
values into Riak’s riak.conf, or the old-style vm.args, configuration file,
located in the /etc/riak or /opt/riak/etc folder:


erlang.max_ports = 65536



## This setting should already be present for recent Riak installs.
-env ERL_MAX_PORTS 65536






Disable JavaScript MapReduce


It is recommended that you not use the now-deprecated JavaScript MapReduce in
conjunction with any version of Riak CS. For performance reasons, you should
disable the VM that performs JavaScript MapReduce operations by setting the
following in the riak.conf configuration file, or the riak_kv section of the
old-style advanced.config or app.config:


javascript.map_pool_size = 0
javascript.reduce_pool_size = 0
javascript.hook_pool_size = 0



{riak_kv, [
    %% Other configs
    {map_js_vm_count, 0},
    {reduce_js_vm_count, 0},
    {hook_js_vm_count, 0}
    %% Other configs
]}



{riak_kv, [
    %% Other configs
    {map_js_vm_count, 0},
    {reduce_js_vm_count, 0},
    {hook_js_vm_count, 0}
    %% Other configs
]}









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/search-indexing.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Riak Search 1.0 Indexing Reference
project: riak
version: 1.0.0+
document: reference
toc: true
audience: advanced
keywords: []
moved: {
‘1.4.0-‘: ‘/cookbooks/Riak-Search—Indexing’
}




{{#2.0.0+}}


This document refers to the now deprecated Riak Search. Visit [[Using Search]] for information about the new Riak Search (codenamed Yokozuna). Note that the new Riak Search does not currently support the manual index management that this document covers, instead preferring to automatically index Riak values.

{{/2.0.0+}}There are numerous ways to index a document in Riak Search.



Indexing from the Command Line


The easiest way to index documents stored on the filesystem is to use the “search-cmd” command line tool:


$ bin/search-cmd index <INDEX> <PATH>



Parameters:



		&lt;


INDEX&gt;


 - The name of an index.


		&lt;


PATH&gt;


 - Relative or absolute path to the files or directories to recursively index. Wildcards are permitted.





This documents will be indexed into the default field defined by the Index’s schema, using the base filename plus extension as the document ID.


$ bin/search-cmd index my_index files/to/index/*.txt






Deleting from the Command Line


To remove previously indexed files from the command line, use the “search-cmd” command line tool.


$ bin/search-cmd delete <INDEX> <PATH>



Parameters:



		&lt;


INDEX&gt;


 - The name of an index.


		&lt;


PATH&gt;


 - Relative or absolute path to the files or directories to recursively delete. Wildcards are permitted.





For example:


$ bin/search-cmd delete my_index files/to/index/*.txt



Any documents matching the base filename plus extension of the files found will be removed from the index. The actual contents of the files are ignored during this operation.





Indexing using the Erlang API


The following Erlang functions will index documents stored on the filesystem:


search:index_dir(Path).
search:index_dir(Index, Path).



Parameters:



		Index - The name of the index.


		Path - Relative or absolute path to the files or directories to recursively index. Wildcards are permitted.





The documents will be indexed into the default field defined by the Index’s schema, using the base filename plus extension as the document ID.


search:index_dir(<<"my_index">>, "files/to/index/*.txt").



Alternatively, you can provide the fields of the document to index.


search:index_doc(Index, DocId, Fields)



Parameters:



		&lt;


INDEX> - The name of the index.


		&lt;


DocID> - The document ID.


		&lt;


Fields> - A key/value list of fields to index.





For example:


search:index_doc(<<"my_index">>, <<"my_doc">>, [{<<"title">>, <<"The Title">>}, {<<"content">>, <<"The Content">>}])






Deleting using the Erlang API


The following Erlang functions will remove documents from the index:


search:delete_dir(Path).
search:delete_dir(Index, Path).



Parameters:



		Index - The name of the index. Defaults to search.


		Path - Relative or absolute path to the files or directories to recursively delete. Wildcards are permitted.





For example:


search:delete_dir(<<"my_index">>, "files/to/index/*.txt").



Any documents matching the base filename plus extension of the files found will be removed from the index. The actual contents of the files are ignored during this operation.


Alternatively, you can delete a document by it’s id:


search:delete_doc(<<"my_index">>, <<"my_doc">>).



Parameters:



		Index - The name of the index.


		DocID - The document ID of the document to delete.








Indexing using the Solr Interface


Riak Search supports a Solr-compatible interface for indexing documents via HTTP. Documents must be formatted as simple Solr XML documents, for example:


<add>
  <doc>
    <field name="id">DocID</field>
    <field name="title">Zen and the Art of Motorcycle Maintenance</field>
    <field name="author">Robert Pirsig</field>
    ...
  </doc>
  ...
</add>



Additionally, the Content-Type header must be set to ‘text/xml’.


Riak Search currently requires that the field determining the document ID be named “id”, and does not support any additional attributes on the “add”, “doc”, or “field” elements. (In other words, things like “overwrite”, “commitWithin”, and “boost” are not yet supported.)


The Solr interface does NOT support the 

&lt;


commit /&gt;


 nor &lt;


optimize /&gt;


 commands. All data is committed automatically in the following stages:



		Incoming Solr XML document is parsed. If XML is invalid, an error is returned.


		Documents fields are analyzed and broken into terms. If there are any problems, an error is returned.


		Documents terms are indexed in parallel. Their availability in future queries is determined by the storage backend.





By default, the update endpoint is located at “http://hostname:8098/solr/update?index=INDEX”.


Alternatively, the index can be included in the URL, for example “http://hostname:8098/solr/INDEX/update”.


To add data to the system with Curl:


$ curl -XPOST http://localhost:8098/solr/books/update \
       -H 'content-type:text/xml' --data-binary @tests/books.xml



Alternatively, you can index Solr files on the command line:


$ bin/search-cmd solr my_index path/to/solrfile.xml






Deleting using the Solr Interface


Documents can also be deleted through the Solr interface via two methods, either by Document ID or by Query.


To delete documents by document ID, post the following XML to the update endpoint:


<delete>
  <id>docid1</id>
  <id>docid2</id>
  ...
</delete>



To delete documents by Query, post the following XML to the update endpoint:


<delete>
  <query>QUERY1</query>
  <query>QUERY2</query>
  ...
</delete>



Any documents that match the provided queries will be deleted.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/community/riak-images.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Riak Images
project: riak
version: 0.10.0+
document: appendix
toc: false
keywords: [community]
moved: {
‘1.4.0-‘: ‘/references/appendices/community/Logos’
}




Want to tell the world about your Riak usage?


[image: we run riak dark]
[image: we run riak light]


[image: riak powered dark]
[image: riak powered light]


More Riak images [http://basho.com/design-assets-hub/] can be found on
our company site.




          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/cookbooks/configuration/Load-Balancing-and-Proxy-Configuration.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Load Balancing and Proxy Configuration for CS
project: riakcs
version: 1.2.0+
document: cookbook
toc: true
audience: intermediate
keywords: [operator, configuration]




If you plan on using Riak CS in production, we highly recommend that you
place Riak CS behind a load-balancing or proxy solution, be it hardware
or software based. Also note that you should not directly expose Riak
CS to public-facing network interfaces.


Riak CS users have reported success in using Riak CS with a variety of
load-balancing and proxy solutions. Common solutions include proprietary
hardware-based load balancers, cloud-based load-balancing options—such
as Amazon’s Elastic Load Balancer—and open-source software projects
like HAProxy [http://haproxy.1wt.eu/] and
Nginx [http://wiki.nginx.org/Main].


This guide briefly explores the commonly used open-source solutions
HAProxy and Nginx and provides some configuration and operational tips
gathered from community users and operations-oriented engineers at
Basho.



HAProxy


HAProxy [http://haproxy.1wt.eu/] is a fast and reliable open-source
solution for load balancing and proxying of HTTP- and TCP-based
application traffic.


Users have reported success in using HAProxy in combination with Riak CS
in a number of configurations and scenarios. Much of the information and
example configuration for this section is drawn from the experiences of
users in the Riak CS community in addition to suggestions from Basho
engineering.



Example Configuration


The following is an example starting point configuration for HAProxy to
act as a load balancer to a Riak CS installation.



Note on open files limits

The operating system's open files limits need to be greater than 256000
for the example configuration that follows. Consult the [[Open Files
Limit]] documentation for details on configuring the value for different
operating systems.

global
    log 127.0.0.1     local0
    log 127.0.0.1     local1 notice
    maxconn           256000
    spread-checks     5
    daemon

defaults
    log               global
    option            dontlognull
    option            redispatch
    option            allbackups
    no option         httpclose
    retries           3
    maxconn           256000
    timeout connect   5000
    timeout client    5000
    timeout server    5000

frontend riak_cs
    bind              10.0.24.100:8080
    # Example bind for SSL termination
    # bind            10.0.24.100:8443 ssl crt /opt/local/haproxy/etc/data.pem
    mode              http
    option            httplog
    capture           request header Host len 64
    acl good_ips      src -f /opt/local/haproxy/etc/gip.lst
    block if          !good_ips
    use_backend       riak_cs_backend if good_ips

backend riak_cs_backend
    mode              http
    balance           roundrobin
    # Ping Riak CS to determine health
    option            httpchk GET /riak-cs/ping
    timeout connect 60s
    timeout http-request 60s
    server riak1 r1s01.example.com:8081 weight 1 maxconn 1024 check
    server riak2 r1s02.example.com:8081 weight 1 maxconn 1024 check
    server riak3 r1s03.example.com:8081 weight 1 maxconn 1024 check
    server riak4 r1s04.example.com:8081 weight 1 maxconn 1024 check
    server riak5 r1s05.example.com:8081 weight 1 maxconn 1024 check



Please note that the above example is considered a starting point and is
a work in progress. You should carefully examine this configuration and
change it according to your specific environment.


A specific configuration detail worth noting from the example is the
commented option for SSL termination. HAProxy supports SSL directly as
of version 1.5. Provided that your HAProxy instance was built with
OpenSSL support, you can enable it by uncommenting the example line and
modifying it to suit your environment. More information is available in
the HAProxy
documentation [http://cbonte.github.io/haproxy-dconv/configuration-1.5.html#5-ssl].


Also note the option for checking Riak CS health via the /riak-cs/ping
endpoint. This option is essential for checking each Riak CS node as
part of the round robin load-balancing method.







Nginx


Some users have reported success in using the Nginx [http://nginx.org/]
HTTP server to proxy requests for Riak CS. An example that provides
access to Riak CS is provided here for reference.



Example Configuration


The following is an example starting-point configuration for Nginx to
act as a front-end proxy to Riak CS.


upstream riak_cs_host {
  server  10.0.1.10:8080;
}

server {
  listen   80;
  server_name  _;
  access_log  /var/log/nginx/riak_cs.access.log;

  location / {
    proxy_set_header Host $http_host;
    proxy_set_header X-Real-IP $remote_addr;
    proxy_redirect off;

    proxy_connect_timeout      90;
    proxy_send_timeout         90;
    proxy_read_timeout         90;

    proxy_buffer_size          64k;  # If set to a smaller value,
                                     # nginx can complain with a
                                     # "headers too large" error

    proxy_buffers 8  64k;   # Increase from default of (8, 8k).
                            # If left to default with increased
                            # proxy_buffer_size, nginx complains
                            # that proxy_busy_buffers_size is too
                            # large.

    proxy_pass http://riak_cs_host;
  }
}



Note that the directive proxy_set_header Host $http_host is essential
to ensure that the HTTP Host: header is passed to Riak CS as received
rather than being translated into the hostname or address of the Riak CS
backend server.


It’s also important to note that proxy_pass should not end in a
slash, as this can lead to a variety of issues.








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/bucket.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Bucket References
project: riak
version: 1.3.1+
document: reference
toc: true
audience: advanced
keywords: [developers, reference, bucket]






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/community/product-advisories.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Product Advisories
project: riak
version: 2.0.0+
versions: false
document: reference
audience: beginner
keywords: [product-advisories]




This page contains product advisories that are periodically issued for
Riak and Riak CS.



		[[Forward Incompatibility of app.config]]


		[[SSL 3.0 Vulnerability and POODLE Attack]]


		[[Map Data Type Disk Incompatibility]]






Questions


If you have questions about any of the advisories listed above, please
open a ticket with Basho and cite






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/cookbooks/configuration/Configuring-DragonDisk.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Configuring DragonDisk
project: riakcs
version: 1.2.0+
document: cookbook
toc: true
audience: intermediate
keywords: [operator, configuration]




DragonDisk [http://www.dragondisk.com/] is a cross-platform,
S3-compatible client with a graphical user interface available for
Linux, Mac OS X, and Windows. The following guide describes
configuration of DragonDisk for use with Riak CS.



Configuration for Linux


DragonDisk is available for multiple Linux distributions. This section
specifically describes configuration for Ubuntu Linux version 12.04
(Precise Pangolin) 32 bit, but the configuration will be similar for
other Linux distributions.


This is the main DragonDisk window as it appears upon starting the
application.


[image: DragonDisk screenshot]





Create an account


Before you can connect DragonDisk to Riak CS, you’ll need to create and
save an account. The following describes the process for doing so.



		From the File menu, select Accounts.





[image: DragonDisk screenshot]



		Click New.





[image: DragonDisk screenshot]



		In the Account dialog window, choose Other S3 compatible
service under the Provider drop down menu.





[image: DragonDisk screenshot]



		Enter the hostname or IP address of your Riak CS cluster’s public
interface into the Service Endpoint field.


		Enter your Riak CS username into the Account name field.


		Enter the access key associated with your username into the Access
Key field.


		Enter the secret key associated with your username into the Secret
Key field.


		Enter the Riak CS public interface HTTP port into the HTTP Port
field.






Note on HTTPS

If you'll be using HTTPS, be sure to enter the correct public HTTPS port
into the **HTTPS Port** field and click the **Connect
using SSL/HTTS** check box.


		Click OK to save the account configuration.





[image: DragonDisk screenshot]



		Click Close to complete account creation and to continue to
attempt connecting to Riak CS.





[image: DragonDisk screenshot]



Connect to Riak CS


Now let’s try to connect to Riak CS with the newly defined account
configuration.



		In the Root drop down menu on the right pane of the DragonDisk
interface, select the Riak CS account definition that you created.


		If no error occurs and you see the account definition appear in the
right pane, then you’re connected to Riak CS and can proceed to
creating a bucket.





[image: DragonDisk screenshot]





Create a bucket


Now that you’re connected, create a bucket for testing file access with
Riak CS.



		Click the Create bucket icon to open the bucket creation dialog.





[image: DragonDisk screenshot]



		In the Create bucket dialog, give the bucket a name. In this
example we’re naming the bucket dragondisklinux.


		Click OK to create the bucket.


		The bucket should now appear in the right pane and you can now proceed
with copying some test files into the bucket.





[image: DragonDisk screenshot]





Copy files to bucket


Finally, navigate your local computer in the left pane and select a file
or files to copy from your local computer to the newly created Riak CS
bucket.


[image: DragonDisk screenshot]



		After selecting a file or files, you can drag them to the bucket you
created in the right pane and the copy operation will begin.


		After the files are copied, they’ll appear in the bucket.





[image: DragonDisk screenshot]



		You have now successfully verified connectivity, bucket creation, and
file copying operations for your Riak CS installation with DragonDisk.





Consult the DragonDisk
documentation [http://www.dragondisk.com/getting-started-guide.html] for
details on performing other operations.







Configuration for Mac OS X


This section describes configuration of DragonDisk for Mac OS X.



		This is the main DragonDisk window as it appears upon starting the
application.





[image: DragonDisk screenshot]



Create an account


Before you can connect DragonDisk to Riak CS, you’ll need to create and
save an account. The following describes the process for doing so.



		From the File menu, select Accounts.





[image: DragonDisk screenshot]



		Click New.





[image: DragonDisk screenshot]



		In the Account dialog window, choose Other S3 compatible
service under the Provider drop down menu.





[image: DragonDisk screenshot]



		Enter the hostname or IP address of your Riak CS cluster’s public
interface into the Service Endpoint field.


		Enter your Riak CS username into the Account name field.


		Enter the access key associated with your username into the Access
Key field.


		Enter the secret key associated with your username into the Secret
Key field.


		Enter the Riak CS public interface HTTP port into the HTTP Port
field.






Note on HTTPS

If you'll be using HTTPS, be sure to enter the correct public HTTPS port
into the **HTTPS Port** field and click the **Connect using SSL/HTTS**
check box.


		Click OK to save the account configuration.





[image: DragonDisk screenshot]



		Click Close to complete account creation and continue try
connecting to Riak CS.





[image: DragonDisk screenshot]





Connect to Riak CS


Now let’s try to connect to Riak CS with the newly defined account
configuration.



		In the Root drop down menu on the right pane of the DragonDisk
interface, select the Riak CS account definition that you created.


		If no error occurs and you see the account definition appear in the
right pane, then you’re connected to Riak CS and can proceed to
creating a bucket.





[image: DragonDisk screenshot]





Create a bucket


Now that you’re connected, create a bucket for testing file access with
Riak CS.



		Click the Create bucket icon to open the bucket creation dialog.





[image: DragonDisk screenshot]



		In the Create bucket dialog, give the bucket a name. In this
example we’re naming the bucket dragondiskosx.


		Click OK to create the bucket.


		The bucket should now appear in the right pane and you can now proceed
with copying some test files into the bucket.





[image: DragonDisk screenshot]





Copy files to bucket


Finally, navigate your local computer in the left pane and select a file
or files to copy from your local computer to the newly created Riak CS
bucket.


[image: DragonDisk screenshot]



		After selecting a file or files, you can drag them to the bucket you
created in the right pane and the copy operation will begin.


		After the files are copied, they’ll appear in the bucket.





[image: DragonDisk screenshot]



		You have now successfully verified connectivity, bucket creation, and
file copying operations for your Riak CS installation with DragonDisk.





Consult the DragonDisk
documentation [http://www.dragondisk.com/getting-started-guide.html] for
details on performing other operations.







Configuration for Windows


This section describes configuration of DragonDisk for Windows.



		This is the main DragonDisk window as it appears upon starting the
application.





[image: DragonDisk screenshot]



Create an account


Before you can connect DragonDisk to Riak CS, you’ll need to create and
save an account. The following describes the process for doing so.



		From the File menu, select Accounts.





[image: DragonDisk screenshot]



		Click New.





[image: DragonDisk screenshot]



		In the Account dialog window, choose Other S3-compatible
service under the Provider drop down menu.





[image: DragonDisk screenshot]



		Enter the hostname or IP address of your Riak CS cluster’s public
interface into the Service Endpoint field.


		Enter your Riak CS username into the Account name field.


		Enter the access key associated with your username into the Access
Key field.


		Enter the secret key associated with your username into the Secret
Key field.


		Enter the Riak CS public interface HTTP port into the HTTP Port
field.






Note on HTTPS

If you'll be using HTTPS, be sure to enter the correct public HTTPS port
into the **HTTPS Port** field and click the **Connect using SSL/HTTS**
check box.


		Click OK to save the account configuration.





[image: DragonDisk screenshot]



		Click Close to complete account creation and continue try
connecting to Riak CS.





[image: DragonDisk screenshot]





Connect to Riak CS


Now let’s try to connect to Riak CS with the newly defined account
configuration.



		In the Root drop down menu on the right pane of the DragonDisk
interface, select the Riak CS account definition that you created.


		If no error occurs and you see the account definition appear in the
right pane, then you’re connected to Riak CS and can proceed to
creating a bucket.





[image: DragonDisk screenshot]





Create a bucket



		Now that you’re connected, create a bucket for testing file access
with Riak CS.


		Click the Create bucket icon to open the bucket creation dialog.





[image: DragonDisk screenshot]



		In the Create bucket dialog, give the bucket a name. In this
example we’re naming the bucket dragonbucket.


		Click OK to create the bucket.


		The bucket should now appear in the right pane and you can now proceed
with copying some test files into the bucket.





[image: DragonDisk screenshot]





Copy files to bucket


Finally, navigate your local computer in the left pane and select a file
or files to copy from your local computer to the newly created Riak CS
bucket.


[image: DragonDisk screenshot]



		After selecting a file or files, you can drag them to the bucket you
created in the right pane and the copy operation will begin.


		After the files are copied, they’ll appear in the bucket.





[image: DragonDisk screenshot]



		You have now successfully verified connectivity, bucket creation, and
file copying operations for your Riak CS installation with DragonDisk.





Consult the DragonDisk
documentation [http://www.dragondisk.com/getting-started-guide.html] for
details on performing other operations.








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/keyfilters.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Key Filters Reference
project: riak
version: 1.0.0+
document: tutorials
toc: true
audience: beginner
keywords: [developers, mapreduce, keyfilters]
moved: {
‘1.4.0-‘: ‘/cookbooks/Key-Filters’
}




Deprecation Notice
Key Filters are a deprecated feature of Riak and will eventually be removed. Please refrain from using it, and instead model your data where related data are multi-step lookups, or consider an alternative query option such as [[Riak Search|Using Search]] or [[MapReduce|Using MapReduce]].

Transform functions


Transform key-filter functions manipulate the key so that it can be turned into a format suitable for testing by the [[predicate functions|Using Key Filters#Predicate-functions]].  Each function description is followed by a sample usage in JSON notation.


When using these from Erlang, function names (and key values) are binaries.



int_to_string


Turns an integer (previously extracted with string_to_int), into a string.


[["int_to_string"]]






string_to_int


Turns a string into an integer.


[["string_to_int"]]






float_to_string


Turns a floating point number (previously extracted with string_to_float), into a string.


[["float_to_string"]]






string_to_float


Turns a string into a floating point number.


[["string_to_float"]]






to_upper


Changes all letters to uppercase.


[["to_upper"]]






to_lower


Changes all letters to lowercase.


[["to_lower"]]






tokenize


Splits the input on the string given as the first argument and returns the nth token specified by the second argument.


[["tokenize", "/", 4]]






urldecode


URL-decodes the string.


[["urldecode"]]








Predicate functions


Predicate key-filter functions perform a test on their inputs and return true or false. As such, they should be specified last in a sequence of key-filters and are often preceded by [[transform functions|Using Key Filters#Transform-functions]].


Comparison predicates
 Predicates like `greater_than`, `less_than_eq`, and `between` follow Erlang's precedence rules for comparisons. Generally this means that numbers will be compared by value (including appropriate coercions) and strings will be compared lexically.

greater_than


Tests that the input is greater than the argument.


[["greater_than", 50]]






less_than


Tests that the input is less than the argument.


[["less_than", 10]]






greater_than_eq


Tests that the input is greater than or equal to the argument.


[["greater_than_eq", 2000]]






less_than_eq


Tests that the input is less than or equal to the argument.


[["less_than_eq", -2]]






between


Tests that the input is between the first two arguments.  If the third argument is given, it is whether to treat the range as inclusive. If the third argument is omitted, the range is treated as inclusive.


[["between", 10, 20, false]]






matches


Tests that the input matches the regular expression given in the argument.


[["matches", "solutions"]]






neq


Tests that the input is not equal to the argument.


[["neq", "foo"]]






eq


Tests that the input is equal to the argument.


[["eq", "basho"]]






set_member


Tests that the input is contained in the set given as the arguments.


[["set_member", "basho", "google", "yahoo"]]






similar_to


Tests that input is within the [[Levenshtein distance|http://en.wikipedia.org/wiki/Levenshtein_distance]] of the first argument given by the second argument.


[["similar_to", "newyork", 3]]






starts_with


Tests that the input begins with the argument (a string).


[["starts_with", "closed"]]






ends_with


Tests that the input ends with the argument (a string).


[["ends_with", "0603"]]






and


Joins two or more key-filter operations with a logical AND operation.


[["and", [["ends_with", "0603"]], [["starts_with", "basho"]]]]






or


Joins two or more key-filter operations with a logical OR operation.


[["or", [["eq", "google"]], [["less_than", "g"]]]]






not


Negates the result of key-filter operations.


[["not", [["matches", "solution"]]]]









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/community/bugs.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Reporting Bugs
project: riak
version: 0.10.0+
toc: true
document: appendix
audience: intermediate
keywords: [community, issues]
moved: {
‘1.4.0-‘: ‘/references/appendices/community/How-to-Report-a-Bug’
}




Bugs happen. The Basho Dev Team does all that it can to ensure our users
are kept up-to-date on critical bugs and issues that may occur. Here’s
the protocol to follow when you think you might have found something
that needs reporting.



Before You File a Bug or Issue


Before you file a bug or issue, we ask that you put in the necessary
time and research to ensure that what you are reporting is in fact a
bona fide bug and not the result of some other configuration, operating
system, or application problem. To ensure that your bug report is worth
filing, please attempt do the following:



		Riak Critical Issues Mailing
List [http://lists.basho.com/mailman/listinfo/riak-critical-issues_lists.basho.com]
— A low-traffic list used to disseminate information about bugs or
issues that might negatively impact a production Riak cluster or deal
with data integrity


		Project Issues are all managed under their respective Basho GitHub
repos [https://github.com/basho/]. The following are good repos to pay
particular attention to:
		Riak issues [https://github.com/basho/riak/issues]


		Riak Core issues [https://github.com/basho/riak_core/issues]


		Riak KV issues [https://github.com/basho/riak_kv/issues]


		Riak Search issues [https://github.com/basho/riak_search/issues]


		Bitcask issues [https://github.com/basho/bitcask/issues]


		eLevelDB issues [https://github.com/basho/eleveldb/issues]








		Search the Riak Mailing List Archives [http://riak.markmail.org/] for
similar issues and possible resolution paths. The Mailman
archives [http://lists.basho.com/pipermail/riak-users_lists.basho.com/]
of the list archives can also be accessed.


		Email the Riak Mailing
List [http://lists.basho.com/mailman/listinfo/riak-users_lists.basho.com]
with your issue to see if there is a simple path to resolution








Writing and Filing Your Bug Report


You’ll need a GitHub account to file an issue. If you do not have one,
you can sign up [https://github/com/signup/free] for a free account.



		Select the appropriate GitHub repo [https://github.com/basho/] for
your bug. There is a lot of code that makes up Riak, so be sure to
select the correct repository. For example, if Riak is failing to
build due to some specific environment variable, this should be filed
against the Riak repo [https://github.com/basho/riak/issues]. If
Riak’s Search API is failing for a given query, this is an issue for
the yokozuna [https://github.com/basho/yokozuna/issues] repository.


		Compose and submit your issue, providing as much detail as possible.
Strive to be concise, precise, and clear. Include version numbers,
relevant code snippets, steps to reproduce, etc.





If at any point you have a question about how to file a bug, please
reach out to the Riak Mailing
List [http://lists.basho.com/mailman/listinfo/riak-users_lists.basho.com].


And thank you for being part of the community! We love you for it.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/data-modeling/log-data.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Log Data
project: riak
version: 1.2.0-2.0.0
document: cookbook
toc: true
audience: intermediate
keywords: [use-cases]
moved: {
‘1.4.0-‘: ‘/cookbooks/use-cases/log-data’
}




This page no longer valid. We recommend taking a look at [[Use Cases]]
or [[Building Applications with Riak]] instead.




          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/using/conflict-resolution/ruby.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Conflict Resolution: Ruby”
project: riak
version: 2.0.0+
document: tutorials
audience: intermediate
keywords: [developers, conflict-resolution, ruby]




For reasons explained in the [[Introduction to conflict
resolution|Conflict Resolution]], we strongly recommend adopting a
conflict resolution strategy that requires applications to resolve
siblings according to use-case-specific criteria. Here, we’ll provide a
brief guide to conflict resolution using the official Riak Ruby
client [https://github.com/basho/riak-ruby-client].



How the Ruby Client Handles Conflict Resolution


In the official Ruby client, every Riak object has a siblings property
that provides access to a list of that object’s sibling values. If there
are no siblings, that property will return an array with only one item.
Here’s an example of an object with siblings:


bucket = client.bucket('seahawks')
obj = bucket.get('coach')
obj.siblings

# The output:
[#<Riak::RContent [content/type]: "Jim Mora">, #<Riak::RContent [content/type]: "Pete Carroll">]



So what happens if the length of obj.siblings is greater than 1, as in
the case above? In order to resolve siblings, you need to create a
resolution function that takes a Riak object and reduces the siblings
array down to a single value. An example is provided in the section
below.





Basic Conflict Resolution Example


Let’s say that we’re building a social network application and storing
lists of usernames representing each user’s “friends.” Each user will be
of the class User, which we’ll create below. All of the data for our
application will be stored in buckets that bear the [[bucket type|Using
Bucket Types]] siblings, and for this bucket type allow_mult is set
to true, which means that Riak will generate siblings in certain
cases—siblings that our application will need to be equipped to
resolve when necessary.


The question that we need to ask ourselves at this point is the
following: if a given user has conflicting lists, which list should be
deemed more “correct?” What criteria should be applied? Should the lists
be merged? Should we pick a list at random and deem that list correct?
We’ll keep it simple here and say that the following criterion will
hold: if multiple conflict lists exist, the longer list will be the one
that our application deems correct. While this might not make sense in
real-world applications, it’s a good jumping-off point.



Creating Our Data Class


We’ll start by creating a User class for each user’s data. Each User
object will consist of a username and a friends property that lists
the usernames, as strings, of the user’s friends. We will also create a
to_json method, as we’ll be storing each User object as JSON:


class User
  def initialize(username, friends)
    @username = username
    @friends = friends
  end

  def to_json
    { :username => @username, :friends => @friends }
  end
end



Now, we can create User objects and see what they look like as JSON:


new_user = User.new('riakuser127', ['captheorem238', 'siblingsrule572'])

new_user.to_json
# {'username': 'riakuser127', 'friends': ['captheorem238', 'siblingsrule572']}






Implementing a Conflict Resolution Function


Let’s say that we’ve stored a bunch of User objects in Riak and that a
few concurrent writes have led to siblings. How is our application going
to deal with that? First, let’s say that there’s a User object stored
in the bucket users (which is of the bucket type siblings, as
explained above) under the key bashobunny. We can fetch the object
that is stored there and see if it has siblings:


bucket = client.bucket('users')
obj = bucket.get('bashobunny', type: 'siblings')
p obj.siblings.length > 1



If we get true, then there are siblings. So what do we do in that
case? At this point, we need to write a function that resolves the list
of siblings, i.e. reduces the obj.siblings array down to one member.
In our case, we need a function that takes a single Riak object (or
RObject in the Ruby client) as its argument, applies some logic to the
list of values contained in the siblings property of the object, and
returns a single value. For our example use case here, we’ll return the
sibling with the longest friends list:


def longest_friends_list_resolver(riak_object)
  # The "conflict?" method is built into the Ruby client
  if riak_object.conflict?
    # The "max_by" method enables us to select the sibling with the
    # longest "friends" list
    riak_object.siblings.max_by{ |user| user.data['friends'].length }
  else
    # If there are no siblings, we can simply return the object's
    # "content" as is
    riak_object.content
  end
end



We can then embed this function into a more general function for
fetching objects from the users bucket:


def fetch_user_by_username(username)
  bucket = client.bucket('users')
  user_object = bucket.get(username)
  longest_friends_list_resolve(user_object)
  user_object
end

bashobunny = fetch_user_by_username('bashobunny')



Now, when a User object is fetched (assuming that the username acts as
a key for the object), a single value is returned for the friends
list. This means that our application can now use a “correct” value
instead of having to deal with multiple values.







Conflict Resolution and Writes


In the above example, we created a conflict resolver that resolves a
list of discrepant User objects and returns a single User. It’s
important to note, however, that this resolver will only provide the
application with a single “correct” value; it will not write that
value back to Riak. That requires a separate step. When this step should
be undertaken depends on your application. In general, though, we
recommend writing objects to Riak only when the application is ready to
commit them, i.e. when all of the changes that need to be made to the
object have been made and the application is ready to persist the state
of the object in Riak.


Correspondingly, we recommend that updates to objects in Riak follow
these steps:



		Read the object from Riak


		Resolving sibling conflicts if they exist, allowing the
application to reason about one “correct” value for the object (this
step is the subject of this tutorial)


		Modify the object


		Write the object to Riak once the necessary changes have been
made





You can find more on writing objects to Riak, including examples from
the official Ruby client library, in [[The Basics|The
Basics#Object-Key-Operations]].





More Advanced Example


Resolving sibling User values on the basis of which user has the longest
friends list has the benefit of being simple but it’s probably not a
good resolution strategy for our social networking application because
it means that unwanted data loss is inevitable. If one friend list
contains A, B, and C and the other contains D and E, the list
containing A, B, and C will be chosen. So what about friends D
and E? Those usernames are essentially lost. In the sections below,
we’ll implement an alternative strategy as an example.



Merging the Lists


To avoid losing data like this, a better strategy would be to merge the
lists. We can modify our original resolver function to accomplish
precisely that and will also store the resulting User object:


def longest_friends_list_resolver(riak_object)
  # An empty array for use later on
  friends_list = []
  if riak_object.conflict?
    # The "friends" arrays for all siblings will be merged into one
    # array
    riak_object.siblings.each do |sibling|
      friends_list.push(sibling.data['friends'])
    end

    # Then we make a new User object. First, we fetch the username from
    # any one of the siblings, then we pass in our new friends list,
    # calling the "uniq" method to eliminate duplicate usernames.
    username = riak_object.siblings[0].data['username']
    new_user = User.new(username, friends_list.uniq)

    # Now we reuse the first sibling as a container for the merged data
    riak_object.siblings[0].data = new_user.to_json

    # And finally we set the siblings property to include just the
    # single, resolved sibling
    riak_object.siblings = [riak_object.siblings[0]]
  else
    riak_object.content
  end
end



The drawback to this approach is the following: with a conflict
resolution strategy like this, it’s more or less inevitable that a user
will remove a friend from their friends list, and that that friend will
end up back on the list during a conflict resolution operation. While
that’s certainly not desirable, that is likely better than the
alternative proposed in the first example, which entails usernames being
simply dropped from friends lists. Sibling resolution strategies almost
always carry potential drawbacks of this sort.







Riak Data Types


An important thing to always bear in mind when working with conflict
resolution is that Riak offers a variety of [[Data Types]] that have
specific conflict resolution mechanics built in. If you have data that
can be modeled as a [[counter|Data Types#Counters]], [[set|Data
Types#Sets]], or [[map|Data Types#Maps]], then you should seriously
consider using those Data Types instead of creating your own
application-side resolution logic.


In the example above, we were dealing with conflict resolution within a
set, in particular the friends list associated with each User


object. The merge operation that we built to handle conflict resolution
is analogous to the resolution logic that is built into Riak sets. For
more information on how you could potentially replace the client-side
resolution that we implemented above, see our [[tutorial on Riak
sets|Using Data Types#Sets]].






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/data-modeling/user-events-timelines.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: User Subscriptions/Events/Timelines
project: riak
version: 1.2.0-2.0.0
document: cookbook
toc: true
audience: intermediate
keywords: [use-cases]
moved: {
‘1.4.0-‘: ‘/cookbooks/use-cases/user-events-timelines’
}




This page no longer valid. We recommend taking a look at [[Use Cases]]
or [[Building Applications with Riak]] instead.




          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/using/conflict-resolution/java.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Conflict Resolution: Java”
project: riak
version: 2.0.0+
document: tutorials
audience: intermediate
keywords: [developers, conflict-resolution, java]




For reasons explained in the [[Introduction to conflict
resolution|Conflict Resolution]], we strongly recommend adopting a
conflict resolution strategy that requires applications to resolve
siblings according to use-case-specific criteria. Here, we’ll provide a
brief guide to conflict resolution using the official Riak Java
client [https://github.com/basho/riak-java-client].



How the Java Client Handles Conflict Resolution


The official Riak Java client provides a ConflictResolver interface
for handling sibling resolution. This interface requires that you
implement a resolve method that takes a Java List of objects of a
specific type that are stored in Riak and produces a single object of
that type, i.e. converts a List<T> to a single T. Once that
interface has been implemented, it can be registered as a singleton and
thereby applied to all read operations on a specific data type. Below is
an example resolver for the class Foo:


import com.basho.riak.client.api.cap.ConflictResolver;

public class FooResolver implements ConflictResolver<Foo> {
    @Override
    public Foo resolve(List<Foo> siblings) {
        // Insert your sibling resolution logic here
    }
}



What happens within the resolve method is up to you and will always
depend on the use case at hand. You can implement a resolver that
selects a random Foo from the list, chooses the Foo with the most
recent timestamp (if you’ve set up the class Foo to have timestamps),
etc. In this tutorial we’ll provide a simple example to get you started.





Basic Conflict Resolution Example


Let’s say that we’re building a social network application and storing
lists of usernames representing each user’s “friends” in the network.
Each user will bear the class User, which we’ll create below. All of
the data for our application will be stored in buckets that bear the
[[bucket type|Using Bucket Types]] siblings, and for this bucket type
allow_mult is set to true, which means that Riak will generate
siblings in certain cases—siblings that our application will need to
be equipped to resolve when they arise.


The question that we need to ask ourselves now is this: if a given user
has sibling values, i.e. if there are multiple friends lists and Riak
can’t decide which one is most causally recent, which list should be
deemed “correct” from the standpoint of the application? What criteria
should be applied in making that decision? Should the lists be merged?
Should we pick a User object at random?


This decision will always be yours to make. Here, though, we’ll keep it
simple and say that the following criterion will hold: if conflicting
lists exist, the longer list will be the one that our application deems
correct. So if the user user1234 has a sibling conflict where one
possible value has friends lists with 100, 75, and 10 friends,
respectively, the list of 100 friends will win out.  While this might
not make sense in real-world applications, it’s a good jumping-off
point. We’ll explore the drawbacks of this approach, as well as a better
alternative, in this document as well.



Creating Our Data Class


We’ll start by creating a User class for each user’s data. Each User
object will consist of a username as well as a friends property that
lists the usernames, as strings, of the user’s friends. We’ll use a
Set for the friends property to avoid duplicates.


public class User {
    public String username;
    public Set<String> friends;

    public User(String username, Set<String> friends) {
        this.username = username;
        this.friends = friends;
    }
}



Here’s an example of instantiating a new User object:


Set<String> friends = new HashSet<String>();
friends.add("fred");
friends.add("barney");
User bashobunny = new User("bashobunny", friends);






Implementing a Conflict Resolution Interface


So what happens if siblings are present and the user bashobunny has
different friend lists in different object replicas? For that we can
implement the ConflictResolver class described [[above|Conflict
Resolution: Java#How-the-Java-Client-Handles-Conflict-Resolution]]. We
need to implement that interface in a way that is specific to the need
at hand, i.e. taking a list of User objects and returning the User
object that has the longest friends list:


import com.basho.riak.client.api.cap.ConflictResolver;

public class UserResolver implements ConflictResolver<User> {
    @Override
    public User resolve(List<User> siblings) {
        // If there are no objects present, return null
        if (siblings.size == 0) {
            return null;
        // If there is only one User object present, return that object
        } else if (siblings.size == 1) {
            return siblings.get(0);
        // And if there are multiple User objects, return the object
        // with the longest list
        } else {
            int longestList = 0;
            User userWithLongestList;

            // Iterate through the User objects to check for the longest
            // list
            for (User user : siblings) {
                if (user.friends.size() > longestList) {
                    userWithLongestList = user;
                    longestList = user.friends.size();
                }
            }
            // If all sibling User objects have a friends list with a length
            // of 0, it doesn't matter which sibling is selected, so we'll
            // simply select the first one in the list:
            return userWithLongestList == null ? siblings.get(0) : userWithLongestList;
        }
    }
}






Registering a Conflict Resolver Class


To use a conflict resolver, we must register it:


ConflictResolverFactory factory = ConflictResolverFactory.getInstance();
factory.registerConflictResolver(User.class, new UserResolver());



With the resolver registered, the resolution logic that we have created
will resolve siblings automatically upon read. Registering a custom
conflict resolver can occur at any point in the application’s lifecycle
and will be applied on all reads that involve that object type.







Conflict Resolution and Writes


In the above example, we created a conflict resolver that resolves a
list of discrepant User objects and returns a single User. It’s
important to note, however, that this resolver will only provide the
application with a single “correct” value; it will not write that
value back to Riak. That requires a separate step. When this step should
be undertaken depends on your application. In general, though, we
recommend writing objects to Riak only when the application is ready to
commit them, i.e. when all of the changes that need to be made to the
object have been made and the application is ready to persist the state
of the object in Riak.


Correspondingly, we recommend that updates to objects in Riak follow
these steps:



		Read the object from Riak


		Resolving sibling conflicts if they exist, allowing the
application to reason about one “correct” value for the object (this
step is the subject of this tutorial)


		Modify the object


		Write the object to Riak once the necessary changes have been
made





You can find more on writing objects to Riak, including examples from
the official Java client library, in [[The Basics|The
Basics#Object-Key-Operations]].





More Advanced Example


Resolving sibling User values on the basis of which user has the
longest friends list has the benefit of being simple but it’s probably
not a good resolution strategy for our social networking application
because it means that unwanted data loss is inevitable. If one friends
list contains A, B, and C and the other contains D and E, the
list containing A, B, and C will be chosen. So what about friends
D and E? Those usernames are essentially lost. In the sections
below, we’ll implement some other conflict resolution strategies as
examples.



Merging the Lists


To avoid losing data like this, a better strategy may be to merge the
lists. We can modify our original resolve function in our
UserResolver to accomplish precisely that:


public class UserResolver implements ConflictResolver<User> {
    @Override
    public User resolve(List<User> siblings) {
        // We apply the same logic as before, returning null if the
        // key is empty and returning the one sibling if there is only
        // one User in the siblings list
        if (siblings.size == 0) {
            return null;
        } else if (siblings.size == 1) {
            return siblings.get(0);
        } else {
            // We begin with an empty Set
            Set<String> setBuilder = new HashSet<String>();

            // We know that all User objects in the List will have the
            // same username, since we used the username for the key, so
            // we can fetch the username of any User in the list:
            String username = siblings.get(0).username;

            // Now for each User object in the list we add the friends
            // list to our empty Set
            for (User user : siblings) {
                setBuilder.addAll(user.friends);
            }

            // Then we return a new User object that takes the Set we
            // built as the friends list
            return new User(username, setBuilder);
        }
    }
}



Since the friends list is a Java Set, we don’t need to worry about
duplicate usernames.


The drawback to this approach is the following: with a conflict
resolution strategy like this, it’s more or less inevitable that a user
will remove a friend from their friends list, and that that friend will
end up back on the list during a conflict resolution operation. While
that’s certainly not desirable, that is likely better than the
alternative proposed in the first example, which entails usernames being
simply dropped from friends lists. Sibling resolution strategies almost
always carry potential drawbacks of this sort.







Riak Data Types


An important thing to always bear in mind when working with conflict
resolution is that Riak offers a variety of [[Data Types]] that have
specific conflict resolution mechanics built in. If you have data that
can be modeled as a [[counter|Data Types#Counters]], [[set|Data
Types#Sets]], or [[map|Data Types#Maps]], then you should seriously
consider using those Data Types instead of creating your own
application-side resolution logic.


In the example above, we were dealing with conflict resolution within a
set, in particular the friends list associated with each User
object. The merge operation that we built to handle conflict resolution
is analogous to the resolution logic that is built into Riak sets. For
more information on how you could potentially replace the client-side
resolution that we implemented above, see our [[tutorial on Riak
sets|Using Data Types#Sets]].






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/data-modeling/sql-migration.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Migrating from an SQL Database to Riak
project: riak
version: 2.0.0+
document: cookbook
audience: advanced
keywords: [migration, sql]




Relational databases are powerful and reliable technologies, but there
are many [[use cases]] for which Riak is a better fit, e.g. when data
availability is more important than SQL-style queryability or when
relational databases begin to run into scalability problems. You can
find out more in [[Why Riak]]. If you decide that Riak is a better fit,
this tutorial walks you through migrating from an SQL system to Riak.



Use cases warning

Because data models vary so widely, it is difficult if not impossible to
generalize across all potential paths from an SQL database to Riak. This
document is intended only to suggest one possible approach to SQL data
migration—an approach that may not work well with your use case.


Our Example


Let’s say that we’ve been storing a series of blog posts in
PostgreSQL [http://www.postgresql.org/], in a database called blog
and a table called posts. This table has the following schema:


CREATE TABLE posts (
    id SERIAL PRIMARY KEY,
    author VARCHAR(30) NOT NULL,
    title VARCHAR(50) NOT NULL,
    body TEXT NOT NULL,
    created DATE NOT NULL
);



A typical post looks like this when queried:


SELECT * FROM posts WHERE id = 99;



The response:


 id |   author   |             title              |            body            |  created
----+------------+--------------------------------+----------------------------+------------
 99 | John Daily | Riak Development Anti-Patterns | Writing an application ... | 2014-01-07



Our basic conversion and storage approach will be the following:



		Each row will be converted into a JSON object storing all of the
fields except the id field.


		The id field will be excluded from the JSON object stored in Riak.
It will not act as each object’s [[key|Keys and Objects#keys]].
Instead, the key for each object will be the post’s title, up to 30
characters, lowercased and with hyphens separating the words in the
title. And so the example post shown above will have the key
riak-development-anti-patterns.


		All of the JSON objects produced from the posts table will be
stored in a single Riak [[bucket|Buckets]] called posts.


		The keys for our various objects will be stored in a [[Riak set|Using
Data Types#sets]] so that all stored objects can be queried at once
if need be.








Converting the Table to a List


In this tutorial, we’ll store a table housing a series of blog posts in
Riak using a Python [https://www.python.org/] script relying on
psycopg2 [http://initd.org/psycopg/docs/], a PostgreSQL driver for
Python.


Using the pysopg2 library, we can establish a connection to our database
(we’ll call the database blog_db) and create a
cursor [http://www.postgresql.org/docs/9.2/static/plpgsql-cursors.html]
object that will allow us to interact with the posts table using
traditional SQL commands:


import psycopg2

connection = psycopg2.connection('dbname=blog_db')
cursor = connection.cursor()



With that cursor, we’ll execute a SELECT * FROM posts query and then
fetch the information from the cursor using the fetchall function:


cursor.execute('SELECT * FROM posts')
table = cursor.fetchall()



The table object consists of a Python list of tuples that looks
something like this:


[(1, 'John Doe', 'Post 1 title', 'Post body ...', datetime.date(2014, 1, 1)),
 (2, 'Jane Doe', 'Post 2 title', 'Post body ...', datetime.date(2014, 1, 2)),
 # more posts in the list
]



As we can see, psycopg2 has automatically converted the created row
from a Postgres DATE data type into a Python datetime. We’ll need to
convert that datetime to a string when we convert each row to JSON in
the next section.





Converting Rows to JSON Objects


In the section above, we saw that psycopg2 converted each row of our
posts table into a tuple with five elements (one for each column in
our table). Tuples aren’t a terribly useful data type to store in Riak,
so we’ll convert each row tuple into a Python
dictionary [https://docs.python.org/2/tutorial/datastructures.html#dictionaries]
instead. The official Riak Python client [https://github.com/basho/riak-python-client]
automatically converts Python dictionaries to JSON to store in Riak, so
once we have a list of dictionaries instead of tuples, we can store
those dictionaries directly in Riak.


Converting rows in an SQL table to dictionaries can be tricky because
rows can contain a wide variety of data types, each of which must be
converted into one of the data types compatible with
JSON [http://en.wikipedia.org/wiki/JSON#Data_types.2C_syntax_and_example].
That conversion is fairly straightforward in our example, as the name,
title, and body columns are automatically converted into strings.


The one tricky part will be the date column. Fortunately, Python’s
datetime [https://docs.python.org/2/library/datetime.html] library
makes this fairly simple. We can use the strftime function to
convert the date column into a formatted string. We’ll use a
month-day-year format, i.e. %m-%d-%Y.


import datetime

def convert_row_to_dict(row):
    return {
        'author': row[1],
        'title': row[2],
        'body': row[3],
        'created': row[4].strftime('%m-%d-%Y')
    }



That will convert each row into a dictionary that looks like this:


{
  'author': 'John Daily',
  'title': 'Riak Development Anti-Patterns',
  'body': 'Writing an application ...',
  'created': '01-07-2014'
}






Storing Row Objects


Now that we can convert each row into a Python dictionary, we can store
each row in Riak directly. Our store_row_in_riak function will do two
things:



		It will construct a key out of each post’s title, taking the first 30
characters, lowercasing the whole string, and then replacing all
spaces with a hyphen, i.e. This is a blog post will be transformed
into this-is-a-blog-post.


		Each row will be converted into a proper Riak object and stored.





Here’s our function:


bucket = client.bucket('posts')

def store_row_in_riak(row):
    key = row[2][0:29].lower().replace(' ', '-')
    obj = RiakObject(client, bucket, key)
    obj.content_type = 'application/json'
    obj.data = convert_row_to_dict(row)
    obj.store()



As stated above, we’ll want to store all of the objects’ keys in a
[[Riak set|Data Types#sets]] to assist us in querying the objects in the
future. We’ll modify the store_row_in_riak function above to add each
key to a set:


from riak.datatypes import Set

objects_bucket = client.bucket('posts')
key_set = Set(client.bucket_type('sets').bucket('key_sets'), 'posts')

def store_row_in_riak(row):
    key = row[0]
    obj = RiakObject(client, bucket, key)
    obj.content_type = 'application/json'
    obj.data = convert_row_to_dict(row)
    obj.store()



Now we can write an iterator that stores all rows:


# Using our "table" object from above:

for row in table:
    store_row_in_riak(row)



Once all of those objects have been stored in Riak, we can perform
normal key/value operations to fetch them one by one. Here’s an example,
using curl and Riak’s [[HTTP API]]:


curl http://localhost:8098/buckets/posts/keys/99



That will return a JSON object containing one of the blog posts from our
original table:


{
  "author": "John Daily",
  "title": "Riak Development Anti-Patterns",
  "body": "Writing an application ...",
  "created": "01-07-2014"
}



But we can also fetch all of those objects at once if need be.
Previously, we stored the keys for all of our objects in a
[[Riak set|Data Types#sets]]. We can write a function that fetches all
of the keys from that set and in turn all of the objects corresponding
to those keys:


from riak.datatypes import Set

set_bucket = client.bucket_type('sets').bucket('key_sets')
posts_bucket = client.bucket('posts')

def fetch_all_objects(table_name):
    keys = Set(client, bucket, table_name)
    for key in keys:
        return posts_bucket.get(key)

fetch_all_objects('posts')



That will return the full list of Python dictionaries we stored earlier.





Enhanced Discoverability with Secondary Indexes


While storing all of the objects’ keys in a Riak set is a good way to be
able to fetch all objects from the posts bucket if necessary, a much
more powerful querying technique would be to mark each object with
[[secondary indexes|Using Secondary Indexes]] that enable us to fetch
particular blog posts on the basis of some piece of information about
those posts.


Let’s say that we stored all of our blog posts with keywords attached,
and that our original schema actually looked like this:


CREATE TABLE posts (
    id SERIAL PRIMARY KEY,
    author VARCHAR(30) NOT NULL,
    title VARCHAR(50) NOT NULL,
    body TEXT NOT NULL,
    created DATE NOT NULL,
    keywords TEXT[] NOT NULL
);



Here’s an example insert into that table:


INSERT INTO posts (author, title, body, created, keywords) VALUES
    ('Basho', 'Moving from MySQL to Riak', 'Traditional database architectures...',
    current_date, '{"mysql","riak","migration","rdbms"}');



What we can do now is add a binary secondary index for each of these
keywords to each post. Let’s write a function to take a Riak object
and attach a binary secondary index for each keyword:


def add_keyword_2i_to_object(obj, keywords):
    for keyword in keywords:
        obj.add_index('keywords_bin', keyword)



Then we can insert that function into the store_row_in_riak function
that we created above:


bucket = client.bucket('posts')

def store_row_in_riak(row):
    obj = RiakObject(client, bucket, row[0])
    obj.content_type = 'application/json'
    obj.data = convert_row_to_dict(row)
    add_keyword_2i_to_object(obj, row[5])
    obj.store()



Now, we can fetch blog posts on the basis of their keywords:


bucket = client.bucket('posts')

def fetch_posts_by_keyword(keyword):
    for key in bucket.get_index('keywords_bin', keyword):
        return bucket.get(key)



This will then return a list of objects marked with keyword metadata.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/using/conflict-resolution/php.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Conflict Resolution: PHP”
project: riak
version: 2.0.0+
document: tutorials
audience: intermediate
keywords: [developers, conflict-resolution, php]




For reasons explained in the [[Introduction to conflict
resolution|Conflict Resolution]], we strongly recommend adopting a
conflict resolution strategy that requires applications to resolve
siblings according to use-case-specific criteria. Here, we’ll provide a
brief guide to conflict resolution using the official Riak PHP
client [https://github.com/basho/riak-php-client].



How the PHP Client Handles Conflict Resolution


Every \Basho\Riak\Object command returns a \Basho\Riak\Command\Object\Response
object, which provides what is needed to handle object conflicts. If siblings exist
and have been returned from the server within the response body, they will be
available within the response object. See below:


$response = (new \Basho\Riak\Command\Builder\FetchObject($riak))
    ->buildLocation('conflicted_key', 'bucket_name', 'bucket_type')
    ->build()
    ->execute();

echo $response->getStatusCode(); // 300
echo $response->hasSiblings(); // 1
echo $response->getSiblings(); // \Basho\Riak\Object[]






Basic Conflict Resolution Example


Let’s say that we’re building a social network application and storing
lists of usernames representing each user’s “friends” in the network.
Each user will bear the class User, which we’ll create below. All of
the data for our application will be stored in buckets that bear the
[[bucket type|Using Bucket Types]] siblings, and for this bucket type
allow_mult is set to true, which means that Riak will generate
siblings in certain cases—siblings that our application will need to
be equipped to resolve when they arise.


The question that we need to ask ourselves now is this: if a given user
has sibling values, i.e. if there are multiple friends lists and Riak
can’t decide which one is most causally recent, which list should be
deemed “correct” from the standpoint of the application? What criteria
should be applied in making that decision? Should the lists be merged?
Should we pick a User object at random?


This decision will always be yours to make. Here, though, we’ll keep it
simple and say that the following criterion will hold: if conflicting
lists exist, the longer list will be the one that our application deems
correct. So if the user user1234 has a sibling conflict where one
possible value has friends lists with 100, 75, and 10 friends,
respectively, the list of 100 friends will win out.  While this might
not make sense in real-world applications, it’s a good jumping-off
point. We’ll explore the drawbacks of this approach, as well as a better
alternative, in this document as well.



Creating Our Data Class


We’ll start by creating a User class for each user’s data. Each User
object will consist of a username as well as a friends property that
lists the usernames, as strings, of the user’s friends. We’ll use a
Set for the friends property to avoid duplicates.


class User {
    public $username;
    public $friends;

    public function __construct($username, array $friends = [])
    {
        $this->username = $username;
        $this->friends = $friends;
    }

    public function __toString()
    {
        return json_encode([
            'username' => $this->username,
            'friends' => $this->friends,
            'friends_count' => count($this->friends)
        ]);
    }
}



Here’s an example of instantiating a new User object:


$bashobunny = new User('bashobunny', ['fred', 'barney']);






Implementing a Conflict Resolution Function


Let’s say that we’ve stored a bunch of User objects in Riak and that a
few concurrent writes have led to siblings. How is our application going
to deal with that? First, let’s say that there’s a User object stored
in the bucket users (which is of the bucket type siblings, as
explained above) under the key bashobunny. We can fetch the object
that is stored there and see if it has siblings:


$response = (new \Basho\Riak\Command\Builder\FetchObject($riak))
    ->buildLocation('bashobunny', 'users', 'siblings')
    ->build()
    ->execute();

echo $response->hasSiblings(); // 1



If we get true, then there are siblings. So what do we do in that
case? At this point, we need to write a function that resolves the list
of siblings, i.e. reduces the $response->getSiblings() array down to one member.
In our case, we need a function that takes a Riak response object as its argument,
applies some logic to the list of values contained in the siblings property
of the object, and returns a single value. For our example use case here, we’ll
return the sibling with the longest friends list:


use \Basho\Riak;
use \Basho\Riak\Command;

function longest_friends_list_resolver(Command\Object\Response $response)
{
    if ($response->hasSiblings()) {
        $siblings = $response->getSiblings();
        $max_key = 0;
        foreach ($siblings as $key => $sibling) {
            if ($sibling->getData()['friends_count'] > $siblings[$max_key]->getData()['friends_count']) {
                $max_key = $key;
            }
        }
    }

    return $siblings[$max_key];
}



We can then embed this function into a more general function for fetching
objects from the users bucket:


function fetch_user_by_username($username, Riak $riak)
{
    $response = (new Command\Builder\FetchObject($riak))
      ->buildLocation($username, 'users', 'siblings')
      ->build()
      ->execute();

    return longest_friends_list_resolver($response);
}

bashobunny = fetch_user_by_username('bashobunny', $riak);



Now, when a User object is fetched (assuming that the username acts as
a key for the object), a single value is returned for the friends
list. This means that our application can now use a “correct” value
instead of having to deal with multiple values.







Conflict Resolution and Writes


In the above example, we created a conflict resolver that resolves a
list of discrepant User objects and returns a single User. It’s
important to note, however, that this resolver will only provide the
application with a single “correct” value; it will not write that
value back to Riak. That requires a separate step. When this step should
be undertaken depends on your application. In general, though, we
recommend writing objects to Riak only when the application is ready to
commit them, i.e. when all of the changes that need to be made to the
object have been made and the application is ready to persist the state
of the object in Riak.


Correspondingly, we recommend that updates to objects in Riak follow
these steps:



		Read the object from Riak


		Resolving sibling conflicts if they exist, allowing the
application to reason about one “correct” value for the object (this
step is the subject of this tutorial)


		Modify the object


		Write the object to Riak once the necessary changes have been
made





You can find more on writing objects to Riak, including examples from
the official PHP client library, in [[The Basics|The
Basics#Object-Key-Operations]].





More Advanced Example


Resolving sibling User values on the basis of which user has the longest
friends list has the benefit of being simple but it’s probably not a
good resolution strategy for our social networking application because
it means that unwanted data loss is inevitable. If one friend list
contains A, B, and C and the other contains D and E, the list
containing A, B, and C will be chosen. So what about friends D
and E? Those usernames are essentially lost. In the sections below,
we’ll implement an alternative strategy as an example.



Merging the Lists


To avoid losing data like this, a better strategy would be to merge the
lists. We can modify our original resolver function to accomplish
precisely that and will also store the resulting User object.


The drawback to this approach is that it’s more or less inevitable that a user
will remove a friend from their friends list, and then that friend will
end up back on the list during a conflict resolution operation. While
that’s certainly not desirable, that is likely better than the
alternative proposed in the first example, which entails usernames being
simply dropped from friends lists. Sibling resolution strategies almost
always carry potential drawbacks of this sort.







Riak Data Types


An important thing to always bear in mind when working with conflict
resolution is that Riak offers a variety of [[Data Types]] that have
specific conflict resolution mechanics built in. If you have data that
can be modeled as a [[counter|Data Types#Counters]], [[set|Data
Types#Sets]], or [[map|Data Types#Maps]], then you should seriously
consider using those Data Types instead of creating your own
application-side resolution logic.


In the example above, we were dealing with conflict resolution within a
set, in particular the friends list associated with each User
object. The merge operation that we built to handle conflict resolution
is analogous to the resolution logic that is built into Riak sets. For
more information on how you could potentially replace the client-side
resolution that we implemented above, see our [[tutorial on Riak
sets|Using Data Types#Sets]].






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/data-modeling/counting.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Counting
project: riak
version: 1.2.0+
document: cookbook
toc: true
audience: intermediate
keywords: [use-cases, sql]




Counting all values, or partial values.




          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/using/conflict-resolution/csharp.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Conflict Resolution: CSharp”
project: riak
version: 2.0.0+
document: tutorials
audience: intermediate
keywords: [developers, conflict-resolution, csharp]




For reasons explained in the [[Introduction to conflict resolution|Conflict
Resolution]], we strongly recommend adopting a conflict resolution strategy that
requires applications to resolve siblings according to use-case-specific
criteria. Here, we’ll provide a brief guide to conflict resolution using the
official Riak .NET client [https://github.com/basho/riak-dotnet-client].



How the .NET Client Handles Conflict Resolution


In the Riak .NET client, every Riak object has a siblings property that
provides access to a list of that object’s sibling values. If there are no
siblings, that property will return an empty list.


Here’s an example of an object with siblings:


var id = new RiakObjectId("siblings_allowed", "nickolodeon", "best_character");

var renObj = new RiakObject(id, "Ren", RiakConstants.ContentTypes.TextPlain);
var stimpyObj = new RiakObject(id, "Stimpy", RiakConstants.ContentTypes.TextPlain);

var renResult = client.Put(renObj);
var stimpyResult = client.Put(stimpyObj);

var getResult = client.Get(id);
RiakObject obj = getResult.Value;
Debug.WriteLine(format: "Sibling count: {0}", args: obj.Siblings.Count);
foreach (var sibling in obj.Siblings)
{
    Debug.WriteLine(
        format: "    VTag: {0}",
        args: sibling.VTag);
}



So what happens if the count of obj.Siblings is greater than 0, as in the case
above?


In order to resolve siblings, you need to either fetch, update and store a
canonical value, or choose a sibling from the Siblings list and store that as
the canonical value.





Basic Conflict Resolution Example


In this example, you will ignore the contents of the Siblings list and will
fetch, update and store the definitive value.


var id = new RiakObjectId("siblings_allowed", "nickolodeon", "best_character");

var renObj = new RiakObject(id, "Ren", RiakConstants.ContentTypes.TextPlain);
var stimpyObj = new RiakObject(id, "Stimpy", RiakConstants.ContentTypes.TextPlain);

var renResult = client.Put(renObj);
var stimpyResult = client.Put(stimpyObj);

var getResult = client.Get(id);
RiakObject obj = getResult.Value;
Debug.Assert(obj.Siblings.Count == 2);

// Now, modify the object's value
obj.SetObject<string>("Stimpy", RiakConstants.ContentTypes.TextPlain);

// Then, store the object which has vector clock attached
var putRslt = client.Put(obj);
CheckResult(putRslt);

obj = putRslt.Value;
// Voila, no more siblings!
Debug.Assert(obj.Siblings.Count == 0);




Choosing a value from Siblings


This example shows a basic sibling resolution strategy in which the first
sibling is chosen as the canonical value.


var id = new RiakObjectId("siblings_allowed", "nickolodeon", "best_character");

var renObj = new RiakObject(id, "Ren", RiakConstants.ContentTypes.TextPlain);
var stimpyObj = new RiakObject(id, "Stimpy", RiakConstants.ContentTypes.TextPlain);

var renResult = client.Put(renObj);
var stimpyResult = client.Put(stimpyObj);

var getResult = client.Get(id);
RiakObject obj = getResult.Value;
Debug.Assert(obj.Siblings.Count == 2);

// Pick the first sibling
RiakObject chosenSibling = getResult.Value.Siblings.First();

// Then, store the chosen object
var putRslt = client.Put(chosenSibling);
CheckResult(putRslt);

RiakObject updatedObject = putRslt.Value;
// Voila, no more siblings!
Debug.Assert(updatedObject.Siblings.Count == 0);









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/search/custom-extractors.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Custom Search Extractors
project: riak
version: 2.0.0+
document: tutorials
audience: advanced
keywords: [developers, search, extractors]




Solr, and by extension Riak Search, has default extractors for a wide
variety of data types, including JSON, XML, and plaintext. Riak Search
ships with the following extractors:


Content Type | Erlang Module
:————|:————-
application/json | yz_json_extractor
application/xml | yz_xml_extractor
text/plain | yz_text_extractor
text/xml | yz_xml_extractor
No specified type | yz_noop_extractor


There are also built-in extractors for [[Riak Data Types|Riak Data Types
and Search]].


If you’re working with a data format that does not have a default Solr
extractor, you can create your own and register it with Riak Search.
We’ll show you how to do so by way of example.



The Extractor Interface


Creating a custom extract involves creating an Erlang interface that
implements two functions:



		extract/1 — Takes the contents of the object and returns the
same contents and an empty list


		extract/2 — Takes the contents of the object and returns an Erlang
proplist [http://www.erlang.org/doc/man/proplists.html] with a
single field name and a single value associated with that name





The following extractor shows how a pure text extractor implements those
two functions:


-module(search_test_extractor).
-include("yokozuna.hrl").
-compile(export_all).

extract(Value) ->
    extract(Value, []).

extract(Value, Opts) ->
    FieldName = field_name(Opts),
    [{FieldName, Value}].

-spec field_name(proplist()) -> any().
field_name(Opts) ->
    proplists:get_value(field_name, Opts, text).



This extractor takes the contents of a Value and returns a proplist
with a single field name (in this case text) and the single value.
This function can be run in the Erlang shell. Let’s run it providing the
text hello:


> c(search_test_extractor).
%% {ok, search_test_extractor}

> search_test_extractor:extract("hello").

%% Console output:
[{text, "hello"}]



Upon running this command, the value hello would be indexed in Solr
under the fieldname text. If you wanted to find all objects with a
text field that begins with Fourscore, you could use the
Solr query text:Fourscore*, to give just one example.





An Example Custom Extractor


Let’s say that we’re storing HTTP header packet data in Riak. Here’s an
example of such a packet:


GET http://www.google.com HTTP/1.1



We want to register the following information in Solr:


Field name | Value | Extracted value in this example
:———-|:——|:——————————-
method | The HTTP method | GET
host | The URL’s host | www.google.com
uri | The URI, i.e. what comes after the host | /


The example extractor below would provide the three desired
fields/values. It relies on the
decode_packet [http://www.erlang.org/doc/man/erlang.html#decode_packet-3]
function from Erlang’s standard library.


-module(yz_httpheader_extractor).
-compile(export_all).

extract(Value) ->
    extract(Value, []).

%% In this example, we can ignore the Opts variable from the example
%% above, hence the underscore:
extract(Value, _Opts) ->
    {ok,
        {http_request,
         Method,
         {absoluteURI, http, Host, undefined, Uri},
         _Version},
        _Rest} = erlang:decode_packet(http, Value, []),
    [{method, Method}, {host, list_to_binary(Host)}, {uri, list_to_binary(Uri)}].



This file will be stored in a yz_httpheader_extractor.erl file (as
Erlang filenames must match the module name). Now that our extractor has
been written, it must be compiled and registered in Riak before it can
be used.





Registering Custom Extractors


In order to use a custom extractor, you must create a compiled .beam
file out of your .erl extractor file and then tell Riak where that
file is located. Let’s say that we have created a
search_test_extractor.erl file in the directory /opt/beams. First,
we need to compile that file:


erlc search_test_extractor.erl



To instruct Riak where to find the resulting
search_test_extractor.beam file, we’ll need to add a line to an
advanced.config file in the node’s /etc directory (more information
can be found in our documentation on [[advanced
configuration|Configuration Files#Advanced-Configuration]]). Here’s an
example:


[
  %% Other configs
  {vm_args, [
    {"-pa /opt/beams", ""}
  ]},
  %% Other configs
]



This will instruct the Erlang VM on which Riak runs to look for compiled
.beam files in the proper directory. You should re-start the node at
this point. Once the node has been re-started, you can use the node’s
Erlang shell to register the yz_httpheader_extractor. First, attach to
the shell:


riak attach



At this point, we need to choose a MIME type for our extractor. Let’s
call it application/httpheader. Once you’re in the shell:


> yz_extractor:register("application/httpheader", yz_httpheader_extractor).



If successful, this command will return a list of currently registered
extractors. It should look like this:


[{default,yz_noop_extractor},
 {"application/httpheader",yz_httpheader_extractor},
 {"application/json",yz_json_extractor},
 {"application/riak_counter",yz_dt_extractor},
 {"application/riak_map",yz_dt_extractor},
 {"application/riak_set",yz_dt_extractor},
 {"application/xml",yz_xml_extractor},
 {"text/plain",yz_text_extractor},
 {"text/xml",yz_xml_extractor}]



If the application/httpheader extractor is part of that list, then the
extractor has been successfully registered.





Verifying Our Custom Extractor


Now that Riak Search knows how to decode and extract HTTP header packet
data, let’s store some in Riak and then query it. We’ll put the example
packet data from above in a google_packet.bin file. Then, we’ll PUT
that binary to Riak’s /search/extract endpoint:


curl -XPUT $RIAK_HOST/search/extract \
     -H 'Content-Type: application/httpheader' \ # Note that we used our custom MIME type
     --data-binary @google_packet.bin



That should return the following JSON:


{
  "method": "GET",
  "host": "www.google.com",
  "uri": "/"
}



We can also verify this in the Erlang shell (whether in a Riak node’s
Erlang shell or otherwise):


yz_extractor:run(<<"GET http://www.google.com HTTP/1.1\n">>, yz_httpheader_extractor).

%% Console output:
[{method,'GET'},{host,<<"www.google.com">>},{uri,<<"/">>}]






Indexing and Searching HTTP Header Packet Data


Now that Solr knows how to extract HTTP header packet data, we need to
create a schema that extends the [[default schema|Search
Schema#Creating-a-Custom-Schema]]. The following fields should be added
to <fields> in the schema, which we’ll name http_header_schema and
store in a http_header_schema.xml file:


<?xml version="1.0" encoding="UTF-8" ?>
<schema name="http_header_schema" version="1.5">
<fields>
  <!-- other required fields here -->

  <field name="method" type="string" indexed="true" stored="true" multiValued="false"/>
  <field name="host" type="string" indexed="true" stored="true" multiValued="false"/>
  <field name="uri" type="string" indexed="true" stored="true" multiValued="false"/>
</fields>



Now, we can store the schema:


import org.apache.commons.io.FileUtils

File xml = new File("http_header_schema.xml");
String xmlString = FileUtils.readFileToString(xml);
YokozunaSchema schema = new YokozunaSchema("http_header_schema", xmlString);
StoreSchema storeSchemaOp = new StoreSchema.Builder(schema).build();
client.execute(storeSchemaOp);



schema_xml = File.read('http_header_schema.xml')
client.create_search_schema('http_header_schema', schema_xml)



$schema_string = file_get_contents('http_header_schema.xml');
(new \Basho\Riak\Command\Builder\StoreSchema($riak))
  ->withName('http_header_schema')
  ->withSchemaString($schema_string)
  ->build()
  ->execute();



import io

schema_xml = open('http_header_schema.xml').read()
client.create_search_schema('http_header_schema', schema_xml)



curl -XPUT $RIAK_HOST/search/schema/http_header_schema \
     -H 'Content-Type: application/xml' \
     --data-binary @http_header_schema.xml



Riak now has our schema stored and ready for use. Let’s create a search
index called header_data that’s associated with our new schema:


YokozunaIndex headerDataIndex = new YokozunaIndex("header_data", "http_header_schema");
StoreSearchIndex storeIndex = new StoreSearchIndex.Builder(headerDataIndex)
        .build();
client.execute(storeIndex);



client.create_search_index('header_data', 'http_header_schema')



(new \Basho\Riak\Command\Builder\StoreIndex($riak))
  ->withName('header_data')
  ->usingSchema('http_header_schema')
  ->build()
  ->execute();



client.create_search_index('header_data', 'http_header_schema')



curl -XPUT $RIAK_HOST/search/index/header_data \
     -H 'Content-Type: application/json' \
     -d '{"schema":"http_header_schema"}'



Now, we can create and activate a [[bucket type|Using Bucket Types]]
for all of the HTTP header data that we plan to store. Any bucket that
bears this type will be associated with our header_data search index.
We’ll call our bucket type http_data_store.


riak-admin bucket-type create http_data_store '{"props":{"search_index":"header_data"}}'
riak-admin bucket-type activate http_data_store



Let’s use the same google_packet.bin file that we used previously and
store it in a bucket with the http_data_store bucket type, making sure
to use our custom application/httpheader MIME type:


Location key = new Location(new Namespace("http_data_store", "packets"), "google");
File packetData = new File("google_packet.bin");
byte[] packetBinary = FileUtils.readFileToByteArray(packetData);

RiakObject packetObject = new RiakObject()
        .setContentType("application/httpheader")
        .setValue(BinaryValue.create(packetBinary));

StoreValue storeOp = new StoreValue.Builder(packetObject)
        .setLocation(key)
        .build();
client.execute(storeOp);



packet_data = File.read('google_packet.bin')
bucket = client.bucket_type('http_data_store').bucket('packets')
obj = Riak::Robject.new(bucket, 'google')
obj.content_type = 'application/httpheader'
obj.raw_data = packetData
obj.store



$object = new Object(file_get_contents("google_packet.bin"), ['Content-Type' => 'application/httpheader']);

(new \Basho\Riak\Command\Builder\StoreObject($riak))
  ->buildLocation('google', 'packets', 'http_data_store')
  ->withObject($object)
  ->build()
  ->execute();



packet_data = open('google_packet.bin').read()
bucket = client.bucket_type('http_data_store').bucket('packets')
obj = RiakObject(client, bucket, 'google')
obj.content_type = 'application/httpheader'
obj.data = packet_data
obj.store()



curl -XPUT $RIAK_HOST/types/http_data_store/buckets/packets/keys/google \
     -H 'Content-Type: application/httpheader' \
     --data-binary @google_packet.bin



Now that we have some header packet data stored, we can query our
header_data index on whatever basis we’d like. First, let’s verify
that we’ll get one result if we query for objects that have the HTTP
method GET:


// Using the same method from above:
String query = "method:GET";

// Again using the same method from above:
int numberFound = results.numResults(); // 1



results = client.search('http_header_schema', 'method:GET')
results['num_found'] # 1



$response = (\Basho\Riak\Command\Search\FetchObjects($riak))
  ->withQuery('method:GET')
  ->withIndexName('header_data')
  ->build()
  ->execute();

$response->getNumFound();



results = client.fulltext_search('http_header_schema', 'method:GET')
results['num_found'] # 1



curl "$RIAK_HOST/search/query/header_data?wt=json&q=method:GET"

# This should return a fairly large JSON object with a "num_found" field
# The value of that field should be 1







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/search/document-store.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Using Riak as a Document Store
project: riak
version: 2.0.0+
document: tutorials
audience: intermediate
keywords: [document-store, developers, search, json]




Although Riak wasn’t explicitly created as a document store, two
features recently added to Riak—[[Riak Search|Using Search]] and
[[Riak Data Types|Using Data Types]]—make it possible to use Riak as a
highly scalable document store with rich querying capabilities. In this
tutorial, we’ll build a basic implementation of a document store using
[[Riak maps|Using Data Types#Maps]].



Basic Approach


Riak Search enables you to implement a document store in Riak in a
variety of ways. You could, for example, store and query JSON objects or
XML and then retrieve them later via Solr queries. In this tutorial,
however, we will store data in [[Riak maps|Using Data Types#Maps]],
index that data using Riak Search, and then run Solr queries against
those stored objects.


You can think of these Search indexes as collections. Each indexed
document will have an ID generated automatically by Search, and because
we’re not interested in running normal [[key/value queries|Key/Value
Modeling]] on these objects, we’ll allow Riak to assign [[keys|Keys and
Objects]] automatically. This means that all we have to do is worry
about the bucket type and/or bucket when storing objects.





Use Case


Let’s say that we’re building a WordPress-style CMS and storing blog
posts in Riak. We will be storing the following information about each
post:



		Title


		Author


		Content (the body of the post)


		Keywords associated with the post


		Date posted


		Whether the post has been published on the site





For each of those pieces of information, we’ll need to decide on (a)
which Riak Data Type most directly corresponds and (b) which Solr type
we want to associate with the info. It’s important to bear in mind that
Riak Data Types can be indexed as a wide variety of things, e.g.
registers as Solr text fields, sets as multi-valued datetimes, etc. The
table below shows which Riak Data Type and Solr type we’ll be using for
each field in our Riak maps.


Info | Riak Data Type | Solr type
:—-|:—————|:———
Post title | Register | String
Post author | Register | String
Post content | Register | Text
Keywords | Set | Multi-valued string
Date posted | Register | Datetime
Whether the post is currently in draft form | Flag | Boolean


Before we start actually creating and storing blog posts, let’s set up
Riak Search with an appropriate index and schema.





Creating a Schema and Index


In the documentation on [[search schemas|Search Schema]], you’ll find a
baseline schema to be used for creating custom schemas. We’ll use that
baseline schema here and add the following fields to the <fields>
list:


<field name="title_register"   type="string"   indexed="true" stored="true" />
<field name="author_register"  type="string"   indexed="true" stored="true" />
<field name="content_register" type="text"     indexed="true" stored="true" />
<field name="keywords_set"     type="string"   indexed="true" stored="true" multiValued="true" />
<field name="date_register"    type="datetime" indexed="true" stored="true" />
<field name="published_flag"   type="boolean"  indexed="true" stored="true" />



You can see the full schema on
GitHub [https://github.com/basho/basho_docs/raw/master/source/data/blog_post_schema.xml].
Let’s store that schema in a file called blog_post_schema.xml and
upload that schema to Riak:


import org.apache.commons.io.FileUtils;

File xml = new File("blog_post_schema.xml");
String xmlString = FileUtils.readFileToString(xml);
YokozunaSchema schema = new YokozunaSchema("blog_post_schema", xmlString);
StoreSchema storeSchemaOp = new StoreSchema.Builder(schema).build();
client.execute(storeSchemaOp);



schema_data = File.read('blog_post_schema.xml')
client.create_search_schema('blog_post_schema', schema_data)



$schema_string = file_get_contents('blog_post_schema.xml');
(new \Basho\Riak\Command\Builder\StoreSchema($riak))
  ->withName('blog_post_schema')
  ->withSchemaString($schema_string)
  ->build()
  ->execute();



xml_file = open('blog_post_schema.xml', 'r')
schema_data = xml_file.read()
client.create_search_schema('blog_post_schema', schema_data)
xml_file.close()



var schemaXml = File.ReadAllText("blog_post_schema.xml");
var schema = new SearchSchema("blog_post_schema", schemaXml);
var rslt = client.PutSearchSchema(schema);



/*
 * Full example here:
 *  https://github.com/basho/riak-nodejs-client-examples/blob/master/dev/search/document-store.js
 *
 */
var options = {
    schemaName: 'blog_post_schema',
    schema: schemaXml
};
client.storeSchema(options, function (err, rslt) {
    if (err) {
        throw new Error(err);
    }
});



{ok, SchemaData} = file:read_file("blog_post_schema.xml"),
riakc_pb_socket:create_search_schema(Pid, <<"blog_post_schema">>, SchemaData).



curl -XPUT $RIAK_HOST/search/schema/blog_post_schema \
     -H 'Content-Type: application/xml' \
     --data-binary @blog_post_schema.xml



With our schema uploaded, we can create an index called blog_posts and
associate that index with our schema:


YokozunaIndex blogPostIndex = new YokozunaIndex("blog_posts", "blog_post_schema");
StoreIndex storeIndex = new StoreIndex.Builder(blogPostIndex).build();
client.execute(storeIndex);



client.create_search_index('blog_posts', 'blog_post_schema')



(new Command\Builder\Search\StoreIndex($riak))
  ->withName('blog_posts')
  ->usingSchema('blog_post_schema')
  ->build()
  ->execute();



client.create_search_index('blog_posts', 'blog_post_schema')



var idx = new SearchIndex("blog_posts", "blog_post_schema");
var rslt = client.PutSearchIndex(idx);



var options = {
    schemaName: 'blog_post_schema',
    indexName: 'blog_posts'
};
client.storeIndex(options, function (err, rslt) {
    if (err) {
        throw new Error(err);
    }
});



riakc_pb_socket:create_search_index(Pid, <<"blog_posts">>, <<"blog_post_schema">>, []).



curl -XPUT $RIAK_HOST/search/index/blog_posts \
     -H 'Content-Type: application/json' \
     -d '{"schema": "blog_post_schema"}'






How Collections will Work


Collections are not a concept that is native to Riak but we can easily
mimic collections by thing of a bucket type as a collection. When we
associate a bucket type with a Riak Search index, all of the objects
stored in any bucket of that bucket type will be queryable on the basis
of that one index. For this tutorial, we’ll create a bucket type called
cms and think of that as a collection. We could also restrict our
blog_posts index to a single bucket just as easily and think of that
as a queryable collection, but we will not do that in this tutorial.


The advantage of the bucket-type-based approach is that we could store
blog posts from different blogs in different blog posts and query them
all at once as part of the same index. It depends on the use case at
hand. In this tutorial, we’ll only be storing posts from one blog, which
is called “Cat Pics Quarterly” and provides in-depth theoretical
discussions of cat pics with a certain number of Reddit upvotes. All of
the posts in this blog will be stored in the bucket
cat_pics_quarterly.


First, let’s create our cms bucket type and associate it with the
blog_posts index:


riak-admin bucket-type create cms \
  '{"props":{"datatype":"map","search_index":"blog_posts"}}'
riak-admin bucket-type activate cms



Now, any object stored in any bucket of the type cms will be indexed
as part of our “collection.”





Storing Blog Posts as Maps


Now that we know how each element of a blog post can be translated into
one of the Riak Data Types, we can create an interface in our
application to serve as that translation layer. Using the method
described in [[Data Modeling with Riak Data Types]], we can construct a
class that looks like this:


import java.util.Set;

public class BlogPost {
    private String title;
    private String author;
    private String content;
    private Set<String> keywords;
    private DateTime datePosted;
    private Boolean published;
    private static final String bucketType = "cms";

    private Location location;

    private RiakClient client;

    public BlogPost(RiakClient client
                    String bucketName,
                    String title,
                    String author,
                    String content,
                    Set<String> keywords,
                    DateTime datePosted,
                    Boolean published) {
      this.client = client;
      this.location = new Location(new Namespace(bucketType, bucketName), null);
      this.title = title;
      this.author = author;
      this.content = content;
      this.keywords = keywords;
      this.datePosted = datePosted;
      this.published = published;
    }

    public void store() throws Exception {
        RegisterUpdate titleUpdate = new RegisterUpdate(title);
        RegisterUpdate authorUpdate = new RegisterUpdate(author);
        RegisterUpdate contentUpdate = new RegisterUpdate(content);
        SetUpdate keywordsUpdate = new SetUpdate();
        for (String keyword : keywords) {
            keywordsUpdate.add(keyword);
        }
        RegisterUpdate dateUpdate =
            new RegisterUpdate(datePosted.toString("YYYY-MM-DD HH:MM"));
        if (published) {
            FlagUpdate published = new FlagUpdate(published);
        }
        FlagUpdate publishedUpdate = new FlagUpdate(published);
        MapUpdate mapUpdate = new MapUpdate()
            .update("title", titleUpdate)
            .update("author", authorUpdate)
            .update("content", contentUpdate)
            .update("keywords", keywordsUpdate)
            .update("date", dateUpdate)
            .update("published", publishedUpdate);
        UpdateMap storeBlogPost = new UpdateMap.Builder(location)
            .build();
        client.execute(storeBlogPost);
    }
}



class BlogPost
  def initialize(bucket_name, title, author, content, keywords, date_posted, published)
    bucket = client.bucket_type('cms').bucket(bucket_name)
    map = Riak::Crdt::Map.new(bucket, nil)
    map.batch do |m|
      m.registers['title'] = title
      m.registers['author'] = author
      m.registers['content'] = content
      keywords.each do |k|
        m.sets['keywords'].add(k)
      end
      m.registers['date'] = date_posted
      if published
        m.flags['published'] = true
      end
  end
end



class BlogPost {
  private $title = '';
  private $author = '';
  private $content = '';
  private $keywords = [];
  private $datePosted = '';
  private $published = false;
  private $bucketType = "cms";

  private $bucket = null;

  private $riak = null;

  public function __construct(\Basho\Riak $riak, $bucket, $title, $author, $content, array $keywords, $date, $published)
  {
    this->riak = $riak;
    this->bucket = new Bucket($bucket, $this->bucketType);
    this->title = $title;
    this->author = $author;
    this->content = $content;
    this->keywords = $keywords;
    this->datePosted = $date;
    this->published = $published;
  }

  public function store()
  {
    $setBuilder = (new \Basho\Riak\Command\Builder\UpdateSet($this->riak));
      
    foreach($this->keywords as $keyword) {
      $setBuilder->add($keyword);
    }

    (new \Basho\Riak\Command\Builder\UpdateMap($this->riak))
      ->updateRegister('title', $this->title)
      ->updateRegister('author', $this->author)
      ->updateRegister('content', $this->content)
      ->updateRegister('date', $this->date)
      ->updateFlag('published', $this->published)
      ->updateSet('keywords', $setBuilder)
      ->withBucket($this->bucket)
      ->build()
      ->execute();
  }
}



from riak.datatypes import Map

class BlogPost:
    def __init__(bucket_name, title, author, content, keywords, date_posted, published):
        bucket = client.bucket_type('cms').bucket(bucket_name)
        map = Map(bucket, None)
        self.map.registers['title'].assign(title)
        self.map.registers['author'].assign(author)
        self.map.registers['content'].assign(content)
        for k in keywords:
            self.map.sets['keywords'].add(k)
        self.map.registers['date'] = date_posted
        if published:
            self.map.flags['published'].enable()
        self.map.store()



/*
 * Please see the code in the RiakClientExamples project:
 * https://github.com/basho/riak-dotnet-client/tree/develop/src/RiakClientExamples/Dev/Search
 */



/*
 * Please see the code in the examples repository:
 * https://github.com/basho/riak-nodejs-client-examples/blob/master/dev/search/
 */



Now, we can store some blog posts. We’ll start with just one:


Set<String> keywords = new HashSet<String>();
keywords.add("adorbs");
keywords.add("cheshire");

BlogPost post1 = new BlogPost(client, // client object
                              "cat_pics_quarterly", // bucket
                              "This one is so lulz!", // title
                              "Cat Stevens", // author
                              "Please check out these cat pics!", // content
                              keywords, // keywords
                              new DateTime(), // date posted
                              true); // published
try {
    post1.store();
} catch (Exception e) {
    System.out.println(e);
}



keywords = ['adorbs', 'cheshire']
date = Time.now.strftime('%Y-%m-%d %H:%M')
blog_post1 = BlogPost.new('cat_pics_quarterly',
                          'This one is so lulz!',
                          'Cat Stevens',
                          'Please check out these cat pics!',
                          keywords,
                          date,
                          true)



$keywords = ['adorbs', 'cheshire'];
$date = new \DateTime('now');

$post1 = new BlogPost(
  $riak, // client object
  'cat_pics_quarterly', // bucket
  'This one is so lulz!', // title
  'Cat Stevens', // author
  'Please check out these cat pics!', // content
  $keywords, // keywords
  $date, // date posted
  true // published
);



import datetime

keywords = ['adorbs', 'cheshire']
date = datetime.datetime.now().strftime('%Y-%m-%d %H:%M')
blog_post1 = BlogPost('cat_pics_quarterly',
                      'This one is so lulz!',
                      'Cat Stevens',
                      'Please check out these cat pics!',
                      keywords,
                      date,
                      true)



var keywords = new HashSet<string> { "adorbs", "cheshire" };

var post = new BlogPost(
    "This one is so lulz!",
    "Cat Stevens",
    "Please check out these cat pics!",
    keywords,
    DateTime.Now,
    true);

var repo = new BlogPostRepository(client, "cat_pics_quarterly");
string id = repo.Save(post);



var post = new BlogPost(
    'This one is so lulz!',
    'Cat Stevens',
    'Please check out these cat pics!',
    [ 'adorbs', 'cheshire' ],
    new Date(),
    true
);

var repo = new BlogPostRepository(client, 'cat_pics_quarterly');

repo.save(post, function (err, rslt) {
    logger.info("key: '%s', model: '%s'", rslt.key, JSON.stringify(rslt.model));
});






Querying


Now that we have some blog posts stored in our “collection,” we can
start querying for whatever we’d like. Let’s say that we want to find
all blog posts with the keyword funny (after all, some cat pics are
quite serious, and we may not want those).


String index = "blog_posts";
String query = "keywords_set:funny";

SearchOperation searchOp = new SearchOperation
    .Builder(BinaryValue.create(index), query)
    .build();
cluster.execute(searchOp);
List<Map<String, List<String>>> results = searchOp.get().getAllResults();



results = client.search('blog_posts', 'keywords_set:funny')



$response = (new \Basho\Riak\Command\Builder\Search\FetchObjects($riak))
  ->withIndexName('blog_posts')
  ->withQuery('keywords_set:funny')
  ->build()
  ->execute();



results = client.fulltext_search('blog_posts', 'keywords_set:funny')



var searchRequest = new RiakSearchRequest("blog_posts", "keywords_set:funny");
var rslt = client.Search(searchRequest);



var searchCmd = new Riak.Commands.YZ.Search.Builder()
    .withIndexName('blog_posts')
    .withQuery('keywords_set:funny')
    .withCallback(search_cb)
    .build();

client.execute(searchCmd);



curl "$RIAK_HOST/search/query/blog_posts?wt=json&q=keywords_set:funny"



Or we can find posts that contain the word furry:


String index = "blog_posts";
String query = "content_register:furry";

SearchOperation searchOp = new SearchOperation
    .Builder(BinaryValue.create(index), query)
    .build();
cluster.execute(searchOp);
List<Map<String, List<String>>> results = searchOp.get().getAllResults();



results = client.search('blog_posts', 'content_register:furry')



$response = (new \Basho\Riak\Command\Builder\Search\FetchObjects($riak))
  ->withIndexName('blog_posts')
  ->withQuery('content_register:furry')
  ->build()
  ->execute();



results = client.fulltext_search('blog_posts', 'content_register:furry')



var searchRequest = new RiakSearchRequest("blog_posts", "content_register:furry");
var rslt = client.Search(searchRequest);



var searchCmd = new Riak.Commands.YZ.Search.Builder()
    .withIndexName('blog_posts')
    .withQuery('content_register:furry')
    .withCallback(search_cb)
    .build();

client.execute(searchCmd);



curl "$RIAK_HOST/search/query/blog_posts?wt=json&q=content_register:furry"



Here are some more possible queries:


Info | Query
:—-|:—–
Unpublished posts | published_flag:false
Titles that begin with Loving* | title_register:Loving*
Post bodies containing the words furry and jumping | content_register:[furry AND jumping]






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/using/conflict-resolution/nodejs.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Conflict Resolution: NodeJS”
project: riak
version: 2.0.0+
document: tutorials
audience: intermediate
keywords: [developers, conflict-resolution, nodejs, node, javascript]




For reasons explained in the [[Introduction to conflict resolution|Conflict
Resolution]], we strongly recommend adopting a conflict resolution strategy that
requires applications to resolve siblings according to use-case-specific
criteria. Here, we’ll provide a brief guide to conflict resolution using the
official [Riak Node.js client][riak_dotnet_client].



How the Node.js Client Handles Conflict Resolution


In the Riak Node.js client, the result of a fetch can possibly return an array
of sibling objects.  If there are no siblings, that property will return an
array with one value in it.


Example: creating object with siblings [https://github.com/basho/riak-nodejs-client-examples/blob/master/dev/using/conflict-resolution.js#L21-L68]


So what happens if the length of rslt.values is greater than 0, as in the case
above?


In order to resolve siblings, you need to either fetch, update and store a
canonical value, or choose a sibling from the values array and store that as
the canonical value.





Basic Conflict Resolution Example


In this example, you will ignore the contents of the values array and will
fetch, update and store the definitive value.


Example: resolving siblings via store [https://github.com/basho/riak-nodejs-client-examples/blob/master/dev/using/conflict-resolution.js#L72-L92]



Choosing a value from rslt.values


This example shows a basic sibling resolution strategy in which the first
sibling is chosen as the canonical value.


Example: resolving siblings via first [https://github.com/basho/riak-nodejs-client-examples/blob/master/dev/using/conflict-resolution.js#L94-L113]





Using conflictResolver


This example shows a basic sibling resolution strategy in which the first
sibling is chosen as the canonical value via a conflict resolution function.


Example: resolving siblings via `conflictResolver [https://github.com/basho/riak-nodejs-client-examples/blob/master/dev/using/conflict-resolution.js#L117-L151]








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/references/appendices/RiakCS-Control.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Riak CS Control
project: riakcs
version: 1.3.0+
document: appendix
toc: true
audience: intermediate
keywords: [control]




Riak CS Control is a standalone user management application for Riak CS.
It provides a user interface for filtering, disabling, creating and
managing users in a Riak CS Cluster.



Installing Riak CS Control


Riak CS Control is maintained as a separate
application [https://github.com/basho/riak_cs_control] and can be
installed via [[source or package|Download Riak CS]].





Setting Up Riak CS Control


In the /etc/riak-cs-control/app.config file, configure the application
with the information needed to connect to the Riak CS cluster you wish
to administer.



Configuring Riak CS Control


{riak_cs_control, [
  %% What port to run the application on.
  {port, 8000 },

  %% Instance of Riak CS you wish to talk to.
  {cs_hostname, "s3.amazonaws.com" },
  {cs_port, 80 },
  {cs_protocol, "http" },

  %% Proxy information; necessary if you are using s3.amazonaws.com as
  %% your hostname.
  {cs_proxy_host, "localhost" },
  {cs_proxy_port, 8080 },

  %% Credentials you want the application to run as.
  {cs_admin_key, "admin-key" },
  {cs_admin_secret, "admin-secret" },

  %% Specify the bucket name for administration options.
  {cs_administration_bucket, "riak-cs" }
]},






Running Riak CS Control


Start Riak CS Control as you would Riak or Riak CS with:


riak-cs-control start








The Users Page


When you first navigate to the Riak CS Control UI, you will land on the
Users page:


[image: Users Page]


On this page you can quickly see all current Riak CS users along with
their status, e-mail address, and credentials. From here you can filter,
disable, create, and manage users in a Riak CS Cluster.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/cookbooks/Version-Compatibility.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Version Compatibility
project: riakcs
version: 1.2.0+
document: tutorial
toc: true
index: true
audience: beginner
keywords: [compatibility]
interest: false




If you are deploying Riak CS in combination with an existing Riak
cluster, you should verify that the version of Riak that you are using
is compatible with the version of Riak CS that you intend to use.


It is important to note that not all versions of Riak are compatible
with Riak CS, but a number of version combinations have been tested, are
known to function together, and can be recommended for use.


The following details combinations of Riak and Riak CS versions which
are known to function together and provides some general tips about Riak
versions for use with Riak CS.



Unsupported Riak Versions


Riak versions prior to version 1.2.0 are known to have performance
issues and are not tested, recommended, or supported for use with Riak
CS. Additionally, Riak versions prior to 1.0.0 are missing essential
functionality, such as Secondary Indexes or LevelDB support, required by
Riak CS.





Working Version Combinations


Basic functional testing has been performed with the following combinations of
Riak and Riak CS. These versions are also known to be functioning in production environments.


Riak version  | Stanchion version | Riak CS version
————–|——————-|—————-
1.2.1         | 1.2.2             | 1.2.2
1.2.1         | 1.3.0             | 1.3.0
1.3.0         | 1.2.2             | 1.2.2
1.3.0         | 1.3.0             | 1.3.0
1.4.0         | 1.4.0             | 1.4.0
1.4.1         | 1.4.0             | 1.4.0
1.4.8         | 1.4.3             | 1.4.5
1.4.10        | 1.5.0             | 1.5.0
1.4.10        | 1.5.0             | 1.5.1
1.4.10        | 1.5.0             | 1.5.2
1.4.12        | 1.5.0             | 1.5.3
1.4.12        | 1.5.0             | 1.5.4
2.0.5         | 2.0.0             | 2.0.0


{{#1.5.0+}}
Note: While Riak CS versions 1.5.0 and later will work with Riak
1.4.x, we highly recommend running CS with at least Riak 1.4.8,
preferably 1.4.10.
{{/1.5.0+}}


Basic functionality testing consists of account creation, object storage and
retrieval, bucket listing operations, and Access Control List (ACL) enforcement
verification.


Note that functional testing of Riak CS clusters operating with mixed versions
(e.g., a combination of Riak CS version 1.2.2 and version 1.3.0 nodes) has not
been performed, and cannot be recommended at this time.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/cookbooks/Globally-Unique-Entities.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Globally Unique Entities
project: riakcs
version: 1.2.0-1.5.0
document: cookbook
toc: true
index: true
audience: intermediate
keywords: [operator, developer]




There are two entities that must be globally unique within a Riak CS
system:



		User identifiers — Riak CS mandates that each user create an
account using an email address as an identifier and takes steps to
ensure that an email address has not already been used before
accepting a user creation request


		Bucket names — Bucket names must be unique within a Riak CS
system and any attempts to create a bucket with a name that is
already in use are rejected.





The uniqueness of these entities is enforced by serializing any creation
or modification requests that involve them. The request serialization
application for the Riak CS system is called
Stanchion [https://github.com/basho/stanchion]. More specific details
on its implementation can be found in its
README [https://github.com/basho/stanchion/blob/master/README.org]
file.


Uniqueness is further enforced by mandating that all of the primary
vnodes of the underlying Riak cluster that are responsible for the user
or bucket being created be available at creation time. One result of
this enforcement is that user creation requests and bucket creation or
modification—i.e. deletion—requests are not highly available like
other Riak CS system operations.


If the Stanchion application is unavailable or cannot be reached for any
reason, the aforementioned user and bucket operations will not be
allowed to complete. Additionally, instability in the Riak cluster may
lead to user and bucket requests being disallowed. This would be
indicated by error messages similar to this in the Stanchion console or
error log files:


2013-01-03 05:24:24.028 [warning] <0.110.0>@stanchion_utils:bucket_available:501 Error occurred trying to check if the bucket <<"mybucket">> exists. Reason: <<"{pr_val_unsatisfied,3,2}">>



As such, these operations should only be used as preparation for
a workflow and not actually included as part of a highly available
workflow.




          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/cookbooks/garbage-collection.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Garbage Collection
project: riakcs
version: 1.4.5+
document: tutorial
toc: true
index: true
audience: advanced
keywords: [garbage, gc, deletion, cleanup]




This document describes some of the implementation details behind Riak
CS’s garbage collection process. For information on configuring this
system, please see our documentation on [[configuring Riak CS]].



Versions and Manifests


In Riak CS, any named object bears multiple versions that are stored
in the system at any given time. These versions are not exposed to end
users and are used only for internal purposes. Each version of the
object is accessible via an object manifest that includes a
UUID [http://en.wikipedia.org/wiki/Universally_unique_identifier] for
that version.


At the system level, Riak CS attempts to have only one active manifest
for a named object at any given time, although multiple active manifests
can coexist in some cases. In spite of this, only one active object
manifest is available to users accessing Riak CS at any given time,
which means that Riak CS users are never exposed to multiple manifests.


Garbage collection (GC) of object versions involves a variety of actions
that can be divided into two essential phases:



		Synchronous actions that occur in the foreground while the user is
waiting for notification of successful command completion


		Asynchronous actions that occur in the background and are not
directly tied to user actions





These two phases are described in more detail in the following sections.



Note on manifest pruning

A Riak CS object's manifest is updated any time a write, i.e. a `PUT` or
`DELETE` request, is issued, which means that manifest sizes can grow
significantly over time. This can lead to latency problems. Riak CS's GC
subsystem will prune these manifests. If you're experiencing
manifest-related issues, we would recommend using GC.




Synchronous GC Actions


Riak CS users can undertake two actions to initiate garbage collection
of an object version:



		Overwriting the object with a new version


		Deleting the object





When an object version is overwritten, a new object manifest is written
with the state set to active. This new version is then made available
to Riak CS users. When an object is explicitly deleted, however, this
means that no active versions remain and thus that the object is no
longer externally available to users.


Behind the scenes, overwriting or deleting an object also means that a
set of eligible manifest versions is determined, while the state of each
eligible manifest is changed to pending_delete and the
delete_marked_time field is set to a time value representing the
current time.


The method for compiling the list of eligible manifests is dependent
on the operation, i.e. whether the object is being overwritten or
deleted.


If the object is being overwritten, the previously active manifest
version is selected along with any manifest versions that are in the
writing state. An object is in a writing state if the
last_block_written_time field represents a time value greater than
gc.leeway_period ago (or the write_start_time in cases where the
last_block_written_time is undefined).


If a manifest version remains in the writing state for greater than
gc.leeway_period, Riak CS assumes that that manifest version
represents a failed upload attempt. In that case, Riak CS deems it
acceptable to reap any object blocks that may have been written.
Manifest versions in the writing state whose last_block_written_time
has not exceeded the gc.leeway_period threshold are not deemed
eligible because they could represent an object version that is still in
the process of writings its blocks.


Object deletes are more straightforward. Since no object is externally
available to the user after a delete operation, any manifest versions
in the active or writing state are eligible to be cleaned up. In
this case, there is no concern about reaping the object version that is
currently being written to become the next active version.


{{#1.5.0-}}


Once the states of the eligible manifests have been updated to
pending_delete, the manifest information for any pending_delete
manifest versions are collected into a CRDT set and the set is written
as a value to the riak-cs-gc bucket keyed by a time value
representing the current epoch time plus the leeway interval, i.e.
the gc.leeway_period configuration option. If that write is
successful then the state for each manifest in the set is updated to
scheduled_delete. This indicates that the blocks of the object have
been scheduled for deletion by the garbage collection daemon and
avoids other manifest resolution processes for the object from
scheduling unnecessary deletions.
{{/1.5.0-}}
{{#1.5.0+}}


Once the states of the eligible manifests have been updated to
pending_delete the manifest information for any pending_delete
manifest versions are collected into a CRDT set and the set is written
as a value to the riak-cs-gc bucket keyed by a time value
representing the current epoch time. If that write is
successful then the state for each manifest in the set is updated to
scheduled_delete. This indicates that the blocks of the object have
been scheduled for deletion by the garbage collection daemon and
avoids other manifest resolution processes for the object from
scheduling unnecessary deletions.


The use of the current epoch time as the basis for the keys in the
riak-cs-gc bucket is a change from previous versions of Riak
CS. Previously the current epoch time the value of gc.leeway_period
was used. This change means that the gc.leeway_period interval is
enforced by the garbage collection daemon process and not during the
synchronous portion of the garbage collection process. The benefit of
this is that the gc.leeway_period interval may be changed for objects
that have already been deleted or overwritten and allows system
operators to potentially reap objects sooner than originally specified
gc.leeway_period interval if it is necessary.
{{/1.5.0+}}


Once the manifest enters the scheduled_delete state it remains as a
tombstone for a minimum of gc.leeway_period.


After these actions have been attempted, the synchronous portion of the
garbage collection process is concluded and a response is returned to
the user who issued the request.





Garbage Collection Daemon


{{#1.5.0-}}


The asynchronous portion of the garbage collection process is
orchestrated by the garbage collection daemon that wakes up at
specific intervals and checks the riak-cs-gc bucket for any
scheduled entries that are eligible for reaping. The daemon enters a
working state and begins to delete the object blocks associated with
the eligible keys and continues until all keys have been processed.
The duration of this working state varies depending on the the number of
keys involved and the size of the objects they represent. The daemon
checks for messages after processing each object so that the work
interval may be manually interrupted if needed.


Deletion eligibility is determined using the key values in the
riak-cs-gc bucket. The keys in the riak-cs-gc bucket are
representations of epoch time values with random suffixes
appended. The purpose of the random suffix is to avoid hot keys when
the system is dealing with high volumes of deletes or overwrites. If
the current time according to the daemon is later than the time
represented by a key plus the leeway interval then the blocks for any
object manifests stored in that key are eligible for deletion and the
daemon attempts to delete them.


The daemon gathers the eligible keys for deletion by performing a
secondary index range query on the $key index with a lower bound of
time 0 and an upper bound of the current time. This allows the
daemon to collect all the keys that are eligible for deletion and have
some way of accounting for clock skew.


The daemon may also be configured to use more efficient paginated
index queries to gather the deletion-eligible keys by setting the
paginated_index configuration option to true. In this case the gc
daemon requests up to gc_batch_size keys from the GC bucket and
deletes the manifests associated with those keys before requesting the
next set of keys. The value for gc_batch_size may be configured and
the default value is 1000.


The daemon also has two options to add concurrency to the GC
process: concurrency can be added in order to use multiple GC worker
processes to operate on different groups of keys from the GC bucket or
it may be added to have multiple workers process the deletion of data
blocks associated with a particular manifest. The latter is discussed
more in the [[Object Block Reaping|Garbage
Collection#Object-Block-Reaping]] section below.


Once all of the object blocks represented by a key in the riak-cs-gc
bucket have been deleted, the key is deleted from the riak-cs-gc
bucket.
{{/1.5.0-}}
{{#1.5.0+}}


The asynchronous portion of the garbage collection process is
orchestrated by the garbage collection daemon that wakes up at specific
intervals and checks the riak-cs-gc bucket for any scheduled entries
that are eligible for reaping.


The daemon gathers the eligible keys for deletion by performing a
secondary index range query on the $key index with a lower bound of
time 0 and an upper bound of the current time. This allows the
daemon to collect all the keys that are eligible for deletion and have
some way of accounting for clock skew.


The daemon may also be configured to use more efficient paginated
index queries to gather the deletion-eligible keys by setting the
gc_paginated_indexes configuration option to true. In this case the gc
daemon requests up to gc_batch_size keys from the GC bucket and
deletes the manifests associated with those keys before requesting the
next set of keys.


The initial query performed by the garbage collection daemon may
return a subset of the eligible records if gc_paginated_indexes is
true or all eligible records otherwise.


The daemon starts up a worker process to carry out the actual reaping
of the records and passes it the batch of keys from the query of the
riak-cs-gc bucket. The value for each key received by the worker
process is a set containing one or more object manifests that must be
reaped.  The worker process removes the objects represented by each
object manifest in the set and then notifies the garbage collection
daemon that it has completed the task and is available for more work.


Meanwhile, the daemon repeats the process of querying the riak-cs-gc
bucket for more eligible records to delete and feeding the resulting
keys to worker processes until either the maximum number of worker
processes is reached (gc.max_workers) or there are no remaining
records eligible for removal.


Deletion eligibility is determined using the key values in the
riak-cs-gc bucket. The keys in the riak-cs-gc bucket are
representations of epoch time values with random suffixes
appended. The purpose of the random suffix is to avoid hot keys when
the system is dealing with high volumes of deletes or overwrites. If
the current time according to the daemon minus the leeway interval is
later than the time represented by a key then the blocks for any
object manifests stored at that key are eligible for deletion and the
daemon passes them off to a worker process that attempts to delete
them.


There are two levels of concurrency within the garbage collection
process. The first is the use of worker processes by the garbage
collection daemon to allow different groups of eligible records from
the garbage collection bucket to be processed independently.  The
second is that multiple workers processes can be employed in the
deletion of data blocks associated with a single object. The latter is
discussed more in the Object Block Reaping section below.


Once all of the objects represented by manifests stored for a
particular key in the riak-cs-gc bucket have been deleted, the key
is deleted from the riak-cs-gc bucket.
{{/1.5.0+}}



One Daemon per Cluster


We recommend using only one active garbage collection daemon in any
Riak CS cluster. If multiple daemons are currently being used, you can
disable the others by setting the gc.interval parameter to infinity
on those nodes. More information on how to do that can be found in the
[[CS configuration doc|Configuring Riak
CS#Garbage-Collection-Settings]].







Controlling the GC Daemon


The garbage collection daemon may be queried and manipulated using the
riak-cs-gc script. The script is installed to the bin or sbin
directory (depending on OS) along with the primary riak-cs script.
The available commands that can be used with the riak-cs-gc script are
listed below. Running the script with no command provided displays a
list of the available commands.


Command | Description
:——-|:———–
batch | Manually start garbage collection for a batch of eligible objects.{{#1.5.0+}} This command takes an optional argument to indicate a leeway time other than the currently configured gc.leeway_period time for the batch.{{/1.5.0+}}
status | Get the current status of the garbage collection daemon. The output is dependent on the current state of the daemon.
pause | Pause the current batch of object garbage collection. It has no effect if there is no active batch.
resume | Resume a paused garbage collection batch. It has no effect if there is no previously paused batch.
set-interval | Set or update the garbage collection interval. This setting uses a unit of seconds.
set-leeway | Set or update the garbage collection leeway time. This setting indicates how many seconds must elapse after an object is deleted or overwritten before the garbage collection system may reap the object. This setting uses a unit of seconds.{{1.5.0+}}


For more information, see our documentation on [[Riak CS command-line
tools]].





Manifest Updates


Manifest versions are retrieved and updated by the
riak_cs_manifest_fsm module with very few exceptions. This module
encapsulates the logic needed to retrieve the manifests, resolve any
conflicts due to siblings, and write updated manifest versions back to
Riak.





Object Block Reaping


The actual deletion of the blocks of an object is managed by the
riak_cs_delete_fsm module. It starts up a number of delete workers
(based on the configured delete concurrency) and passes off object
block information to those workers who in turn carry out the actual
delete operation for that block. The delete workers are instances of
the riak_cs_block_server module.


Once a worker deletes a block it notifies the delete fsm and waits for
notification about another block to delete.  Once all blocks of an
object are deleted then the delete fsm starts an instance of the
manifest fsm to handle deleting the manifest version from the object
manifest data structure and if there are no remaining manifest
versions to delete the entire object manifest data structure. The goal
of this final step is to avoid the cost of scanning through empty
manifest keys that could linger indefinitely.





Trade-offs



		A slow reader may have blocks GC’d as it is reading an object if
the read exceeds the leeway interval.


		There is some reliance on system clocks and this could lead to object
blocks being deleted earlier or later than their intended eligibility
window dictates due to clock skew.


		A network partition (or machine failure) lasting longer than
gc.leeway_period could cause a manifest to “come back to life” and
appear active, it would then continually serve requests whose blocks
could not be found.








Configuration


Riak CS’s garbage collection implementation gives the deployer several
knobs to adjust for fine-tuning system performace. More information
can be found in our documentation on [[configuring Riak CS|Configuring
Riak CS#Garbage-Collection-Settings]].





More Information


If you’d like more in-depth material on garbage collection in Riak CS,
we recommend consulting the Riak CS
wiki [https://github.com/basho/riak_cs/wiki/Object-Chunking-and-Garbage-Collection]






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/cookbooks/Monitoring-and-Metrics.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Monitoring and Metrics
project: riakcs
version: 1.2.0+
document: cookbook
toc: true
audience: intermediate
keywords: [operator, troubleshooting]




Riak CS provides operational statistics that can be useful for
monitoring through the Folsom statistics library, and initial probes for
analysis of the running system with
DTrace [http://dtrace.org/blogs/about/].



Operational Statistics


Much like Riak, Riak CS exposes statistics on critical operations that
are commonly used for monitoring, alerting, and trend analysis. These
statistics can be accessed through HTTP requests to the following
resource:


/riak-cs/stats




Note on signed requests

In order to access statistics from the /stats endpoint, you
must issue signed requests containing the admin user's access key and
secret key. The interface used by Riak CS is directly analogous to that
of Amazon S3. For more information on signed requests, see Amazon's
documentation.Unsigned requests will yield a 403 Forbidden error.



That will return a JSON object containing a series of latency histograms
and counters for a variety of operations, e.g. object_get and
block_put. Alongside each operation there will be a list showing the
count and rate for the operation, as well as a latency histogram showing
mean, median, and 95th and 99th percentiles:


<operation_name>: [MeterCount, MeterRate, LatencyMean, LatencyMedian, Latency95, Latency99]



You will see a list of that form for each of the following operations:


Operation | Description
:———|:———–
block_get | Total BLOCK GET operations performed
block_put | Total BLOCK GET operations performed
block_delete | Total BLOCK DELETE operations performed
service_get_buckets | Total GET BUCKETS operations performed
bucket_list_keys | Total BUCKET LIST KEYS operations performed
bucket_create | Total BUCKET CREATE operations performed
bucket_delete | Total BUCKET DELETE operations performed
bucket_get_acl | Total BUCKET GET ACL operations performed
bucket_put_acl | Total BUCKET PUT ACL operations performed
object_get | Total GET operations performed
object_put | Total PUT operations performed
object_head | Total OBJECT HEAD operations performed
object_delete | Total OBJECT DELETE operations performed
object_get_acl | Total OBJECT GET ACL operations performed
object_put_acl | Total OBJECT PUT ACL operations performed





DTrace Probes


Riak CS is built with some probes for use with
[[DTrace|http://dtrace.org/blogs/about/]] to inspect certain operations
in the live system, which can be helpful in diagnosing issues.



Usage Examples


The following are examples of using DTrace for inspecting various
components of a running Riak CS installation.



Trace User Object Requests


dtrace -qn 'erlang*:::user_trace* /arg2 == 703/ {printf("pid %s: mod %s op %s: user %s bucket/file %s\n", copyinstr(arg0), copyinstr(arg6), copyinstr(arg7), copyinstr(arg8), copyinstr(arg9));}'






Trace Webmachine Resource Execution


dtrace -qn 'erlang*:::user_trace* /arg2 == 705/ {printf("pid %s: %s:%s\n", copyinstr(arg0), copyinstr(arg6), copyinstr(arg7));}'




Note on DTrace Support

Work on packaging of Riak CS for SmartOS and other operating systems
with DTrace support is ongoing with the goal of providing enhanced
ability to diagnose low-level issues in instances of Riak CS running on
such operating systems.









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/cookbooks/Authentication.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Authentication
project: riakcs
version: 1.2.0+
document: cookbook
toc: true
audience: intermediate
keywords: [operator, authentication]





Authentication Options



		S3 Signature Authentication



		Module name: riak_cs_s3_auth


		Documentation [http://docs.aws.amazon.com/AmazonS3/latest/dev/RESTAuthentication.html]








		Keystone Authentication



		Module name: riak-cs_keystone_auth


		Documentation [http://docs.openstack.org/api/openstack-identity-service/2.0/content/index.html]








		S3 Passthru Authentication



		Module name: riak_cs_s3_passthru_auth





		This module requires a valid user key_id to be included in the
Authorization header value, but no signature is required. For
example, a valid header using this authentication module would look
like this: Authorization: AWS 4REM9H9ZKMXW-DZDC8RV.


Warning: This module is only intended for use in development or
testing scenarios.














Selecting an authentication method is done by adding or changing the
auth_module key in the Riak CS riak-cs.conf file, or the old-style
advanced.config or app.config files in the riak_cs section. For example,
to instruct Riak CS to use S3-style request signing as the means of
authentication, ensure the following is contained in your configuration file:


auth_module = riak_cs_s3_auth



{riak_cs, [
           %% Other configs
           {auth_module, riak_cs_s3_auth},
           %% Other configs
          ]}



{riak_cs, [
           %% Other configs
           {auth_module, riak_cs_s3_auth},
           %% Other configs
          ]}



S3-style authentication is used by default.





S3 Authentication



Signing and Authenticating REST Requests


The primary authentication scheme available to use with Riak CS is the S3
authentication scheme. A signature is calculated using several elements from
each request and the user’s key_id and key_secret. This signature is
included in the Authorization header of the request. Once a request is
received by the server, the server also calculates the signature for the
request and compares the result with the signature presented in then
Authorization header. If they match then the request is authenticated;
otherwise, the authentication fails.


Full details are available in the S3 authentication scheme
documentation [http://docs.amazonwebservices.com/AmazonS3/latest/dev/RESTAuthentication.html].





Query String Authentication


Riak CS also supports authentication using a query parameter. This
allows issuing of pre-signed requests that can be used to grant public
access to private Riak CS data. It also supports an expiry timestamp so
that the pre-signed URL can be invalidated after a certain period of
time.


The signature in the query string secures the request and you can
specify any future expiration time in epoch or UNIX time.



		Create a query


		Specify an expiration time for the query


		Sign it with your signature


		Place the data in an HTTP request


		Distribute the request to a user or embed the request in a web page






Query String Parameters


Parameter | Description | Data type
:———|:————|:———
AWSAccessKeyId | Your Riak CS Access Key ID | string
Expires | The time when the signature expires, specified as the number of seconds since the epoch | integer
Signature | The URL encoding of the Base64 encoding of the HMAC-SHA1 of StringToSign | string





Example


For example, a query URL is similar to the following example.


http://bucket.data.basho.com/document?AWSAccessKeyId=8EE3UE-UMW1YTPMBC3EB&Expires=1177363698&Signature=vjSAMPLENmGa%2ByT272YEAiv4%3D










Keystone Authentication


More information on using Keystone for authentication with Riak CS can
be found in [[using Riak CS with Keystone]].






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/cookbooks/MDC-Overview.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Riak CS Multi-Datacenter Overview
project: riakcs
version: 1.3.0+
document: cookbook
toc: true
audience: intermediate
keywords: [operator]
moved: {
‘1.5.2-‘: ‘riakcs:/cookbooks/MDC-Overview’
}





Riak CS Enterprise


Riak CS Enterprise extends Riak CS with Multi-Datacenter Replication,
monitoring, and 24×7 support. Customers may use Multi-Datacenter
Replication to serve global traffic, create availability zones, maintain
active backups, or meet disaster recovery and regulatory requirements.
Multi-Datacenter Replication can be used in two or more sites, and data
can be replicated across datacenters using realtime or fullsync
synchronization.


If you are interested, sign up for a [[developer
trial|http://info.basho.com/RiakCS1.1_DeveloperTrialRequest.html]] of
Riak CS Enterprise or [[contact us|http://basho.com/contact/]] for more
information.



Riak CS Enterprise requires a separate download

Please note that Riak CS Enterprise requires a download separate from
the open-source Riak CS, which will not work in conjunction with Riak
Enterprise.




Multi-Datacenter Replication


Multi-Datacenter Replication in Riak CS provides two modes of object
replication: fullsync and realtime sync. Data is streamed over a
TCP connection and Multi-Datacenter Replication in Riak CS has support
for SSL so that data can be securely replicated between sites.


In Riak CS, large objects are broken into blocks and streamed to the
underlying Riak cluster on write, where they are replicated for high
availability (3 replicas by default). A manifest for each object is
maintained so that blocks can be retrieved from the cluster and the full
object presented to clients. For multi-site replication in Riak CS,
global information for users, bucket information, and manifests are
streamed in realtime from a primary implementation (a source
cluster) to a secondary site (a sink cluster) so that global state
is maintained across locations. Objects can then be replicated in either
fullsync or realtime sync mode.





Fullsync Mode


In a fullsync operation, objects are replicated from a primary Riak CS
implementation to a secondary site on a configurable interval (the
default is 6 hours). In fullsync replication, each cluster computes a
hash for each key’s block value. Key/block pairs are compared and the
primary site streams any missing blocks or updates needed to the
secondary site.





Realtime Mode


Realtime sync is triggered when an update is sent from a client to a
primary Riak CS implementation. Once replicated in the first location,
the updated manifests are streamed in real time to the secondary site.
But what happens if a client requests an object from the secondary
cluster and not all of its blocks have been replicated to that cluster?
With Riak multi-site replication, the secondary cluster will request any
missing blocks via proxy_get from the primary cluster so that the
client can be served.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/cookbooks/System-Features.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: System Features
project: riakcs
version: 1.2.0+
document: cookbook
toc: false
index: true
audience: intermediate
keywords: [operator]




The following pages detail Riak CS’s system features.



		[[Access Control Lists]]


		[[Authentication]]


		[[Monitoring and Metrics]]


		[[Querying Access Statistics]]


		[[Querying Storage Statistics]]


		[[Usage and Billing Data]]







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/theory/concepts/strong-consistency.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Strong Consistency
project: riak
version: 2.0.0+
document: appendix
audience: intermediate
keyword: [appendix, concepts]





Note on commercial support

Riak's strong consistency feature is currently an open-source-only
feature and is not yet commercially supported.

Riak was originally designed as an [[eventually consistent|Eventual
Consistency]] system, fundamentally geared toward providing partition
(i.e. fault) tolerance and high read and write availability.


While this focus on high availability is a great fit for many data
storage needs, there are also many use cases for which strong data
consistency is more important than availability. Basho introduced a new
strong consistency option in version 2.0 to address these use cases.
In Riak, strong consistency is applied [[using bucket types]], which
enables developers to apply strong consistency guarantees on a per-key
basis.


Elsewhere in the documentation there are instructions for [[enabling
and using|Using Strong Consistency]] strong consistency, as well as a
[[guide for operators|Managing Strong Consistency]] looking to manage,
configure, and monitor strong consistency.



Strong vs. Eventual Consistency


If you successfully write a value to a key in a strongly consistent
system, the next successful read of that key is guaranteed to show that
write. A client will never see out-of-date values. The drawback is that
some operations may fail if an insufficient number of object replicas
are available. More on this in the section on [[trade-offs|Strong
Consistency#Trade-offs]].


In an eventually consistent system, on the other hand, a read may return
an out-of-date value, particularly during system or network failures.
The advantage of this approach is that reads and writes can succeed even
when a cluster is experiencing significant service degradation.



Example


Building on the example presented in the [[eventual consistency]] doc,
imagine that information about who manages Manchester United is stored
in Riak, in the key manchester-manager. In the eventual consistency
example, the value associated with this key was originally
David Moyes, meaning that that was the first successful write to that
key. But then Louis van Gaal became Man U’s manager, and a write was
executed to change the value of manchester-manager.


Now imagine that this write failed on one node in a multi-node cluster.
Thus, all nodes report that the value of manchester-manager is Louis van Gaal except for one. On the errant node, the value of the
manchester-manager key is still David Moyes. An eventually
consistent system is one in which a get request will most likely return
Louis van Gaal but could return the outdated value David Moyes.


In a strongly consistent system, conversely, any successful read on
manchester-manager will return Louis van Gaal and never David Moyes.
Reads will return Louis van Gaal every single time until Man U gets a new
manager and someone performs a successful write to manchester-manager
to change its value.


It might also be useful to imagine it a bit more abstractly. The
following causal sequence would characterize a strongly consistent
system:



		The value of the key k is set to v


		All successful reads on k return v


		The value of k is changed to v2


		All successful reads on k return v2


		And so forth





At no point in time does this system return an out-of-date value.


The following sequence could characterize an eventually consistent
system:



		A write is made that sets the value of the key k to v


		Nearly all reads to k return v, but a small percentage return
not found


		A write to k changes the value to v2


		Nearly all reads to k now return v2, but a small number return
the outdated v (or even not found) because the newer value hasn’t
yet been replicated to all nodes










Making the Strong vs. Eventual Decision


The first system described above may sound like the undisputed champion,
and the second system undesirable. However:



		Reads and writes on the first system will often be slower—if only
by a few milliseconds—because the system needs to manage reads and
writes more carefully. If performance is of primary concern, the
first system might not be worth the sacrifice.


		Reads and writes on the first system may fail entirely if enough
servers are unavailable. If high availability is the top priority,
then the second system has a significant advantage.





So when deciding whether to use strong consistency in Riak, the
following question needs to be asked:



For the specific use case at hand, is it better for reads to fail than to return a potentially out-of-date value?


If the answer is yes, then you should seriously consider using Riak in a
strongly consistent way for the data that demands it, while bearing in
mind that other data can still be stored in Riak in an eventually
consistent way.







Trade-offs


Using Riak in a strongly consistent fashion comes with two unavoidable
trade-offs:



		Less availability


		Slightly slower performance





Strongly consistent operations are necessarily less highly available
than eventually consistent operations because they require a quorum
of available object replicas to succeed. Quorum is defined as N / 2 + 1,
or n_val / 2 + 1. If N is set to 7, at least 4 object replicas must be
available, 2 must be available if N=3, etc.


If there is a network partition that leaves less than a quorum of object
replicas available within an ensemble, strongly consistent operations
against the keys managed by that ensemble will fail.


Nonetheless, consistent operations do provide a great deal of fault
tolerance. Consistent operations can still succeed when a minority of
replicas in each ensemble can be offline, faulty, or unreachable. In
other words, strongly consistent operations will succeed as long as
quorum is maintained. A fuller discussion can be found in the
[[operations|Managing Strong Consistency#Fault-Tolerance]]
documentation.


A second trade-off regards performance. Riak’s implementation of strong
consistency involves a complex [[consensus subsystem|Strong
Consistency#Implementation-Details]] that typically requires more
communication between Riak nodes than eventually consistent operations,
which can entail a performance hit of varying proportions, depending on
a variety of factors.


Ways to address this issue can be found in [[strong consistency and
performance|Managing Strong Consistency#Performance]].






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/cookbooks/Querying-Storage-Statistics.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Querying Storage Statistics
project: riakcs
version: 1.2.0+
document: cookbook
toc: true
audience: intermediate
keywords: [operator, troubleshooting]




Storage statistics are tracked on a per-user basis, as rollups for
slices of time. Querying these statistics is done via the
/riak-cs/usage/$USER_KEY_ID resource.



Note on terminology

In this and other documents in the Riak CS documentation, the terms
"storage" and "billing" are used interchangeably. The same goes for the
terms "usage" and access.

Note: Storage statistics are not calculated by default. Please read [[Usage and Billing Data]] for details about how to enable storage calculation archiving.


The basics of querying storage statistics, including the URL used and the parameters for specifying the time slice, are the same as they are for [[Querying Access Statistics]].


Please refer to the descriptions there for more details.


{{#1.3.0+}}The examples on this page assume that the admin_port has not
been configured to something other than default CS port of 8080.{{/1.3.0+}}



Enable Storage Results


Authentication Required
Queries to the usage resources described here must be authenticated as described in the
[[Authentication documentation|Authentication]]. Keep this in mind when using
curl. Authentication credentials for s3cmd or s3-curl can be specified in their respective configuration files.
The usage HTTP resource provides both access and storage statistics. Since each of these queries can be taxing in its own right, they are both omitted from the result by default:


{{#1.3.0-}}


curl http://localhost:8080/usage/8NK4FH2SGKJJM8JIP2GU



{{/1.3.0-}}
{{#1.3.0+}}


curl http://localhost:8080/riak-cs/usage/8NK4FH2SGKJJM8JIP2GU



{{/1.3.0+}}


Sample responses (reformatted for easy reading):


{
  "Access": "not_requested",
  "Storage": "not_requested"
}



<?xml version="1.0" encoding="UTF-8"?>
  <Usage>
    <Access>not_requested</Access>
    <Storage>not_requested</Storage>
  </Usage>



To request that storage results be included, pass the query parameter b to the resource (any true-ish value will work, including just the bare b, t, true, 1, y, and yes):


{{#1.3.0-}}


curl http://localhost:8080/usage/8NK4FH2SGKJJM8JIP2GU?b



{{/1.3.0-}}
{{#1.3.0+}}


curl http://localhost:8080/riak-cs/usage/8NK4FH2SGKJJM8JIP2GU?b



{{/1.3.0+}}


Sample responses (reformatted for easy reading):


{
  "Access": "not_requested",
  "Storage": [
    {
      "Errors":[]
    }
  ]
}



<?xml version="1.0" encoding="UTF-8"?>
  <Usage>
    <Access>not_requested</Access>
    <Storage>
      <Errors/>
    </Storage>
  </Usage>



There are no statistics included in this report because the default time span is now, which is not available in the archives.



S3 Object-style Access


As described in [[Querying Access Statistics]], these statistics are also available as S3 objects. To add storage statistics to the result, add the character b to the Options portion of the object’s path. For example, the following command would produce storage statistics in XML format:


{{#1.3.0-}}


s3cmd get s3://usage/8NK4FH2SGKJJM8JIP2GU/bx/20120315T140000Z/20120315T160000Z



{{/1.3.0-}}
{{#1.3.0+}}


s3cmd get s3://riak-cs/usage/8NK4FH2SGKJJM8JIP2GU/bx/20120315T140000Z/20120315T160000Z



{{/1.3.0+}}


You may also pass both b and a as Options to fetch both types of stats, as in:


{{#1.3.0-}}


s3cmd get s3://usage/8NK4FH2SGKJJM8JIP2GU/abx/20120315T140000Z/20120315T160000Z



{{/1.3.0-}}
{{#1.3.0+}}


s3cmd get s3://riak-cs/usage/8NK4FH2SGKJJM8JIP2GU/abx/20120315T140000Z/20120315T160000Z



{{/1.3.0+}}







Interpreting the Results


The result of the storage query is one or more “samples” for each time slice in which storage was calculated for the user. The sample will have a start time and end time describing what span the sample covers.


The other entries of each sample are the buckets the user owned during the sampled time. Bucket statistics are provided as rollups including each of the following fields:



		Objects — the number of active—not deleted and not incompletely uploaded—files in the bucket


		Bytes — the total of number of bytes stored in the files of the bucket





For example, a user that owns two buckets, foo and bar, where foo contains one 32MB file and bar contains 4 32MB files, would have a sample similar to the following.


Sample responses (reformatted for easy reading):


{
  "Access": "not_requested",
  "Storage": [
    {
      "StartTime": "20120316T123318Z",
      "EndTime": "20120316T123319Z",
      "foo": {
        "Objects": 1,
        "Bytes": 32505856
      },
      "bar": {
        "Objects": 4,
        "Bytes": 130023424
      }
    },
    {
      "Errors": []
    }
  ]
}



<?xml version="1.0" encoding="UTF-8"?>
  <Usage>
    <Access>not_requested</Access>
    <Storage>
      <Sample StartTime="20120316T123318Z" EndTime="20120316T123319Z">
        <Bucket name="hooray">
          <Objects>1</Objects>
          <Bytes>32505856</Bytes>
        </Bucket>
        <Bucket name="foo6">
          <Objects>4</Objects>
          <Bytes>130023424</Bytes>
        </Bucket>
      </Sample>
      <Errors/>
    </Storage>
  </Usage>



{{#1.4.4+}}


If any errors occurred during calculation for a bucket, the error will
be returned (e.g., timeout) instead of a bucket’s usage.


    {
      "StartTime": "20120316T123318Z",
      "EndTime": "20120316T123319Z",
      "baz": "{error,{timeout,[]}}",
      "bar": {
        "Objects": 4,
        "Bytes": 130023424
      }
    },



{{/1.4.4+}}






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/building/planning/system-planning.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Planning for a Riak System
project: riak
version: 0.10.0+
document: tutorials
toc: true
audience: intermediate
keywords: [planning, os]
moved: {
‘1.4.0-‘: ‘/tutorials/System-Planning’
}




Here are some steps and recommendations designing and configuring your
Riak cluster.



Backend


Backends are what Riak uses to persist data. Different backends have
strengths and weaknesses, so if you are unsure of which backend you
need, read through the [[Choosing a Backend]] tutorial.



		[[Bitcask]]


		[[LevelDB]]


		[[Memory]]


		[[Multi]]








Capacity


[[Cluster Capacity Planning]] outlines the various elements and
variables that should be considered when planning your Riak cluster.


If you have chosen [[Bitcask]] as your backend, you will also want to
run through [[Bitcask Capacity Planning]] to help you calculate a
reasonable capacity.





Operating Systems


We recommend deploying Riak on a mainstream Unix-like operating system.
Mainstream distributions have larger support communities, making
solutions to common problems easier to find. Basho provides binary
packages of Riak for the following distributions:



		Red Hat based: Red Hat Enterprise Linux, CentOS, Fedora Core


		Debian based: Debian, Ubuntu


		Solaris based: Sun Solaris, OpenSolaris








Software


If you use [[Basho’s Riak packages|http://downloads.basho.com/riak/]],
there is no need for additional software packages. If you build Riak
from source, you need to have Erlang installed on your systems. See
[[Installing Erlang]] for instruction on building and installing Erlang.





Hardware


Riak is designed to scale horizontally—i.e. to improve performance as
you add nodes—but it can always take advantage of more powerful
hardware. The following are some general hardware recommendations:



		Multi-core 64-bit CPU — Because Riak is built on Erlang, more
cores means more concurrency and thus greater performance. Riak also
performs certain numerical computations more efficiently on 64-bit
architectures.


		Minimum 4 GB RAM — More RAM means that more data can be held in
main memory, resulting in better read, write, and [[MapReduce|Using
MapReduce]] performance. Insufficient RAM will increase swap
utilization, causing performance degradation as memory operations
begin to contend with normal disk operations. You can use tools such
as our [[Bitcask calculator|Bitcask Capacity Planning]] to calculate
how much memory your nodes need to fit your dataset into Bitcask. Be
sure to read [[Cluster Capacity Planning]] for more information on
memory and disk usage. Note: If you plan on using [[Riak
Search|Using Search]], which relies on Solr (and thus a JVM
installation), we recommend a minimum of 6 GB of RAM.


		Multiple Fast Hard Disks (RAID and/or SSD) — Because many
operations in Riak are I/O bound, it is important to have fast hard
disks to achieve good performance. Configuring disks RAID0 for
increased read/write performance may be helpful as well.


		Fast Network (Gigabit +) — Riak uses the network heavily for
storage operations and for cluster status (ring-state gossip, handoff,
etc). Fast connections between nodes and between clients and the
cluster will improve performance.








Virtualization


Like most datastores, Riak will run best when not virtualized.
Virtual machines (VMs) can suffer from poor I/O and network performance,
depending on how they are configured and the environment in which they
run.  That said, here are some recommendations for running Riak in VPS
or cloud environments:



		Choose the Largest VM You can Afford — Better hardware means
better performance. Larger virtual machines are less likely to share
hardware resources with other customers’ virtual machines.


		Deploy VMs Within the Same Datacenter or Region Where Possible —
Some hosting providers allow you to choose the location of your
servers. Choosing to provision within the same datacenter or region
will usually reduce network latency and increase throughput, resulting
in greater performance.








Network Configuration / Load Balancing


There are at least two acceptable strategies for load-balancing requests
across your Riak cluster: virtual IPs and reverse-proxy.


For virtual IPs, we recommend using any of the various VIP
implementations. We don’t recommend VRRP behavior for the VIP because
you’ll lose the benefit of spreading client query load to all nodes in a
ring.


For reverse-proxy configurations (HTTP interface), any one of the
following should work adequately:



		haproxy


		squid


		varnish


		nginx


		lighttpd


		Apache









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/protocol-buffers/store-object.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: PBC Store Object
project: riak
version: 0.14.0+
document: api
toc: true
audience: advanced
keywords: [api, protocol-buffer]
group_by: “Object/Key Operations”
moved: {
‘1.4.0-‘: ‘/references/apis/protocol-buffers/PBC-Store-Object’
}




Stores an object under the specified location, as determined by the
intended [[key|Keys and Objects]], [[bucket|Buckets]], and [[bucket
type|Using Bucket Types]]. A bucket must always be specified (via
bucket), whereas key (key) and bucket type (type) are optional. If
no key is specified, Riak will assign a random key to the object. If no
[[bucket type|Using Bucket Types]] is assigned, Riak will assign
default, which means that the [[default bucket
configuration|Configuration Files#Default-Bucket-Properties]] will be
used.



Request


message RpbPutReq {
    required bytes bucket = 1;
    optional bytes key = 2;
    optional bytes vclock = 3;
    required RpbContent content = 4;
    optional uint32 w = 5;
    optional uint32 dw = 6;
    optional bool return_body = 7;
    optional uint32 pw = 8;
    optional bool if_not_modified = 9;
    optional bool if_none_match = 10;
    optional bool return_head = 11;
    optional uint32 timeout = 12;
    optional bool asis = 13;
    optional bool sloppy_quorum = 14;
    optional uint32 n_val = 15;
    optional bytes type = 16;
}






Required Parameters


Parameter | Description
:———|:———–
bucket | The name of the bucket, in bytes, in which the key/value is to reside
content | The new or updated contented of the object. Uses the same RpbContent message returned as part of an RpbGetResp message, documented in [[PBC Fetch Object]]





Optional Parameters



Note on defaults and special values

All of the optional parameters below have default values determined on a
per-bucket basis. Please refer to the documentation on setting bucket
properties for more information.Furthermore, you can assign an integer value to the w, dw, pr, and
pw, provided that that integer value is less than or equal to N, or
a special value denoting one (4294967295-1), quorum
(4294967295-2), all (4294967295-3), or default (4294967295-4).



Parameter | Description
:———|:———–
key | The key to create/update. If not specified, Riak will generate a random key and return that key as part of the requests’s
vclock | Opaque vector clock provided by an earlier RpbGetResp message. Omit if this is a new key or if you deliberately want to create a sibling.
w | Write quorum, i.e. how many replicas to write to before returning a successful response
dw | Durable write quorum, i.e. how many replicas to commit to durable storage before returning a successful response
return_body | Whether to return the contents of the now-stored object. Defaults to false.
pw | Primary write quorum, i.e. how many primary nodes must be up when the write is attempted
return_head | Return the metadata for the now-stored object without returning the value of the object
timeout | The timeout duration, in milliseconds, after which Riak will return an error message
sloppy_quorum | If this parameter is set to true, the next available node in the ring will accept requests if any primary node is unavailable
n_val | The number of nodes on which the value is to be stored


The if_not_modified, if_none_match, and asis parameters are set
only for messages sent between nodes in a Riak cluster and should not be
set by Riak clients.





Response


message RpbPutResp {
    repeated RpbContent contents = 1;
    optional bytes vclock = 2;
    optional bytes key = 3;
}



If return_body is set to true on the PUT request, the RpbPutResp
will contain the current object after the PUT completes, in contents,
as well as the object’s [[causal context]], in the vclock
field. The key will be sent only if the server generated a random key
for the object.


If return_body is not set and no key is generated, the PUT response
will be empty.





Example



Request


Hex      00 00 00 1C 0B 0A 01 62 12 01 6B 22 0F 0A 0D 7B
         22 66 6F 6F 22 3A 22 62 61 72 22 7D 28 02 38 01
Erlang <<0,0,0,28,11,10,1,98,18,1,107,34,15,10,13,123,34,102,111,111,34,58,34,
         98,97,114,34,125,40,2,56,1>>

RpbPutReq protoc decode:
bucket: "b"
key: "k"
content {
  value: "{"foo":"bar"}"
}
w: 2
return_body: true







Response


Hex      00 00 00 62 0C 0A 31 0A 0D 7B 22 66 6F 6F 22 3A
         22 62 61 72 22 7D 2A 16 31 63 61 79 6B 4F 44 39
         36 69 4E 41 68 6F 6D 79 65 56 6A 4F 59 43 38 AF
         B0 A3 DE 04 40 90 E7 18 12 2C 6B CE 61 60 60 60
         CA 60 CA 05 52 2C 2C E9 0C 86 19 4C 89 8C 79 AC
         0C 5A 21 B6 47 F9 20 C2 6C CD 49 AC 0D 77 7C A0
         12 FA 20 89 2C 00
Erlang <<0,0,0,98,12,10,49,10,13,123,34,102,111,111,34,58,34,98,97,114,34,125,
         42,22,49,99,97,121,107,79,68,57,54,105,78,65,104,111,109,121,101,86,
         106,79,89,67,56,175,176,163,222,4,64,144,231,24,18,44,107,206,97,96,
         96,96,202,96,202,5,82,44,44,233,12,134,25,76,137,140,121,172,12,90,33,
         182,71,249,32,194,108,205,73,172,13,119,124,160,18,250,32,137,44,0>>

RpbPutResp protoc decode:
contents {
  value: "{"foo":"bar"}"
  vtag: "1caykOD96iNAhomyeVjOYC"
  last_mod: 1271453743
  last_mod_usecs: 406416
}
vclock: "k316a```312`312005R,,351014206031L211214y254014Z!266G371
302l315I254rw|240022372 211,000"










          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/theory/concepts/capability-negotiation.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Capability Negotiation
project: riak
version: 1.4.8+
document: appendix
audience: advanced
keywords: [appendix, concepts, capability]




In versions of Riak prior to 1.2.0, [[rolling upgrades]] from an older version of Riak to a newer involved (a) disabling all new features associated with the newer version, and then (b) re-enabling those features once all nodes in the cluster were upgraded.


This process has been simplified in versions 1.2.0. Rolling upgrades no longer require you to disable and then re-enable features, as Riak versions 1.2.0 and later now feature a capability negotiation subsystem that automatically manages the addition of new features. Using this subsystem, nodes negotiate with each other to automatically determine which versions are supported on which nodes, which allows clusters to maintain normal operations even when divergent versions of Riak are present in the cluster.



Note on mixed versions

The capability negotiation subsystem is used to manage mixed versions of Riak within a cluster solely during rolling upgrades. We strongly recommend not running mixed versions during normal operations.


Configuration Changes


With the addition of automatic capability negotiation, there are some configuration settings that applied to versions of Riak prior to 1.2.0 that no longer need to be set if you are upgrading to a version later than 1.2.0. You can safely remove the following settings from each node’s app.config, as they will be ignored in newer versions of Riak:


Setting | Description
:——-|:———–
riak_core/legacy_vnode_routing | Uses the newer vnode routing layer when supported; otherwise defaults to the legacy routing protocol
riak_kv/legacy_keylisting | Uses coverage-based keylisting (introduced in Riak 1.0) when supported; otherwise defaults to the legacy keylisting behavior
riak_kv/listkeys_backpressure | Enables listkeys backpressure (introduced in Riak 1.1) when supported
riak_kv/mapred_2i_pipe | Use parallel secondary-index input to MapReduce jobs (introduced in Riak 1.1) when supported
riak_kv/mapred_system | Use riak_pipe for MapReduce jobs (introduced in Riak 1.0) when supported; otherwise default to the legacy luke system


Although is not recommended, you can override capability negotiation if you wish. This must be done on a per-component basis in each node’s app.config. You can either instruct Riak not to use capability negotiation for a specific component by setting use to false as in this example, which turns off capability negotiation for the listkeys_backpressure setting:


[{override_capability,
    [{listkeys_backpressure, [{use, false}]
}]



The following setting would both override the listkeys_backpressure setting, as in the example above, and override the mapreduce_system setting to use legacy if all nodes in the cluster support legacy. Otherwise, the built-in default setting will be used:


[{override_capability,
    [{listkeys_backpressure, [{use, false}]},
     {mapred_system,         [{prefer, legacy}]}]
}]







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/protocol-buffers/dt-store.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: PBC Data Type Store
project: riak
version: 2.0.0+
document: api
toc: true
audience: advanced
keywords: [api, protocol-buffer, datatypes]
group_by: “Object/Key Operations”




A request to update the value of a [[Riak Data Type|Using Data Types]].



Request


A DtUpdateReq message requires that you specify the location of the
Data Type in Riak, which operations are to be performed, and whether the
Data Type’s opaque context should be returned in the resulting
DtUpdateResp.


The DtOp value specifies which Data Type-specific operation is being
performed. More on that in the [[PBC Data Type Union]] document.


message DtUpdateReq {
    required bytes bucket = 1;
    optional bytes key    = 2;
    required bytes type   = 3;
    optional bytes context = 4;
    required DtOp  op = 5;
    optional uint32 w               =  6;
    optional uint32 dw              =  7;
    optional uint32 pw              =  8;
    optional bool   return_body     =  9 [default=false];
    optional uint32 timeout         = 10;
    optional bool   sloppy_quorum   = 11;
    optional uint32 n_val           = 12;
    optional bool   include_context = 13 [default=true];
}




Required Parameters


Parameter | Description
:———|:———–
bucket | The name of the bucket in which the Data Type is stored
type | The bucket type of the bucket in which the Data Type is stored, not the type of Data Type (i.e. counter, set, or map). Learn more about [[using bucket types]].


Also required is a DtOp message that specifies which operation is to
be performed, depending on whether the Data Type being updated is a
[[counter|PBC Data Type Counter Store]], [[set|PBC Data Type Set
Store]], or [[map|PBC Data Type Map Store]].


message DtOp {
    optional CounterOp counter_op = 1;
    optional SetOp     set_op     = 2;
    optional MapOp     map_op     = 3;
}






Optional Parameters



Note on defaults and special values

All of the optional parameters below have default values determined on a
per-bucket basis. Please refer to the documentation on setting bucket
properties for more information.Furthermore, you can assign an integer value to the w,
dw, and pw, provided that that integer value
is less than or equal to N, or a special value denoting
one (4294967295-1), quorum
(4294967295-2), all
(4294967295-3), or default
(4294967295-4).



Parameter | Description
:———|:———–
key | The key where the Data Type is stored. If not specified, Riak will assign a random key and return that key to the client is return_body is set to true.
context | The opaque binary “context” that informs Riak which version of a data type the client has seen, analogous to [[vector clocks]]
w | Write quorum, i.e. how many replicas to write to before returning a successful response
dw | Durable write quorum, i.e. how many replicas to commit to durable storage before returning a successful response
pw | Primary write quorum, i.e. how many primary nodes must be up when the write is attempted
return_body | Whether to return the contents of the stored object.
Defaults to false.
timeout | The timeout duration, in milliseconds, after which Riak will return an error message
sloppy_quorum | If this parameter is set to true, the next available node in the ring will accept requests if any primary node is unavailable
n_val | The number of nodes on which the value is to be stored
include_context | If return_body is set to true, the Data Type’s opaque “context” will be returned to the client when the DtUpdateResp is sent to the client.







Response


The response to a Data Type update request is analogous to
[[RpbPutResp|PBC Store Object]] for KV operations. If the
return_body is set in the update request message (as explained above),
the message will include the opaque context of the Data Type (context)
and the new value of the Data Type after the update has completed
(depending on whether the Data Type is a counter, set, or map). If no
key was specified in the update request, it will include the
Riak-assigned key (key).


message DtUpdateResp {
    optional bytes    key           = 1;
    optional bytes    context       = 2;
    optional sint64   counter_value = 3;
    repeated bytes    set_value     = 4;
    repeated MapEntry map_value     = 5;
}



Assuming return_body is set to true: if a counter is updated, the
response will include an integer as the counter_value; if a set is
updated, a list of binaries will be return as the set_value; and if a
map is updated, the returned map_value will be a MapEntry message.
That message takes the following form:


message MapEntry {
    required MapField field = 1;
    optional sint64   counter_value  = 2;
    repeated bytes    set_value      = 3;
    optional bytes    register_value = 4;
    optional bool     flag_value     = 5;
    repeated MapEntry map_value      = 6;
}







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/theory/concepts/Replication.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Replication
project: riak
version: 0.10.0+
document: appendix
toc: true
audience: intermediate
keywords: [appendix, concepts]
moved: {
‘1.4.0-‘: ‘/references/appendices/concepts/Replication’
}




Data replication is a core feature of Riak’s basic architecture. Riak
was designed to operate as a [[clustered|Clusters]] system containing
multiple Riak [[nodes|Riak Glossary#nodes]], which allows data to live
on multiple machines at once in case a node in the cluster goes down.


Replication is fundamental and automatic in Riak, providing security
that your data will still be there if a node in your Riak cluster goes
down. All data stored in Riak will be replicated to a number of nodes in
the cluster according to the N value (n_val) property set in a
bucket’s [[bucket type|Using Bucket Types]].



Replication across clusters

If you're interested in replication not just within a cluster but across
multiple clusters, we recommend checking out our documentation on Riak's
[[Multi-Datacenter Replications|Multi Data Center Replication:
Architecture]] capabilities.  

Selecting an N value (n_val)


By default, Riak chooses an n_val of 3 default. This means that data
stored in any bucket will be replicated to 3 different nodes. For this
to be effective, you need at least 3 nodes in your cluster.


The ideal value for N depends largely on your application and the shape
of your data. If your data is highly transient and can be reconstructed
easily by the application, choosing a lower N value will provide greater
performance. However, if you need high assurance that data is available
even after node failure, increasing the N value will help protect
against loss. How many nodes do you expect will fail at any one time?
Choose an N value larger than that and your data will still be
accessible when they go down.


The N value also affects the behavior of read (GET) and write (PUT)
requests. The tunable parameters you can submit with requests are bound
by the N value. For example, if N=3, the maximum read quorum (known as
“R”) you can request is also 3. If some nodes containing the data you
are requesting are down, an R value larger than the number of available
nodes with the data will cause the read to fail.





Setting the N value (n_val)


To change the N value for a bucket, you need to create a [[bucket
type|Using Bucket Types]] with n_val set to your desired value and
then make sure that the bucket bears that type.


In this example, we’ll set N to 2. First, we’ll create the bucket type
and call it n_val_of_2 and then activate that type:


riak-admin bucket-type create n_val_of_2 '{"props":{"n_val":2}}'
riak-admin bucket-type activate n_val_of_2



Now, any bucket that bears the type n_val_of_2 will propagate objects
to 2 nodes.



Note on changing the value of N

Changing the N value after a bucket has data in it is not
recommended. If you do change the value, especially if you
increase it, you might need to force read repair (more on that below).
Overwritten objects and newly stored objects will automatically be
replicated to the correct number of nodes.  



Changing the N value (n_val)


While raising the value of N for a bucket or object shouldn’t cause
problems, it’s important that you never lower N. If you do so, you can
wind up with dead, i.e. unreachable data. This can happen because
objects’ preflists, i.e. lists of [[vnodes]] responsible for the object,
can end up


Unreachable data is a problem because it can negatively impact coverage
queries, e.g. [[secondary index|Using Secondary Indexes]] and
[[MapReduce|Using MapReduce]] queries. Lowering an object or bucket’s
n_val will likely mean that objects that you would expect to
be returned from those queries will no longer be returned.





Active Anti-Entropy


Riak’s active anti-entropy (AAE) subsystem is a continuous background
process that compares and repairs any divergent or missing object
replicas. For more information on AAE, see the following documents:



		[[Active Anti-Entropy]]


		[[Managing Active Anti-Entropy]]








Read Repair


Read repair occurs when a successful read occurs—i.e. when the target
number of nodes have responded, as determined by R—but not all
replicas of the object agree on the value. There are two possibilities
here for the errant nodes:



		The node responded with a not found for the object, meaning that
it doesn’t have a copy.


		The node responded with a [[vector clock|Vector Clocks]] that is an
ancestor of the vector clock of the successful read.





When this situation occurs, Riak will force the errant nodes to update
the object’s value based on the value of the successful read.



Forcing Read Repair


When you increase the n_val of a bucket, you may start to see failed
read operations, especially if the R value you use is larger than the
number of replicas that originally stored the object. Forcing read
repair will solve this issue. Or if you have [[active
anti-entropy|Replication#active-anti-entropy]] enabled, your values will
eventually replicate as a background task.


For each object that fails read (or the whole bucket, if you like), read
the object using an R value less than or equal to the original number of
replicas. For example, if your original n_val was 3 and you increased
it to 5, perform your read operations with R=3 or less. This will cause
the nodes that do not have the object(s) yet to respond with not found, invoking read repair.







So what does N=3 really mean?


N=3 simply means that three copies of each piece of data will be stored
in the cluster. That is, three different partitions/vnodes will receive
copies of the data. There are no guarantees that the three replicas
will go to three separate physical nodes; however, the built-in
functions for determining where replicas go attempts to distribute the
data evenly.


As nodes are added and removed from the cluster, the ownership of
partitions changes and may result in an uneven distribution of the data.
On some rare occasions, Riak will also aggressively reshuffle ownership
of the partitions to achieve a more even balance.


For cases where the number of nodes is less than the N value, data will
likely be duplicated on some nodes. For example, with N=3 and 2 nodes in
the cluster, one node will likely have one replica, and the other node
will have two replicas.





Understanding replication by example


To better understand how data is replicated in Riak let’s take a look at
a put request for the bucket/key pair my_bucket/my_key. Specifically
we’ll focus on two parts of the request: routing an object to a set of
partitions and storing an object on a partition.



Routing an object to a set of partitions



		Assume we have 3 nodes


		Assume we store 3 replicas per object (N=3)


		Assume we have 8 partitions in our [ring|Clusters#The-Ring]





Note: It is not recommended that you use such a small ring size.
This is for demonstration purposes only.


With only 8 partitions our ring will look approximately as follows
(response from riak_core_ring_manager:get_my_ring/0 truncated for
clarity):


(dev1@127.0.0.1)3> {ok,Ring} = riak_core_ring_manager:get_my_ring().
[{0,'dev1@127.0.0.1'},
{182687704666362864775460604089535377456991567872, 'dev2@127.0.0.1'},
{365375409332725729550921208179070754913983135744, 'dev3@127.0.0.1'},
{548063113999088594326381812268606132370974703616, 'dev1@127.0.0.1'},
{730750818665451459101842416358141509827966271488, 'dev2@127.0.0.1'},
{913438523331814323877303020447676887284957839360, 'dev3@127.0.0.1'},
{1096126227998177188652763624537212264741949407232, 'dev1@127.0.0.1'},
{1278813932664540053428224228626747642198940975104, 'dev2@127.0.0.1'}]



The node handling this request hashes the bucket/key combination:


(dev1@127.0.0.1)4> DocIdx = riak_core_util:chash_key({<<"my_bucket">>, <<"my_key">>}).
<<183,28,67,173,80,128,26,94,190,198,65,15,27,243,135,127,121,101,255,96>>



The DocIdx hash is a 160-bit integer:


(dev1@127.0.0.1)5> <<I:160/integer>> = DocIdx.
<<183,28,67,173,80,128,26,94,190,198,65,15,27,243,135,127,121,101,255,96>>
(dev1@127.0.0.1)6> I.
1045375627425331784151332358177649483819648417632



The node looks up the hashed key in the ring, which returns a list of
preferred partitions for the given key.


(node1@127.0.0.1)> Preflist = riak_core_ring:preflist(DocIdx, Ring).
[{1096126227998177188652763624537212264741949407232, 'dev1@127.0.0.1'},
{1278813932664540053428224228626747642198940975104, 'dev2@127.0.0.1'},
{0, 'dev1@127.0.0.1'},
{182687704666362864775460604089535377456991567872, 'dev2@127.0.0.1'},
{365375409332725729550921208179070754913983135744, 'dev3@127.0.0.1'},
{548063113999088594326381812268606132370974703616, 'dev1@127.0.0.1'},
{730750818665451459101842416358141509827966271488, 'dev2@127.0.0.1'},
{913438523331814323877303020447676887284957839360, 'dev3@127.0.0.1'}]



The node chooses the first N partitions from the list. The remaining
partitions of the “preferred” list are retained as fallbacks to use if
any of the target partitions are unavailable.


(dev1@127.0.0.1)9> {Targets, Fallbacks} = lists:split(N, Preflist).
{[{1096126227998177188652763624537212264741949407232, 'dev1@127.0.0.1'},
{1278813932664540053428224228626747642198940975104, 'dev2@127.0.0.1'},
{0,'dev1@127.0.0.1'}],
[{182687704666362864775460604089535377456991567872, 'dev2@127.0.0.1'},
{365375409332725729550921208179070754913983135744, 'dev3@127.0.0.1'},
{548063113999088594326381812268606132370974703616, 'dev1@127.0.0.1'},
{730750818665451459101842416358141509827966271488, 'dev2@127.0.0.1'},
{913438523331814323877303020447676887284957839360, 'dev3@127.0.0.1'}]}



The partition information returned from the ring contains a partition
identifier and the parent node of that partition:


{1096126227998177188652763624537212264741949407232, 'dev1@127.0.0.1'}



The requesting node sends a message to each parent node with the object
and partition identifier (pseudocode for clarity):


'dev1@127.0.0.1' ! {put, Object, 1096126227998177188652763624537212264741949407232}
'dev2@127.0.0.1' ! {put, Object, 1278813932664540053428224228626747642198940975104}
'dev1@127.0.0.1' ! {put, Object, 0}



If any of the target partitions fail, the node sends the object to one
of the fallbacks. When the message is sent to the fallback node, the
message references the object and original partition identifier. For
example, if dev2@127.0.0.1 were unavailable, the requesting node would
then try each of the fallbacks. The fallbacks in this example are:


{182687704666362864775460604089535377456991567872, 'dev2@127.0.0.1'}
{365375409332725729550921208179070754913983135744, 'dev3@127.0.0.1'}
{548063113999088594326381812268606132370974703616, 'dev1@127.0.0.1'}



The next available fallback node would be dev3@127.0.0.1. The
requesting node would send a message to the fallback node with the
object and original partition identifier:


'dev3@127.0.0.1' ! {put, Object, 1278813932664540053428224228626747642198940975104}



Note that the partition identifier in the message is the same that was
originally sent to dev2@127.0.0.1 only this time it is being sent to
dev3@127.0.0.1. Even though dev3@127.0.0.1 is not the parent node of
that partition, it is smart enough to hold on to the object until
dev2@127.0.0.1 returns to the cluster.







Processing partition requests


Processing requests per partition is fairly simple. Each node runs a
single process (riak_kv_vnode_master) that distributes requests to
individual partition processes (riak_kv_vnode). The
riak_kv_vnode_master process maintains a list of partition identifiers
and corresponding partition processes. If a process does not exist for a
given partition identifier a new process is spawned to manage that
partition.


The riak_kv_vnode_master process treats all requests the same and
spawns partition processes as needed even when nodes receive requests
for partitions they do not own. When a partition’s parent node is
unavailable, requests are sent to fallback nodes (handoff). The
riak_kv_vnode_master process on the fallback node spawns a process to
manage the partition even though the partition does not belong to the
fallback node.


The individual partition processes perform hometests throughout the life
of the process. The hometest checks if the current node (node/0)
matches the parent node of the partition as defined in the ring. If the
process determines that the partition it is managing belongs on another
node (the parent node), it will attempt to contact that node. If that
parent node responds, the process will hand off any objects it has
processed for that partition and shut down. If that parent node does not
respond, the process will continue to manage that partition and check
the parent node again after a delay. The hometest is also run by
partition processes to account for changes in the ring, such as the
addition or removal of nodes to the cluster.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/running/handoff.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Handoff
project: riak
version: 2.0.4+
document: reference
audience: intermediate
keywords: [operator, handoff, admin]




Riak is a distributed system built with two essential goals in mind:



		fault tolerance, whereby a Riak cluster can withstand node
failure, network partitions, and other events in a way that does not
disrupt normal functioning, and


		scalability, whereby operators can gracefully add and remove nodes
to/from a Riak cluster





Both of these goals demand that Riak is able to either temporarily or
permanently re-assign responsibility for portions of the keyspace. That
re-assigning is referred to as intra-cluster handoff (or simply
handoff in our documentation).



Types of Handoff


Intra-cluster handoff typically takes one of two forms: hinted
handoff and ownership transfer.


Hinted handoff occurs when a [[vnode|Vnodes]] temporarily takes over
responsibility for some data and then returns that data to its original
“owner.” Imagine a three-node cluster with nodes A, B, and C. If node C
goes offline, e.g. during a network partition, nodes A and B will pick
up the slack, so to speak, assuming responsibility for node C’s
operations. When node C comes back online, responsibility will be handed
back to the original vnodes.


Ownership transfer is different because it is meant to be permanent.
It occurs when a [[vnode|Vnodes]] no longer belongs to
the node on which it’s running. This typically happens when the very
makeup of a cluster changes, e.g. when nodes are added or removed from
the cluster. In this case, responsibility for portions of the keyspace
needs to be fundamentally re-assigned.


Both types of handoff are handled automatically by Riak. Operators do
have the option, however, of enabling and disabling handoff on
particular nodes or all nodes and of configuring key aspects of Riak’s
handoff behavior. More information can be found below.





Configuring Handoff


A full listing of configurable parameters can be found in our
[[configuration files|Configuration Files#Intra-Cluster-Handoff]]
document. The sections below provide a more narrative description of
handoff configuration.



SSL


If you want to encrypt handoff behavior within a Riak cluster, you need
to provide each node with appropriate paths for an SSL certfile (and
potentially a keyfile). The configuration below would designate a
certfile at /ssl_dir/cert.pem and a keyfile at /ssl_dir/key.pem:


handoff.ssl.certfile = /ssl_dir/cert.pem
handoff.ssl.keyfile = /ssl_dir/key.pem



{riak_core, [
    %% Other configs
    {handoff_ssl_options, [
        {certfile, "/ssl_dir/cert.pem"},
        {keyfile, "/ssl_dir/key.pem"}
    ]},
    %% Other configs
]}






Port


You can set the port used by Riak for handoff-related interactions using
the handoff.port parameter. The default is 8099. This would change the
port to 9000:


handoff.port = 9000



{riak_core, [
    %% Other configs
    {handoff_port, 9000},
    %% Other configs
]}






Background Manager


Riak has an optional background manager that limits handoff activity in
the name of saving resources. The manager can help prevent system
response degradation during times of heavy load, when multiple
background tasks may contend for the same system resources. The
background manager is disabled by default. The following will enable it:


handoff.use_background_manager = on



{riak_kv, [
    %% Other configs
    {handoff_use_background_manager, on},
    %% Other configs
]}






Maximum Rejects


If you’re using Riak features such as [[Riak Search|Using Search]],
those subsystems can block handoff of primary key/value data, i.e. data
that you interact with via normal reads and writes.


The handoff.max_rejects setting enables you to set the maximum
duration that a [[vnode|Vnodes]] can be blocked by multiplying the
handoff.max_rejects setting by the value of
[[vnode_management_timer|Configuration Files#vnode_management_timer]].
Thus, if you set handoff.max_rejects to 10 and
vnode_management_timer to 5 seconds (i.e. 5s), non-K/V subsystems
can block K/V handoff for a maximum of 50 seconds. The default for
handoff.max_rejects is 6, while the default for
vnode_management_timer is 10s. This would set max_rejects to 10:


handoff.max_rejects = 10



{riak_kv, [
    %% Other configs
    {handoff_rejected_max, 10},
    %% Other configs
]}






Transfer Limit


You can adjust the number of node-to-node transfers (which includes
handoff) using the transfer_limit parameter. The default is 2. Setting
this higher will increase node-to-node communication but at the expense
of higher resource intensity. This would set transfer_limit to 5:


transfer_limit = 5



{riak_core, [
    %% Other configs
    {handoff_concurrency, 5},
    %% Other configs
]}








Enabling and Disabling Handoff


Handoff can be enabled and disabled in two ways: via configuration or
on the command line.



Enabling and Disabling via Configuration


You can enable and disable both outbound and inbound handoff on a node
using the handoff.outbound and handoff.inbound settings,
respectively. Both are enabled by default. The following would disable
both:


handoff.outbound = off
handoff.inbound = off



{riak_core, [
    %% Other configs
    {disable_outbound_handoff, true},
    {disable_inbound_handoff, true},
    %% Other configs
]}






Enabling and Disabling Through the Command Line


Riak also provides a [[handoff|Handoff#Other-Command-line-Tools]]
command-line interface for enabling and disabling handoff on the fly,
without needing to set your configuration and restart the node. To
enable handoff:


riak-admin handoff enable <inbound|outbound|both> <nodename>



You must specify two things when enabling handoff:



		whether you’d like to enable inbound handoff, outbound handoff, or
both


		the node to be targeted by the command (or all nodes)





You can select a target node using either the --node or the -n flag.
You can select a direction by specifying inbound, outbound, or
both. The following equivalent commands would enable outbound handoff
on the node riak3@100.0.0.1:


riak-admin handoff enable outbound --node riak3@100.0.0.1
riak-admin handoff enable outbound -n riak3@100.0.0.1



These two equivalent commands would enable inbound handoff on the node
riak5@100.0.0.1:


riak-admin handoff enable inbound --node riak5@100.0.0.1
riak-admin handoff enable inbound -n riak5@127.0.0.1



Alternatively, you can enable handoff on all nodes at the same time
using either the -a or --all flag. This command would enable both
inbound and outbound handoff on all nodes:


riak-admin handoff enable both --all



As for enabling handoff, the riak-admin disable command requires that
you specify both both a node or nodes to be targeted by the command and
whether you’d like to disbale inbound handoff, outbound handoff, or
both. The disable command works just like enable. This command
would disable all forms of handoff on all nodes, to give just one
example:


riak-admin handoff disable both --all








Other Command-line Tools


In addition to enabling and disabling handoff, the
[[riak-admin|riak-admin Command Line]] interface enables you to
retrieve a summary of handoff-related activity and other information.



summary


The summary command provides high-level information about active
handoffs in a cluster.


riak-admin handoff summary



This will return a table that will provide the following information
about each node in your cluster:


Header | Description
:——|:———–
Node | The name of the node
Total | Total number of active transfers throughout the entire cluster
Ownership | Total number of ownership exchanges
Resize | Total handoffs related to [[ring resizing]] operations
Hinted | Total number of hinted handoffs
Repair | Total repair-related handoffs. More information can be found here [https://github.com/basho/riak_core/commit/036e409eb83903315dd43a37c7a93c9256863807].





details


This command provides information only about active transfers.


riak-admin handoff details



If no transfers are currently underway, this command will output No ongoing transfers. Otherwise, you will something like this:





config


This command displays the values for handoff-specific [[configurable
parameters|Configuration Files#Intra-Cluster-Handoff]] on each node in
the cluster, including:



		transfer_limit


		handoff.outbound


		handoff.inbound


		handoff.port





Descriptions of those parameters can be found in the sections above.








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/protocol-buffers/set-bucket-type.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: PBC Set Bucket Type
project: riak
version: 2.0.0+
document: api
toc: true
audience: advanced
keywords: [api, protocol-buffer, bucket-type]
group_by: “Object/Key Operations”




Assigns a set of [[bucket properties|PBC Set Bucket Properties]] to a
[[bucket type|Using Bucket Types]].



Request


message RpbSetBucketTypeReq {
    required bytes type = 1;
    required RpbBucketProps props = 2;
}



The type field specifies the name of the bucket type as a binary. The
props field contains an [[RpbBucketProps|PBC Get Bucket Properties]].






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/theory/comparisons/couchbase.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Riak Compared to Couchbase
project: riak
version: 1.1.0+
document: appendix
toc: true
index: true
keywords: [comparisons, couchbase]
moved: {
‘1.4.0-‘: ‘/references/appendices/comparisons/Riak-Compared-to-Couchbase’
}




This is intended to be a brief, objective, and technical comparison of
Riak and Couchbase (i.e. Couchbase Server). The Couchbase version
described is 2.0. The Riak version described is Riak 2.x. If you feel
this comparison is unfaithful for whatever reason, please submit an issue [https://github.com/basho/basho_docs/issues/new]
or send an email to docs@basho.com.



At A Very High Level



		Riak is Apache 2.0 [http://www.apache.org/licenses/LICENSE-2.0.html] licensed; according to Couchbase, there are two free versions of Couchbase: the open source version is Apache 2.0 licensed; Couchbase Server Community Edition (free version) is licensed under a community agreement [http://www.couchbase.com/agreement/community]


		Riak is written primarily in Erlang with some bits in C; Couchbase is written in Erlang and C/C++






Couchbase vs CouchDB

Keep in mind that Couchbase and CouchDB are two separate database
projects. CouchDB is a document database providing replication,
MapReduce and an HTTP API. Couchbase uses CouchDB as its backend,
"wrapping" it with advanced features like caching, and is designed to
be clustered.




Feature/Capability Comparison


The table below gives a high level comparison of Riak and Couchbase
features/capabilities. To keep this page relevant in the face of rapid
development on both sides, low-level details are found in links to the
online documentation for both Riak [http://docs.basho.com/] and
Couchbase [http://docs.couchbase.com/].


    <th WIDTH="15%">Feature/Capability</th>
    <th WIDTH="42%">Riak</th>
    <th WIDTH="43%">Couchbase</th>
</tr>
<tr>
    <td><strong>Data Model</strong></td>
    <td>Riak stores key/value pairs under [[keys|Keys and Objects]] in [[buckets]]. [[Using bucket types]] you can set bucket-level configurations for things like [[replication properties]]. In addition to basic [[key/value lookup|Key/Value Modeling]], Riak has a variety of features for discovering objects, including [[Riak Search|Using Search]] and [[secondary indexes|Using Secondary Indexes]].</td>
    <td>Couchbase is a JSON-based document datastore. Like other document datastores, records have no intrinsic relationships, and are stored in buckets. Value size is limited to 20Mbyte.
        <ul>
            <li>[[How Should I Store an Object?|http://www.couchbase.com/docs/couchbase-manual-2.0/couchbase-developing-bestpractices-objectstorage-how.html]]</li>
        </ul>
    </td>
</tr>
<tr>
    <td><strong>Storage Model</strong></td>
    <td>Riak has a modular, extensible local storage system that lets you plug in a backend store of your choice to suit your use case. The default backend is [[Bitcask]].
        <ul>
          <li>[[Riak Supported Storage Backends|Choosing a Backend]]</li>
        </ul>

    You can also write your own storage backend for Riak using our [[backend API|Backend API]].
    </td>
    <td>Couchbase 2.0 is largely memory-based, asynchronously persisting data using a CouchDB fork and C library "couchstore" (prior versions of Couchbase use the SQLite storage engine).
        <ul>
        <li>[[Persistence|http://www.couchbase.com/docs/couchbase-manual-2.0/couchbase-architecture-persistencedesign.html]]</li>
        <li>[[Couchbase File Format|https://github.com/couchbaselabs/couchstore/wiki/Format]]</li>
        </ul>
    </td>
</tr>
<tr>
    <td><strong>Data Access and APIs</strong></td>
    <td>Riak offers two primary interfaces (in addition to raw Erlang access):
        <ul>
        <li>[[Protocol Buffers|PBC API]] (strongly recommended)</li>
        <li>[[HTTP|HTTP API]]</li>
        </ul>
        Riak [[client libraries]] are wrappers around these APIs, and client support exists for dozens of languages. Basho currently has officially supported clients for [[Java|https://github.com/basho/riak-java-client]], [[Ruby|https://github.com/basho/riak-ruby-client]], [[Python|https://github.com/basho/riak-python-client]], and [[Erlang|https://github.com/basho/riak-erlang-client]].
        </td>
    <td>Couchbase provides drivers in several languages to access data through its binary memcached protocol. Couchbase also provides a REST API to monitor and manage a cluster (though it is not used to directly manage stored data).
        <ul>
            <li>[[Client Interface|http://www.couchbase.com/docs/couchbase-manual-2.0/couchbase-introduction-architecture-clientinterface.html]]</li>
            <li>[[Client-Libraries|http://www.couchbase.com/develop]]</li>
            <li>[[Management REST API|http://www.couchbase.com/docs/couchbase-manual-2.0/couchbase-admin-restapi.html]]</li>
        </ul>
 </td>
</tr>
<tr>
    <td><strong>Query Types and Queryability</strong></td>
    <td>There are currently five ways to query data in Riak:
        <ul>
        <li>Via [[primary key operations|The Basics]] (GET, PUT, DELETE, UPDATE)</li>
        <li>[[Using MapReduce]]</li>
        <li>[[Using secondary indexes]]</li>
        <li>[[Using Search]]</li>
        <li>[[Using Data Types]]</li>
        </ul>

    </td>
    <td>Couchbase also provides four query options
        <ul>
        <li>[[ID lookups|http://www.couchbase.com/docs/couchbase-manual-2.0/couchbase-developing-bestpractices-multiget.html]]</li>
        <li>[[MapReduce Views|http://www.couchbase.com/docs/couchbase-manual-2.0/couchbase-views-basics.html]]</li>
        <li>[[UnQL|http://www.couchbase.com/press-releases/unql-query-language]]</li>
        </ul>
        Hadoop support is also possible through a plugin that streams data to a Hadoop Distributed File System (HDFS) or Hive for processing.
        <ul>
        <li>[[Hadoop Connector|http://www.couchbase.com/develop/connectors/hadoop]]</li>
        <ul>
    </td>
</tr>
<tr>
    <td><strong>Data Versioning and Consistency</strong></td>
    <td> Riak uses a data structure called a vector clock to reason about causality and staleness of stored values. Vector clocks enable clients to always write to the database in exchange for consistency conflicts being resolved at read time by either application or client code. Vector clocks can be configured to store copies of a given datum based on size and age of said datum.   There is also an option to disable vector clocks and fall back to simple time-stamp based "last-write-wins".
        <ul>
          <li>[[Vector Clocks]]</li>
          <li>[[Why Vector Clocks Are Easy|http://basho.com/blog/technical/2010/01/29/why-vector-clocks-are-easy/]]</li>
          <li>[[Why Vector Clocks Are Hard|http://basho.com/blog/technical/2010/04/05/why-vector-clocks-are-hard/]]</li>
        </ul>
     </td>

    <td>Couchbase is strongly consistent within a datacenter, replicating data between nodes in a cluster for failover. Inter-datacenter replication follows an eventually consistent CouchDB replication model.

        Via CouchDB, documents are internally revisioned (stored in a "_rev" value). However, prior revisions will be removed on a file compaction operation, making them unreliable.

    <ul>
    <li>[[Couchbase Architecture|http://www.couchbase.com/docs/couchbase-manual-2.0/couchbase-architecture.html]]</li>
    <li>[[Internal Version Field|http://www.couchbase.com/docs/couchbase-manual-2.0/couchbase-views-datastore-fields.html]]</li>
    </ul>
</tr>
    <td><strong>Concurrency</strong></td>
    <td> In Riak, any node in the cluster can coordinate a read/write operation for any other node. Riak stresses availability for writes and reads, and puts the burden of resolution on the client at read time.
     </td>

    <td>Couchbase claims to be ACID-compliant on a per-item basis, but has no multi-operation transactions. Couchbase clients connect to a server list (or via a proxy) where keys are sharded across the nodes. Couchbase nodes inherit memcached's default (and recommended) connection limit of 10k.

    <ul>
    <li>[[Transaction and concurrency|http://www.couchbase.com/forums/thread/transaction-and-concurency]]</li>
    <li>[[Cluster Design|http://www.couchbase.com/docs/couchbase-manual-2.0/couchbase-architecture-clusterdesign.html]]</li>
    <li>[[Client-side Proxy|http://www.couchbase.com/docs/couchbase-manual-2.0/couchbase-deployment-standaloneproxy.html]]</li>
    </ul>

 </td>
</tr>
<tr>
    <td><strong>Replication</strong></td>
    <td>Riak's replication system is heavily influenced by the Dynamo Paper and Dr. Eric Brewer's CAP Theorem. Riak uses consistent hashing to replicate and distribute N copies of each value around a Riak cluster composed of any number of physical machines. Under the hood, Riak uses virtual nodes to handle the distribution and dynamic rebalancing of data, thus decoupling the data distribution from physical assets.
        <ul>
          <li>[[Replication]]</li>
          <li>[[Clustering|Clusters]]</li>
        </ul>

        The Riak APIs expose tunable consistency and availability parameters that let you select which level configuration is best for your use case. Replication is configurable at the bucket level when first storing data in Riak. Subsequent reads and writes to that data can have request-level parameters.
            <ul>
                <li>[[Reading, Writing, and Updating Data|Concepts#Reading-Writing-and-Updating-Data]]</li>
            </ul>

 </td>
 <td>Couchbase supports two types of replication.  For intra-datacenter clusters, Couchbase uses membase-style replication, which favors immediate consistency in the face of a network partition.  For multi-datacenter deployments, CouchDB's master-master replication is used.

        <ul>
        <li>[[CouchDB Replication|http://wiki.apache.org/couchdb/Replication]]</li>
        <li>[[Memcache Tap|http://code.google.com/p/memcached/wiki/Tap]]</li>
        <li>[[CouchDB, Couchbase, Membase|http://www.infoq.com/news/2012/05/couchdb-vs-couchbase-membase]]</li>

        </ul>
 </td>
</tr>
<tr>
    <td><strong>Scaling Out and In</strong></td>
    <td>Riak allows you to elastically grow and shrink your cluster while evenly balancing the load on each machine. No node in Riak is special or has any particular role. In other words, all nodes are masterless. When you add a physical machine to Riak, the cluster is made aware of its membership via gossiping of ring state. Once it's a member of the ring, it's assigned an equal percentage of the partitions and subsequently takes ownership of the data belonging to those partitions. The process for removing a machine is the inverse of this. Riak also ships with a comprehensive suite of command line tools to help make node operations simple and straightforward.

<ul>
    <li>[[Adding and Removing Nodes]]</li>
    <li>[[Command Line Tools]]</li>
</ul>
    </td>
    <td>Couchbase scales elastically by auto-sharding. They can be rebalanced to grow or shrink through the administrative interface.

    <ul>
    <li>[[Rebalancing|http://www.couchbase.com/docs/couchbase-manual-2.0/couchbase-admin-tasks-addremove.html]]</li>
    <li>[[Clone to Grow with Auto Sharding|http://www.couchbase.com/couchbase-server/features#clone_to_grow]]</li>
    </ul>
</td>
</tr>
<tr>
    <td><strong>Multi-Datacenter Replication and Awareness</strong></td>

    <td>Riak features two distinct types of replication. Users can replicate to any number of nodes in one cluster (which is usually contained within one datacenter over a LAN) using the Apache 2.0 licensed database. Riak Enterprise, Basho's commercial extension to Riak, is required for Multi-Datacenter deployments (meaning the ability to run active Riak clusters in N datacenters).

    <ul>
        <li><a href="http://basho.com/products/riak-enterprise/">Riak Enterprise</a></li>
    </ul>

    </td>
    <td>Couchbase 2.0 supports cross-datacenter replication (XDCR).

    <ul>
    <li>[[Stabilizing Couchbase Server 2.0|http://blog.couchbase.com/stabilizing-couchbase-server-2-dot-0]]</li>
    </ul>
</td>
</tr>
<tr>
    <td><strong>Graphical Monitoring/Admin Console</strong></td>
    <td>Riak ships with Riak Control, an open source graphical console for monitoring and managing Riak clusters.
        <ul>
            <li>[[Riak Control]]</li>
            <li>[[Introducing Riak Control|http://basho.com/blog/technical/2012/02/22/Riak-Control/]]
        </ul>
</td>
    <td>Couchbase provides a web-based monitoring/admin console.
        <ul>
            <li>[[Admin Wed Console|http://www.couchbase.com/docs/couchbase-manual-2.0/couchbase-admin-web-console.html]]</li>
            <li>[[Monitoring Couchbase|http://www.couchbase.com/docs/couchbase-manual-2.0/couchbase-monitoring.html]]</li>
        </ul>

 </td>
</tr>



    








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/running/logging.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Logging
project: riak
version: 2.0.0+
document: reference
audience: intermediate
keywords: [operator, logging, lager]




Logging in Riak is handled by a Basho-produced logging framework for
Erlang [http://www.erlang.org] called
lager [https://github.com/basho/lager]. lager provides a number of
configuration options that you can use to fine-tune your Riak cluster’s
logging output. A compact listing of parameters can be found in our
[[configuration files|Configuration Files#lager]] documentation. A more
thorough explanation of these options can be found in this document.



Log Directory


Riak’s log files are stored in a /log directory on each node. The
location of that directory differs from platform to platform. The table
below shows you where log files are stored on all supported operating
systems.


OS | Directory
:–|:———
Ubuntu, Debian, CentOS, RHEL | /var/log/riak
Solaris, OpenSolaris | /opt/riak/log
Source install and Mac OS X | ./log (where the . represents the root installation directory)





Log Files


Below is a list of files that can be found in each node’s /log
directory:


File | Significance
:—-|:————
console.log | Console log output
crash.log | Crash logs
erlang.log | Logs emitted by the Erlang VM on which Riak runs.
error.log | Common errors emitted by Riak.
run_erl.log | The log file for an Erlang process called run_erl. This file can typically be ignored.





Log Syntax


Riak logs tend to be structured like this:


<date> <time> [<level>] <PID> <prefix>: <message>



The date segment is structured YYYY-MM-DD, time is structured
hh:mm:ss.sss, level depends on which log levels are available in the
file you are looking at (consult the sections below), the PID is the
Erlang process identifier for the process in which the event occurred,
and the message prefix will often identify the Riak subsystem
involved, e.g. riak_ensemble_peer or alarm_handler (amongst many
other possibilities).


The exception to this syntax is in crash logs (stored in crash.log
files). For crash logs, the syntax tends to be along the following
lines:


<date> <time> =<report title>====
<message>



Here is an example crash report:


2014-10-17 15:56:38 =ERROR REPORT====
Error in process <0.4330.323> on node 'dev1@127.0.0.1' with exit value: ...






Log Files


In each node’s /log directory, you will see at least one of each of
the following:


File | Contents
:—-|:——–
console.log | General messages from all Riak subsystems
crash.log | Catastrophic events, such as node failures, running out of disk space, etc.
erlang.log | Events from the Erlang VM on which Riak runs
run_erl.log | The command-line arguments used when starting Riak



Log File Rotation


Riak maintains multiple separate files for console.log, crash.log,
erlang.log, and error.log, which are rotated as each file reaches
its maximum capacity of 100 KB. In each node’s /log directory, you may
see, for example, files name console.log, console.log.0,
console.log.1, and so on. Riak’s log rotation is somewhat non
traditional, as it does not always log to *.1 (e.g. erlang.log.1)
but rather to the oldest log file.


After, say, erlang.log.1 is filled up, the logging system will begin
writing to erlang.log.2, then erlang.log.3, and so on. When
erlang.log.5 is filled up, it will loop back to erlang.log.1.







SASL


SASL [http://www.erlang.org/doc/man/sasl_app.html] (System Architecture
Support Libraries) is Erlang’s built-in error logger. You can enable it
and disable it using the sasl parameter (which can be set to on or
off). It is disabled by default. The following would enable it:


sasl = on






Error Messages


By default, Riak stores error messages in ./log/error.log by default.
You can change this using the log.error.file parameter. Here is an
example, which uses the default:


log.error.file = ./log/error.log



By default, error messages are redirected into lager, i.e. the
log.error.redirect parameter is set to on. The following would
disable the redirect:


log.error.redirect = off



You can also throttle the number of error messages that are handled per
second. The default is 100.


log.error.messages_per_second = 100






Crash Logs


Riak crash logs are stored in ./log/crash.log by default. You can
change this using the log.crash.file parameter. This example uses the
default:


log.crash.file = ./log/crash.log



While crash logs are kept by default, i.e. the log.crash parameter is
set to on, you can disable crash logs like this:


log.crash = off




Crash Log Rotation


Like other Riak logs, crash logs are rotated. You can set the crash logs
to be rotated either when a certain size threshold is reached and/or at
designated times.


You can set the rotation time using the log.crash.rotation parameter.
The default is $D0, which rotates the logs every day at midnight. You
can also set the rotation to occur weekly, on specific days of the
month, etc. Complete documentation of the syntax can be found
here [https://github.com/basho/lager/blob/master/README.md#internal-log-rotation].
Below are some examples:



		$D0 — Every night at midnight


		$D23 — Every day at 23:00 (11 pm)


		$W0D20 — Every week on Sunday at 20:00 (8 pm)


		$M1D0 — On the first day of every month at midnight


		$M5D6 — On the fifth day of the month at 6:00 (6 am)





To set the maximum size of the crash log before it is rotated, use the
log.crash.size parameter. You can specify the size in KB, MB, etc. The
default is 10MB.





Other Crash Log Settings


The maximum size of individual crash log messages can be set using the
log.crash.maximum_message_size, using any size denomination you wish,
e.g. KB or MB  The default is 64 KB. The following would set that
maximum message size to 1 MB:


log.crash.maximum_message_size = 1MB








Syslog


Riak log output does not go to syslog by default, i.e. the log.syslog
setting is set to off by default. To enable syslog output:


log.syslog = on



If syslog output is enabled, you can choose a prefix to be appended to
each syslog message. The prefix is riak by default.


log.syslog.ident = riak




Syslog Level and Facility Level


If syslog is enabled, i.e. if log.syslog is set to on, you can
select the log level of syslog output from amongst the available levels,
which are listed in the table below. The default is info.



		alert


		critical


		debug


		emergency


		error


		info


		none


		notice


		warning





In addition to a log level, you must also select a facility
level [http://en.wikipedia.org/wiki/Syslog#Facility_levels] for syslog
messages amongst the available levels, which are listed in the table
below. The default is daemon.



		auth


		authpriv


		clock


		cron


		daemon


		ftp


		kern


		lpr


		mail


		news


		syslog


		user


		uucp





In addition to these options, you may also choose one of local0
through local7.







Console Logs


Riak console logs can be emitted to one of three places: to a log file
(you can choose the name and location of that file), to standard output,
or to neither. This is determined by the value that you give to the
log.console parameter, which gives you one of four options:



		file — Console logs will be emitted to a file. This is Riak’s
default behavior. The location of that file is determined by the
log.console.file parameter. The default location is
./log/console.log on an installation from [[source|Installing Riak
from Source]], but will differ on platform-specific installation,
e.g.  /var/log/riak on Ubuntu, Debian, CentOS, and RHEL or
/opt/riak/log on Solaris-based platforms.


		console — Console logs will be emitted to standard output, which
can be viewed by running the [[riak attach-direct|riak Command Line#attach-direct]] command


		both — Console logs will be emitted both to a file and to standard
output


		off — Console log messages will be disabled





In addition to the the placement of console logs, you can also choose
the severity of those messages using the log.console.level parameter.
The following four options are available:



		info (the default)


		debug


		warning


		error








Enabling and Disabling Debug Logging


If you’d like to enable debug logging on the current node, i.e. set the
console log level to debug, you can do so without restarting the node
by accessing the Erlang console directly using the [[riak attach|riak Command Line#attach]] command. Once you run this command and drop into
the console, enter the following:


lager:set_logleve(lager_file_backend, "/var/log/riak/console.log", debug).



You should replace the file location above (/var/log/riak/console.log)
with your platform-specific location, e.g. ./log/console.log for a
source installation. This location is specified by the
log.console.file parameter explained [[above|Logging#Console-Logs]].


If you’d like to enable debug logging on all nodes instead of just one
node, you can enter the Erlang console of any running by running riak attach and enter the following:


rp(rpc:multicall(lager, set_loglevel, [lager_file_backend, "/var/log/riak/console.log", debug])).



As before, use the appropriate log file location for your cluster.


At any time, you can set the log level back to info:


rp(rpc:multicall(lager, set_loglevel, [lager_file_backend, "/var/log/riak/console.log", info])).







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/protocol-buffers/get-client-id.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: PBC Get Client ID
project: riak
version: 0.14.0+
document: api
toc: true
audience: advanced
keywords: [api, protocol-buffer]
group_by: “Server Operations”
moved: {
‘1.4.0-‘: ‘/references/apis/protocol-buffers/PBC-Get-Client-ID’
}





Deprecation notice

The use of client IDs in conflict resolution is now deprecated in Riak.
If you are building or maintaining a Riak client that is intended to be
compatible with Riak 1.4 or later, you can safely ignore client IDs.

Get the client id used for this connection. Client ids are used for
conflict resolution and each unique actor in the system should be
assigned one.  A client id is assigned randomly when the socket is
connected and can be changed using [[Set Client ID|PBC Set Client ID]].



Request


Just the RpbGetClientIdReq message code. No request message defined.





Response


// Get ClientId Request - no message defined, just send RpbGetClientIdReq
message code
message RpbGetClientIdResp {
    required bytes client_id = 1; // Client id in use for this connection
}






Example


Request


Hex     00 00 00 01 03
Erlang  <<0,0,0,1,3>>



Response


Hex     00 00 00 07 04 0A 04 01 65 01 B5
Erlang <<0,0,0,7,4,10,4,1,101,1,181>>

RpbGetClientIdResp protoc decode:
client_id: "001e001265"







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/theory/comparisons/index.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Riak Comparisons
project: riak
version: 0.10.0+
document: appendix
toc: true
index: true
keywords: [comparisons]
moved: {
‘1.4.0-‘: ‘/references/appendices/comparisons’
}




The NoSQL space, as well as the database space in general, is growing
more and more crowded. Because of this, we often find ourselves
answering very high-level questions from developers, prospects, and
customers along the following lines:



		How does Riak compare to this database?


		What is the main difference between this database’s replication strategy and that of Riak?


		Which APIs are available in both systems?


		How does each system handle scaling, concurrency, and multi-datacenter replication?


		Which data models are supported by each system?





In light of these kinds of questions, we thought it would be worthwhile
to write very brief and objective comparisons to as many databases as
possible.



		[[Riak Compared to Cassandra]]


		[[Riak Compared to Couchbase]]


		[[Riak Compared to CouchDB]]


		[[Riak Compared to HBase]]


		[[Riak Compared to MongoDB]]


		[[Riak Compared to Neo4j]]


		[[Riak Compared to DynamoDB]]






Note on information changes

Data storage software is complicated and changes rapidly. We do the best
we can to keep up with changes in the NoSQL space, but if you think that
we've made an error, please kindly submit an issue
or notify us at docs@basho.com and we would be happy to
make any changes.


Slide Decks


Below is a sample of the slide decks used in presentations given by Riak
developers and developer advocates and members of the Riak Community at
conferences, meetups, and various other events worldwide. If you have a
slide deck to add, please fork the Riak Docs repo on GitHub [https://github.com/basho/basho_docs]
and do so.



		Choosing the Right NoSQL Database [http://www.slideshare.net/juokaz/choosing-the-right-nosql-database-4developers] — A whirlwind tour of a few NoSQL solutions, discussing the very different ways that they represent data and showcasing their unique strengths and weaknesses in various kinds of applications, as well as an overview of how new technologies can help to address today’s scaling challenges and what compromises must be made when leaving behind older systems.


		Rolling with Riak [http://www.slideshare.net/johnthethird/rolling-with-riak] — Overview of Riak’s NoSQL distributed key/value data store by John Lynch from Rigel Group.


		How Does Riak Compare to Cassandra? [http://www.slideshare.net/ukd1/how-does-riak-compare-to-cassandra-cassandra-london-user-group-july-2011] — A presentation about Riak and a quick comparison to Cassandra. Originally presented at the Cassandra London User Group in July 2011.









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/running/cluster-admin.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Cluster Administration
project: riak
version: 2.0.4+
document: reference
audience: beginner
keywords: [command-line, cluster-admin, cluster]




This document explains usage of the [[riak-admin cluster|riak-admin Command Line#cluster]] interface, which enables you to perform a wide
variety of cluster-level actions.



How Cluster Administration Works


Riak provides a multi-phased approach to cluster administration that
enables you to stage and review cluster-level changes prior to
committing them. This allows you to group multiple changes together,
such as adding multiple nodes at once, adding some nodes and removing
others, etc.


Enacting cluster-level changes typically follows this set of steps:



		Choose an action or set of actions, such as adding a node, removing
multiple nodes, etc. These actions will be staged rather than
executed immediately.


		Plan the changes using the [[cluster plan|Cluster Administration#plan]] command. This will return a list of staged
commands that you can review.


		Commit the changes using the [[cluster commit|Cluster Administration#commit]] command. This will execute the changes that
have been staged and reviewed.






Note on command names

Many of the commands available through the `riak-admin cluster`
interface are also available as self-standing commands. The `riak-admin
member-status` command is now the `riak-admin cluster status` command,
`riak-admin join` is now `riak-admin cluster join`, etc.We recommend using the riak-admin cluster interface over the older,
deprecated commands. You will receive a deprecation warning if you use
the older commands.






status


Displays a variety of information about the cluster.


riak-admin cluster status



This will return output like the following in a three-node cluster:


---- Cluster Status ----
Ring ready: true

+--------------------+------+-------+-----+-------+
|        node        |status| avail |ring |pending|
+--------------------+------+-------+-----+-------+
| (C) dev1@127.0.0.1 |valid |  up   | 34.4|  --   |
|     dev2@127.0.0.1 |valid |  up   | 32.8|  --   |
|     dev3@127.0.0.1 |valid |  up   | 32.8|  --   |
+--------------------+------+-------+-----+-------+



In the above output, Ring ready denotes whether or not the cluster
agrees on [[the ring|Clusters#The-Ring]], i.e. whether the cluster is
ready to begin taking requests.


The following information is then displayed for each node, by nodename
(in this case dev1@127.0.0.1, etc.):



		status — There are five possible values for status:
		valid — The node has begun participating in cluster operations


		leaving — The node is is currently unloading ownership of its
[[data partitions|Clusters#The-Ring]] to other nodes


		exiting — The node’s ownership transfers are complete and it is
currently shutting down


		joining — The node is in the process of joining the cluster but
but has not yet completed the join process


		down — The node is not currently responding








		avail — There are two possible values: up if the node is
available and taking requests and down! if the node is unavailable


		ring — What percentage of the Riak [[ring|Clusters#The-Ring]] the
node is responsible for


		pending — The number of pending transfers to or from the node





In addition, the cluster’s [[claimant node|Adding and Removing
Nodes#How-Cluster-Membership-Changes-Work]] node will have a (C) next
to it.





join


Joins the current node to another node in the cluster.


riak-admin cluster join <node>



You must specify a node to join to by nodename. You can join to any
node in the cluster. The following would join the current node to
riak1@127.0.0.1:


riak-admin cluster join riak1@127.0.0.1



Once a node joins, all of the operations necessary to establish
communication with all other nodes proceeds automatically.


Note: As with all cluster-level actions, the changes made when you
run the cluster join command will take effect only after you have both
planned the changes by running [[riak-admin cluster plan|riak-admin Command Line#cluster-plan]] and committed the changes by running
[[riak-admin cluster commit|riak-admin Command Line#cluster-commit]].
You can stage multiple joins before planning/committing.





leave


Instructs the current node to hand off its [[data
partitions|Clusters#The-Ring]], leave the cluster, and shut down.


riak-admin cluster leave



You can also instruct another node (by nodemane) to leave the cluster:


riak-admin cluster leave <node>



Note: As with all cluster-level actions, the changes made when you
run the cluster leave command will take effect only after you have
both planned the changes by running [[riak-admin cluster plan|riak-admin Command Line#cluster-plan]] and committed the changes
by running [[riak-admin cluster commit|riak-admin Command Line#cluster-commit]]. You can stage multiple leave command before
planning/committing.





force-remove


Removes another node from the cluster (by nodename) without first
handing off its [[data partitions|Clusters#The-Ring]]. This command is
designed for crashed, unrecoverable nodes and should be used with
caution.


riak-admin cluster force-remove <node>



Note: As with all cluster-level actions, the changes made when you
run the cluster force-remove command will take effect only after you
have both planned the changes by running [[riak-admin cluster plan|riak-admin Command Line#cluster-plan]] and committed the changes
by running [[riak-admin cluster commit|riak-admin Command Line#cluster-commit]]. You can stage multiple force-remove actions
before planning/committing.





replace


Instructs a node to transfer all of its [[data
partitions|Clusters#The-Ring]] to another node and then to leave the
cluster and shut down.


riak-admin cluster replace <node1> <node2>



Note: As with all cluster-level actions, the changes made when you
run the cluster replace command will take effect only after you have
both planned the changes by running [[riak-admin cluster plan|riak-admin Command Line#cluster-plan]] and committed the changes
by running [[riak-admin cluster commit|riak-admin Command Line#cluster-commit]]. You can stage multiple replace actions before
planning/committing.





force-replace


Reassigns all [[data partitions|Clusters#The-Ring]] owned by one node to
another node without first handing off data.


riak-admin force-replace <node_being_replaced> <replacement_node>



Once the data partitions have been reassigned, the node that is being
replaced will be removed from the cluster.


Note: As with all cluster-level actions, the changes made when you
run the cluster force-replace command will take effect only after you
have both planned the changes by running [[riak-admin cluster plan|riak-admin Command Line#cluster-plan]] and committed the changes
by running [[riak-admin cluster commit|riak-admin Command Line#cluster-commit]]. You can stage multiple force-replace actions
before planning/committing.





plan


Displays the currently staged cluster changes.


riak-admin cluster plan



If there is no current cluster plan, the output will be There are no staged changes. If there is a staged change (or changes), however, you
will see a detailed listing of what will take place upon commit, what
the cluster will look like afterward, etc. If a cluster leave
operation is staged in a three-node cluster, for example, the output
will look something like this:


=============================== Staged Changes ================================
Action         Details(s)
-------------------------------------------------------------------------------
leave          'dev2@127.0.0.1'
-------------------------------------------------------------------------------


NOTE: Applying these changes will result in 2 cluster transitions

###############################################################################
                         After cluster transition 1/2
###############################################################################

================================= Membership ==================================
Status     Ring    Pending    Node
-------------------------------------------------------------------------------
leaving    32.8%      0.0%    'dev2@127.0.0.1'
valid      34.4%     50.0%    'dev1@127.0.0.1'
valid      32.8%     50.0%    'dev3@127.0.0.1'
-------------------------------------------------------------------------------
Valid:2 / Leaving:1 / Exiting:0 / Joining:0 / Down:0

WARNING: Not all replicas will be on distinct nodes

Transfers resulting from cluster changes: 38
  6 transfers from 'dev1@127.0.0.1' to 'dev3@127.0.0.1'
  11 transfers from 'dev3@127.0.0.1' to 'dev1@127.0.0.1'
  5 transfers from 'dev2@127.0.0.1' to 'dev1@127.0.0.1'
  16 transfers from 'dev2@127.0.0.1' to 'dev3@127.0.0.1'

###############################################################################
                        After cluster transition 2/2
###############################################################################

================================= Membership ==================================
Status     Ring    Pending    Node
-------------------------------------------------------------------------------
valid      50.0%      --      'dev1@127.0.0.1'
valid      50.0%      --      'dev3@127.0.0.1'
-------------------------------------------------------------------------------
Valid:2 / Leaving:0 / Exiting:0 / Joining:0 / Down:0

WARNING: Not all replicas will be on distinct nodes



Notice that there are distinct sections of the output for each of the
transitions that the cluster will undergo, including warnings, planned
data transfers, etc.





commit


Commits the currently staged cluster changes. Staged cluster changes
must be reviewed using [[riak-admin cluster plan|Cluster Administration#plan]] prior to being committed.


riak-admin cluster commit






clear


Clears the currently staged cluster changes.


riak-admin cluster clear



Note: Running this command will also stop the current node in
addition to clearing any staged changes.





partitions


Prints primary, secondary, and stopped partition indices and IDs either
for the current node or for another, specified node. The following
prints that information for the current node:


riak-admin cluster partitions



This would print the partition information for a different node in the
cluster:


riak-admin cluster partitions --node=<node>



Partition information is contained in a table like this:


Partitions owned by 'dev1@127.0.0.1':
+---------+-------------------------------------------------+--+
|  type   |                      index                      |id|
+---------+-------------------------------------------------+--+
| primary |                        0                        |0 |
| primary | 91343852333181432387730302044767688728495783936 |4 |
| primary |182687704666362864775460604089535377456991567872 |8 |
|   ...   |                      ....                       |..|
| primary |1438665674247607560106752257205091097473808596992|63|
|secondary|                       --                        |--|
| stopped |                       --                        |--|
+---------+-------------------------------------------------+--+






partition-count


Displays the current partition count either for the whole cluster or for
a particular node. This would display the partition count for the
cluster:


riak-admin cluster partition-count



This would display the count for a node:


riak-admin cluster partition-count --node=<node>



When retrieving the partition count for a node, you’ll see a table like
this:


+--------------+----------+-----+
|     node     |partitions| pct |
+--------------+----------+-----+
|dev1@127.0.0.1|    22    | 34.4|
+--------------+----------+-----+



The partitions column displays the number of partitions claimed by the
node, while the pct column displays the percentage of the
[[ring|Clusters#The-Ring]] claimed.





partition


The cluster partition command enables you to convert partition IDs to
indexes and vice versa using the partition id and partition index
commands, respectively. Let’s say that you run the riak-admin cluster partitions command and see that you have a variety of partitions, one
of which has an index of
1004782375664995756265033322492444576013453623296. You can convert
that index to an ID like this:


riak-admin cluster partition index=1004782375664995756265033322492444576013453623296



Conversely, if you have a partition with an ID of 20, you can retrieve
the corresponding index:


riak-admin cluster partition id=20







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/protocol-buffers/reset-bucket-props.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: PBC Reset Bucket Properties
project: riak
version: 2.0.0+
document: api
toc: true
audience: advanced
keywords: [api, protocol-buffer]
group_by: “Object/Key Operations”




Request to reset the properties of a given bucket or bucket type.



Request


message RpbResetBucketReq {
    required bytes bucket = 1;
    optional bytes type = 2;
}



You must specify the name of the bucket (bucket) and optionally a
[[bucket type|Using Bucket Types]] using the type value. If you do not
specify a bucket type, the default bucket type will be used by Riak.





Response


Only the message code is returned.





Example


Request to reset the properties for the bucket friends:



Request


Hex      00 00 00 0A 1D 0A 07 66 72 69 65 6E 64 73
Erlang <<0,0,0,10,29,10,7,102,114,105,101,110,100,115>>

RpbResetBucketReq protoc decode:
bucket: "friends"







Response


Hex      00 00 00 01 1E
Erlang <<0,0,0,1,30>>

RpbResetBucketResp - only message code defined









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/theory/comparisons/neo4j.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Riak Compared to Neo4j
project: riak
version: 1.1.0+
document: appendix
toc: true
index: true
keywords: [comparisons, neo4j]
moved: {
‘1.4.0-‘: ‘/references/appendices/comparisons/Riak-Compared-to-Neo4j’
}




This document is intended as a brief, objective, and technical
comparison of Riak and Neo4j. If you feel this comparison is unfaithful
for whatever reason, please submit an issue [https://github.com/basho/basho_docs/issues/new]
or send an email to docs@basho.com.



High-Level Differences


Riak and Neo4j are meant for storing fundamentally different types of
data:



		Riak is primarily a key/value store with a variety of features included, e.g. [[Riak Data Types|Using Data Types]], [[Riak Search|Using Search]], [[secondary indexes|Using Secondary Indexes]], and more


		Neo4j is a graph database, designed to store and traverse a network of related information, e.g. social network-related data





In most cases, the needs of your application will clearly dictate
whether you should use a key/value store or a graph database, and in
many cases it may make sense to combine the two. An application like
Facebook, for example, might store user profile information, wall posts,
and images in a key/value database like Riak while storing information
about connections between friends in a graph database like Neo4j.





Scalability


Riak was built to scale elastically, meaning that you can scale your
cluster from one node to 100 nodes and beyond with ease. As you add
nodes to your cluster, Riak automatically takes care of redistributing
an equal share of the load to each server in your cluster. Likewise, if
you scale your cluster down in size, Riak takes care of evenly
re-apportioning the data from the removed node to the remaining nodes.
Information on [[adding nodes to Riak|Basic Configuration]] elsewhere in
our documentation.


In contrast, Neo4j was designed to run on one machine and contains no
built-in support for scaling to multiple machines. While it’s not
impossible to scale to multiple machines, your application must create
its own sharding layer and be able to cleanly divide the data and
coordinate all transactions. This can be a challenge, as graph databases
generally store randomly connected webs of data.





Data Model


Riak allows you to store semi-structured documents or objects of
varying sizes. Riak is equally adept at storing a user profile as JSON,
an image, a purchase order, or session information for a website. It
even enables you to interact with special [[data types]] with rules of
convergence built in. And for larger files like videos or MP3s you can
use Riak CS [http://docs.basho.com/riakcs/latest/].


In contrast, Neo4j is not a general purpose data storage system.
Instead, it stores data using nodes, relationships (imagine a line
connecting the nodes), and properties. You can associate a list of
properties on the node and the relationship. Properties are limited to
Java primitives (int, byte, float, etc.), Strings, or an array of
primitives and strings. Relationships are typed, allowing you to express
things like “PersonA KNOWS PersonB” or “PersonA IS_RELATED_TO PersonC.”





Conflicting Writes


Riak can detect when two processes try to update the same data with
conflicting information by means of a [[vector clocks]]. In a
distributed environment, this happens more often than you may think: a
client may update a cached version of an object, or a network split may
have caused a client to delay its write. Riak can detect both of these
cases, and uses vector clocks to determine which update should win, or
to bubble the conflicting versions (called siblings) up to the client,
where the application can choose which version wins, often with input
from the user. To illustrate this problem, imagine two people editing a
wiki at the same time.


In contrast, Neo4j supports configurable ACID transactions, similar to a
traditional RDBMS. This allows a client to update a section of the graph
in an isolated environment, hiding changes from other processes until
the transaction is committed. If multiple transactions try to modify the
same data, the Neo4j kernel will try to synchronize them. If
interdependencies between the transactions would cause a deadlock, this
will be detected and a corresponding exception will be thrown.



		Transactions in Neo4j [http://docs.neo4j.org/chunked/milestone/transactions.html]





Riak’s approach ensures that the data store is always write available
and that writes always succeed, even in the face of a network split or
hardware failure, so long as the client can reach at least one node in
the cluster. The tradeoff is that the client performing the read must do
a little extra work to resolve the conflict (which is the default
setting). Alternatively, you can task Riak with resolving object
conflicts on its own, although this is not recommended. More information
can be found in our documentation on [[conflict resolution]].


Neo4j’s approach prevents conflicts from happening in the first place.
The tradeoff is that the client performing the write must do a little
extra work to detect and retry a failed transaction, and, as previously
mentioned, the transaction can only affect data on a single machine.





Querying


Riak allows you to access your data using a simple key/value model or to
use additional features like [[secondary indexes|Using Secondary Indexes]]
or [[Riak Search|Using Search]] or to write your own custom Erlang
[[MapReduce|Using MapReduce]] operations.


Neo4j, on the other hand, excels at querying networks of information.
Again, drawing from the Facebook example above, a graph database would
make short work of finding all of the people who are friends of your
friends. In relational parlance, if your queries start on a single row
and explode into thousands of rows via recursive joins, then those
relations should likely be stored in a graph database.


Neo4j requires you to provide a starting node before you can perform any
queries or traversals. The starting node can be the result of a previous
traversal, or may be retrieved by using the integer ID of the node
generated by Neo4j. In this latter case, an application needs some way
to map a real world value, such as a username, to a node ID. Neo4j
currently supports tight integration with Lucene for this purpose, with
support for ACID transactions on operations that touch both Neo4j and
Lucene. Other than Lucene, any JTA compliant XA resource can participate
in Neo4j transactions.


More information can be found in the Neo4j manual [http://docs.neo4j.org].






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/running/stats-and-monitoring.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Statistics and Monitoring
project: riak
version: 1.2.0+
document: cookbook
toc: true
audience: intermediate
keywords: [operator, troubleshooting]
moved: {
‘1.4.0-‘: ‘/cookbooks/Statistics-and-Monitoring’,
‘1.4.0-2.0.0’: ‘/ops/running/monitoring/stats-and-monitoring’
}




Riak provides data related to current operating status, which includes
statistics in the form of counters and histograms. These statistics
are made available through the HTTP API via the [[/stats|HTTP Status]] endpoint, or through the [[riak-admin|riak-admin Command Line]] interface, in particular the stat and status commands.


This page presents the most commonly monitored and gathered
statistics, as well as numerous solutions for monitoring and gathering
statistics that our customers and community report using successfully
in Riak cluster environments. You can learn more about the specific
Riak statistics provided in the [[Inspecting a Node]] and [[HTTP
Status]] documentation.



System Metrics To Graph


Graphing general system metrics of Riak nodes will help with
diagnostics and early warnings of potential problems, as well as help
guide provisioning and scaling decisions.



		CPU (user/system/wait/idle)


		Processor Load


		Available Memory


		Available disk space


		Used file descriptors


		Swap Usage


		IOWait


		Read operations


		Write operations


		Network throughput


		Network errors





We also recommend tracking your system’s virtual and
writebacks. Things like massive flushes of dirty pages or steadily
climbing writeback volumes can indicate poor virtual memory tuning.
More information can be found here [https://www.kernel.org/doc/Documentation/sysctl/vm.txt] and in our
documentation on [[system tuning|System Performance
Tuning#Storage-and-File-System-Tuning]].





Riak Metrics to Graph


Riak metrics fall into several general categories:



		Throughput metrics


		Latency metrics


		Erlang resource usage metrics


		General Riak load/health metrics





If graphing all of the [[available Riak metrics|Inspecting a Node]] is
not practical, you should pick a minimum relevant subset from these
categories. Some of the most helpful metrics are discussed below.



Throughput Metrics


Graphing the throughput stats relevant to your use case is often
helpful for capacity planning and usage trend analysis. In addition,
it helps you establish an expected baseline – that way, you can
investigate unexpected spikes or dips in the throughput.  The
following stats are recorded for operations that happened during the
last minute.


Metric | Relevance | Operations (for the last minute)
:——–|:——–|:——————————–
node_gets | K/V | Reads coordinated by this node
node_puts | K/V | Writes coordinated by this node
vnode_counter_update | Data Types | Update Counters [http://docs.basho.com/riak/latest/dev/using/data-types/#Counters] operations coordinated by local vnodes
vnode_set_update | Data Types | Update Sets [http://docs.basho.com/riak/latest/dev/using/data-types/#Sets] operations coordinated by local vnodes
vnode_map_update | Data Types | Update Maps [http://docs.basho.com/riak/latest/dev/using/data-types/#Maps] operations coordinated by local vnodes
search_query_throughput_one | Search | Search queries on the node
search_index_throughtput_one | Search | Documents indexed by Search
consistent_gets | Strong Consistency | Consistent reads on this node
consistent_puts | Strong Consistency | Consistent writes on this node
vnode_index_reads | Secondary Indexes | Number of local replicas participating in secondary index reads


Note that there are no separate stats for updates to Flags or
Registers, as these are included in vnode_map_update.





Latency Metrics


As with the throughput metrics, keeping an eye on average (and max)
latency times will help detect usage patterns, and provide advanced
warnings for potential problems.



Note on FSM Time Stats

FSM Time Stats represent the amount of time in microseconds required
to traverse the GET or PUT Finite State Machine code, offering a
picture of general node health. From your application's perspective,
FSM Time effectively represents experienced latency. Mean, Median, and
95th-, 99th-, and 100th-percentile (Max) counters are displayed. These
are one-minute stats.

Metric | Also | Relevance | Latency (in microseconds)
:——|:—–|:———-|:————————-
node_get_fsm_time_mean | _median, _95, _99, _100 | K/V | Time between reception of client read request and subsequent response to client
node_put_fsm_time_mean | _median, _95, _99, _100 | K/V | Time between reception of client write request and subsequent response to client
object_counter_merge_time_mean | _median, _95, _99, _100  | Data Types | Time it takes to perform an Update Counter operation
object_set_merge_time_mean | _median, _95, _99, _100  | Data Types | Time it takes to perform an Update Set operation
object_map_merge_time_mean | _median, _95, _99, _100  | Data Types | Time it takes to perform an Update Map operation
search_query_latency_median | _min, _95, _99, _999, _max | Search | Search query latency
search_index_latency_median | _min, _95, _99, _999, _max | Search | Time it takes Search to index a new document
consistent_get_time_mean | _median, _95, _99, _100 | Strong Consistency | Strongly consistent read latency
consistent_put_time_mean | _median, _95, _99, _100 | Strong Consistency | Strongly consistent write latency





Erlang Resource Usage Metrics These are system metrics from the


perspective of the Erlang VM, measuring resources allocated and used
by Erlang.


Metric | Notes
:——|:————————-
sys_process_count | Number of processes currently running in the Erlang VM
memory_processes | Total amount of memory allocated for Erlang processes (in bytes)
memory_processes_used | Total amount of memory used by Erlang processes (in bytes)





General Riak Load/Health Metrics


These various stats give a picture of the general level of activity or
load on the Riak node at any given moment.


Metric | Also | Notes
:——|:—–|:——————
node_get_fsm_siblings_mean | _median, _95, _99, _100 | Number of siblings encountered during all GET operations by this node within the last minute. Watch for abnormally high sibling counts, especially max ones.
node_get_fsm_objsize_mean | _median, _95, _99, _100 | Object size encountered by this node within the last minute. Abnormally large objects (especially paired with high sibling counts) can indicate sibling explosion.
riak_search_vnodeq_mean | _median, _95, _99, _100 | Number of unprocessed messages in the vnode message queues of the Riak Search subsystem on this node in the last minute. The queues give you an idea of how backed up Solr is getting.
search_index_fail_one | | Number of “Failed to index document” errors Search encountered for the last minute
pbc_active | | Number of currently active protocol buffer connections
pbc_connect | | Number of new protocol buffer connections established during the last minute
read_repairs | | Number of read repair operations this node has coordinated in the last minute (determine baseline, watch for abnormal spikes)
list_fsm_active | | Number of List Keys FSMs currently active (should be 0)
node_get_fsm_rejected | | Number of GET FSMs actively being rejected by Sidejob’s overload protection
node_put_fsm_rejected | | Number of PUT FSMs actively being rejected by Sidejob’s overload protection







Command-line Interface


The [[riak-admin|riak-admin Command Line]] tool provides two
interfaces for retrieving statistics and other information: status
and stat.



status


Running the riak-admin status command will return all of the
currently available information from a running node.


riak-admin status



This will return a list of over 300 key/value pairs, like this:


1-minute stats for 'dev1@127.0.0.1'
-------------------------------------------
connected_nodes : ['dev2@127.0.0.1','dev3@127.0.0.1']
consistent_get_objsize_100 : 0
consistent_get_objsize_195 : 0
... etc ...



A comprehensive list of available stats can be found in the
[[Inspecting a Node|Inspecting a Node#riak-admin-status]] document.





stat


The riak-admin stat command is related to the riak-admin status
command but provides a more fine-grained interface for interacting with
stats and information. Full documentation of this command can be found
in the [[Inspecting a Node|Inspecting a Node#riak-admin-stat]] document.







Statistics and Monitoring Tools


There are many open source, self-hosted, and service-based solutions for
aggregating and analyzing statistics and log data for the purposes of
monitoring, alerting, and trend analysis on a Riak cluster. Some
solutions provide Riak-specific modules or plugins as noted.


The following are solutions which customers and community members have
reported success with when used for monitoring the operational status of
their Riak clusters. Community and open source projects are presented
along with commercial and hosted services.



Note on Riak 2.x Statistics Support

Many of the below tools were either created by third-parties or Basho engineers
for general usage, and have been passed to the community for further updates. As
such, many of the below only aggregate the statistics and messages that were
output by Riak 1.4.x.

Like all code under [Basho Labs](https://github.com/basho-labs/), the below
tools are "best effort" and have no dedicated Basho support. We both appreciate
and need your contribution to keep these tools stable and up to date. Please
open up a GitHub issue on the repository if you'd like to be a maintainer.

Look for banners calling out the tools that do support the full set of Riak 2.x
statistics!


Self-Hosted Monitoring Tools



Riaknostic


Riaknostic [http://riaknostic.basho.com] is a growing suite of
diagnostic checks that can be run against your Riak node to discover
common problems and recommend how to resolve them. These checks are
derived from the experience of the Basho Client Services Team as well as
numerous public discussions on the mailing list, IRC room, and other
online media.


Riaknostic integrates into the riak-admin command via a diag
subcommand, and is a great first step in the process of diagnosing and
troubleshooting issues on Riak nodes.





Riak Control


[[Riak Control]] is Basho’s REST-driven user-interface for managing Riak
clusters. It is designed to give you quick insight into the health of
your cluster and allow for easy management of nodes.


While Riak Control does not currently offer specific monitoring and
statistics aggregation or analysis functionality, it does offer features
which provide immediate insight into overall cluster health, node
status, and handoff operations.





collectd


collectd [http://collectd.org] gathers statistics about the system it
is running on and stores them. The statistics are then typically graphed
to find current performance bottlenecks, predict system load, and
analyze trends.





Ganglia


Ganglia [http://ganglia.info] is a monitoring system specifically
designed for large, high-performance groups of computers, such as
clusters and grids. Customers and community members using Riak have
reported success in using Ganglia to monitor Riak clusters.


A Riak Ganglia module [https://github.com/jnewland/gmond_python_modules/tree/master/riak/] for collecting statistics from
the Riak HTTP [[/stats|HTTP Status]] endpoint is also available.





Nagios



Tested and Verified Support for Riak 2.x Stats.

Nagios [http://www.nagios.org] is a monitoring and alerting solution
that can provide information on the status of Riak cluster nodes, in
addition to various types of alerting when particular events occur.
Nagios also offers logging and reporting of events and can be used for
identifying trends and capacity planning.


A collection of reusable Riak-specific scripts [https://github.com/basho/riak_nagios] are
available to the community for use with Nagios.





OpenTSDB


OpenTSDB [http://opentsdb.net] is a distributed, scalable Time Series Database
(TSDB) used to store, index, and serve metrics from various sources. It can
collect data at a large scale and graph these metrics on the fly.


A Riak collector for OpenTSDB [https://github.com/stumbleupon/tcollector/blob/master/collectors/0/riak.py] is available as part of
the tcollector framework [https://github.com/stumbleupon/tcollector].





Riemann


Riemann [http://aphyr.github.com/riemann/] uses a powerful stream
processing language to aggregate events from client agents running on
Riak nodes, and can help track trends or report on events as they occur.
Statistics can be gathered from your nodes and forwarded to a solution
such as Graphite for producing related graphs.


A Riemann Tools [https://github.com/aphyr/riemann.git] project
consisting of small programs for sending data to Riemann provides a
module specifically designed to read Riak statistics.





Zabbix



Tested and Verified Support for Riak 2.x Stats.

Zabbix [http://www.zabbix.com] is an open-source performance monitoring,
alerting, and graphing solution that can provide information on the state of
Riak cluster nodes.


A Zabbix plugin for Riak [https://github.com/basho/riak-zabbix] is available to get you started
monitoring Riak using Zabbix.







Hosted Service Monitoring Tools


The following are some commercial tools which Basho customers have
reported successfully using for statistics gathering and monitoring
within their Riak clusters.



Circonus


Circonus [http://circonus.com] provides organization-wide monitoring,
trend analysis, alerting, notifications, and dashboards. It can been
used to provide trend analysis and help with troubleshooting and
capacity planning in a Riak cluster environment.





New Relic



Tested and Verified Support for Riak 2.x Stats.

New Relic [http://newrelic.com] is a data analytics and visualization platform
that can provide information on the current and past states of Riak nodes and
visualizations of machine generated data such as log files.


A Riak New Relic Agent [https://github.com/basho/riak_newrelic] for collecting statistics from the Riak
HTTP [[/stats|HTTP Status]] endpoint is also available.





Splunk


Splunk [http://www.splunk.com] is available as downloadable software or
as a service, and provides tools for visualization of machine generated
data such as log files. It can be connected to Riak’s HTTP statistics
[[/stats|HTTP Status]] endpoint.


Splunk can be used to aggregate all Riak cluster node operational log
files, including operating system and Riak-specific logs and Riak
statistics data. These data are then available for real time graphing,
search, and other visualization ideal for troubleshooting complex issues
and spotting trends.









Summary


Riak exposes numerous forms of vital statistic information which can be
aggregated, monitored, analyzed, graphed, and reported on in a variety
of ways using numerous open source and commercial solutions.


If you use a solution not listed here with Riak and would like to
include it (or would otherwise like to update the information on this
page), feel free to fork the docs, add it in the appropriate section,
and send a pull request to the Riak
Docs [https://github.com/basho/basho_docs].





References



		[[Inspecting a Node]]


		Riaknostic [http://riaknostic.basho.com]


		[[Riak Control]]


		collectd [http://collectd.org]


		Ganglia [http://ganglia.info]


		Nagios [http://www.nagios.org]


		OpenTSDB [http://opentsdb.net]


		tcollector framework [https://github.com/stumbleupon/tcollector]


		Riemann [http://aphyr.github.com/riemann/]


		Riemann Github [https://github.com/aphyr/riemann]


		Zabbix [http://www.zabbix.com]


		Circonus [http://circonus.com]


		New Relic [http://newrelic.com]


		Splunk [http://www.splunk.com]


		Riak Docs on Github [https://github.com/basho/basho_docs]









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/protocol-buffers/set-client-id.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: PBC Set Client ID
project: riak
version: 0.14.0+
document: api
toc: true
audience: advanced
keywords: [api, protocol-buffer]
group_by: “Server Operations”
moved: {
‘1.4.0-‘: ‘/references/apis/protocol-buffers/PBC-Set-Client-ID’
}





Deprecation notice

The use of client IDs in conflict resolution is now deprecated in Riak.
If you are building or maintaining a Riak client that is intended to be
compatible with Riak 1.4 or later, you can safely ignore client IDs.

Set the client ID for this connection. A library may want to set the
client ID if it has a good way to uniquely identify actors across
reconnects. This will reduce vector clock bloat.



Request


message RpbSetClientIdReq {
    required bytes client_id = 1; // Client id to use for this connection
}






Response


Just the RpbSetClientIdResp message code.





Example


Request


Hex      00 00 00 07 05 0A 04 01 65 01 B6
Erlang <<0,0,0,7,5,10,4,1,101,1,182>>

RpbSetClientIdReq protoc decode:
client_id: "001e001266"




Response


Hex      00 00 00 01 06
Erlang <<0,0,0,1,6>>

RpbSetClientIdResp - only message code defined







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/theory/comparisons/cassandra.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Riak Compared to Cassandra
project: riak
version: 1.1.0+
document: appendix
toc: true
index: true
keywords: [comparisons, cassandra]
moved: {
‘1.4.0-‘: ‘/references/appendices/comparisons/Riak-Compared-to-Cassandra’
}




This is intended to be a brief, objective, and technical comparison of
Riak and Cassandra. The Cassandra version described is 1.2.x. The Riak
version described is Riak 2.x. If you feel this comparison is unfaithful
for whatever reason, please submit an
issue [https://github.com/basho/basho_docs/issues/new] or send an email
to docs@basho.com.



At A Very High Level



		Both Riak and Cassandra are Apache 2.0-licensed databases based on
Amazon’s Dynamo paper


		Riak is a faithful implementation of Dynamo, with the addition of
functionality like links, MapReduce, indexes, full-text Search.
Cassandra departs from the Dynamo paper slightly by omitting vector
clocks and moving from partition-based consistent hashing to key
ranges, while adding functionality like order-preserving partitioners
and range queries.


		Riak is written primarily in Erlang with some bits in C.
Cassandra is written in Java.








Feature/Capability Comparison


The table below provides a high-level comparison of Riak and Cassandra
features/capabilities. To keep this page relevant in the face of rapid
development on both sides, low-level details are found in links to Riak
and Cassandra online documentation.



    
        		Feature/Capability
        		Riak
        		Cassandra
    


    
        		Data Model
        		Riak stores key/value pairs under [[keys|Keys and Objects]] in [[buckets]]. [[Using bucket types]] you can set bucket-level configurations for things like [[replication properties]]. In addition to basic [[key/value lookup|Key/Value Modeling]], Riak has a variety of features for discovering objects, including [[Riak Search|Using Search]] and [[secondary indexes|Using Secondary Indexes]].
        
        		Cassandra's data model resembles column storage, consisting of Keyspaces, Column Families, and several other parameters.
            
                		[[Cassandra Data Model|http://www.datastax.com/docs/0.7/data_model/index]]


            


        
    


    
        		Storage Model
        		Riak has a modular, extensible local storage system that lets you plug in a backend store of your choice to suit your use case. The default backend is [[Bitcask]].
            
              		[[Riak Supported Storage Backends|Choosing a Backend]]


            


            You can also write your own storage backend for Riak using our [[backend API|Backend API]].
        
        		Cassandra's write path starts with a write to a commit log followed by a subsequent write to an in-memory structure called a memtable. Writes are then batched to a persistent table structure called a sorted string table (SST).
            
                		Commit Log


                		Memtable


                		SSTable Overview


                		About Writes


                		About Reads


            


        
    


    
        		Data Access and APIs
        		Riak offers two primary interfaces (in addition to raw Erlang access):
            
                		[[Protocol Buffers|PBC API]] (strongly recommended)


                		[[HTTP|HTTP API]]


            


            Riak [[client libraries]] are wrappers around these APIs, and client support exists for dozens of languages. Basho currently has officially supported clients for [[Java|https://github.com/basho/riak-java-client]], [[Ruby|https://github.com/basho/riak-ruby-client]], [[Python|https://github.com/basho/riak-python-client]], and [[Erlang|https://github.com/basho/riak-erlang-client]].
        
        		Cassandra provides various access methods including a Thrift API, CQL (Cassandra Query Language), and a command-line interface, as well as officially supported clients for Java, Python, and PHP.
            
                		Cassandra Client APIs


            


        
    


    
        		Query Types and Queryability
        		There are currently five ways to query data in Riak:
            
                		Via [[primary key operations|The Basics]] (GET, PUT, DELETE, UPDATE)


                		[[Using MapReduce]]


                		[[Using secondary indexes]]


                		[[Using Search]]


                		[[Using Data Types]]


            


        
        		Cassandra offers various ways to query data:
            
                		Keyspaces


                		Column Family Operations


                		CQL


                		Secondary Indexes


                		Hadoop Support


            


        
    


    
        		Data Versioning and Consistency
        		Riak uses a data structure called a [[vector clock|Vector Clocks]] to reason about causality and staleness of stored values. Vector clocks enable clients to always write to the database in exchange for consistency conflicts being resolved either at read time by application or client code or by Riak's [[active anti-entropy]] subsystem. Vector clocks can be configured to store copies of a given object based on the size and age of that object. There is also an option to disable vector clocks and fall back to simple timestamp-based resolution, known as [[last write wins|Conflict Resolution#Client-and-Server-side-Conflict-Resolution]].
            
                		[[Why Vector Clocks Are Easy|http://basho.com/blog/technical/2010/01/29/why-vector-clocks-are-easy/]]


                		[[Why Vector Clocks Are Hard|http://basho.com/blog/technical/2010/04/05/why-vector-clocks-are-hard/]]


            


            In addition, as of version 2.0 you can use Riak in a [[strongly consistent|Strong Consistency]] fashion.
        
        		Cassandra uses timestamps at the column family level to determine the most recent value when doing read requests. There is no built-in way to do versioning of data.
            
                		[[About Read Consistency|http://www.datastax.com/docs/1.1/dml/data_consistency#about-read-consistency]]


            


        
    


    
        		Concurrency
        		In Riak, any node in the cluster can coordinate a read/write operation for any other node. Riak stresses availability for writes and reads, and puts the burden of resolution on the client at read time.
        
        		All nodes in Cassandra are peers. A client read or write request can go to any node in the cluster. When a client connects to a node and issues a read or write request, that node serves as the coordinator for that particular client operation.
            
                		[[About Client Requests|http://www.datastax.com/docs/1.0/cluster_architecture/about_client_requests]]


            


        
    


    
        		Replication
        		Riak's replication system is heavily influenced by the Dynamo Paper and Dr. Eric Brewer's CAP Theorem. Riak uses consistent hashing to replicate and distribute N copies of each value around a Riak cluster composed of any number of physical machines. Under the hood, Riak uses virtual nodes to handle the distribution and dynamic rebalancing of data, thus decoupling the data distribution from physical assets.
            
                		[[Replication]]


                		[[Clustering|Clusters]]


            


            The Riak APIs expose tunable consistency and availability parameters that let you select which level of configuration is best for your use case. Replication is configurable at the bucket level when first storing data in Riak. Subsequent reads and writes to that data can have request-level parameters.
            
                		[[Reading, Writing, and Updating Data|Concepts#Reading, Writing, and Updating Data]]


            


        
        		Replication in Cassandra starts when a user chooses a partitioner. Partitioners include Random Partitioner (which also relies on consistent hashing for data storage) and various Ordered Partitioner options. Under the hood, physical nodes are assigned tokens which determine a nodes's position on the ring and the range of data for which it's responsible.
            
                		[[Replication|http://www.datastax.com/docs/1.0/cluster_architecture/replication]]


            


            Like in Riak, Cassandra lets developers configure the consistency and availability requirements at the request level via various APIs.
            
                		Tunable Consistency
            




        
    


    
        		Scaling Out and In
        		Riak allows you to [[elastically grow and shrink|Adding and Removing Nodes]] your cluster while evenly balancing the load on each machine. No node in Riak is special or has any particular role. In other words, all nodes are masterless. When you add a physical machine to Riak, the cluster is made aware of its membership via gossiping of [[ring state|Clusters#the-ring]]. Once it's a member of the ring, it's assigned an equal percentage of the partitions and subsequently takes ownership of the data belonging to those partitions. The process for removing a machine is the inverse of this. Riak also ships with a comprehensive suite of [[command line tools|riak-admin Command Line]] to help make node operations simple and straightforward.
        
        		Cassandra allows you to add new nodes dynamically with the exception of manually calculating a node's token (though users can elect to let Cassandra calculate this). It's recommended that you double the size of your cluster to add capacity. If this isn't feasible, you can elect to either add a number of nodes (which requires token recalculation for all existing nodes), or to add one node at a time, which means leaving the initial token blank and "will probably not result in a perfectly balanced ring but it will alleviate hot spots".
            
                		Adding Capacity to an Existing Cluster


            


        
    


    
        		Multi-Datacenter Replication
        		Riak features two distinct types of [[replication]]. Users can replicate to any number of nodes in one cluster (which is usually contained within one datacenter over a LAN) using the Apache 2.0-licensed database. Riak Enterprise, Basho's commercial extension to Riak, is required for Multi-Datacenter deployments (meaning the ability to run active Riak clusters in N datacenters).
            
                		Riak Enterprise


            


        
        		Cassandra has the ability to spread nodes over multiple datacenters via various configuration parameters.
            
                		Multiple Datacenters


            


        
    


    
        		Graphical Monitoring/Admin Console
        		Riak ships with [[Riak Control]], an open source graphical console for monitoring and managing Riak clusters.
        
        		Datastax distributes the DataStax OpsCenter, a graphical user interface for monitoring and administering Cassandra clusters. This includes a free version available for production use, as well as a for-pay version with additional features.
            
                		[[DataStax OpsCenter|http://www.datastax.com/products/opscenter]]


            


        
    








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/running/security-sources.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Managing Security Sources
project: riak
version: 2.0.0+
document: cookbook
toc: true
audience: intermediate
keywords: [operator, security]




If you’re looking for more general information on Riak Security, it may
be best to start with our general guide to [[authentication and
authorization]].


This document provides more granular information on the four available
authentication sources in Riak Security: trusted networks, password,
pluggable authentication modules (PAM), and certificates. These sources
correspond to trust, password, pam, and certificate,
respectively, in the riak-admin security interface.


The examples below will assume that the network in question is
127.0.0.1/32 and that a Riak user named riakuser has been
[[created|Authentication and Authorization#User-Management]] and that
security has been [[enabled|Authentication and
Authorization#The-Basics]].



Note on SSL connections

If you use any of the aforementioned security sources, even
trust, you will need to do so via a secure SSL connection.


Trust-based Authentication


This form of authentication enables you to specify trusted
CIDRs [http://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing]
from which all clients will be authenticated by default.


riak-admin security add-source all 127.0.0.1/32 trust



Here, we have specified that anyone connecting to Riak from the
designated CIDR (in this case localhost) will be successfully
authenticated:


curl https://localhost:8098/types/<type>/buckets/<bucket>/keys/<key>



If this request returns not found or a Riak object, then things have
been set up appropriately. You can specify any number of trusted
networks in the same fashion.


You can also specify users as trusted users, as in the following
example:


riak-admin security add-source riakuser 127.0.0.1/32 trust



Now, riakuser can interact with Riak without providing credentials.
Here’s an example in which only the username is passed to Riak:


curl -u riakuser: \
  https://localhost:8098/types/<type>/buckets/<bucket>/keys/<key>






Password-based Authentication


Authenticating via the password source requires that our riakuser be
given a password. riakuser can be assigned a password upon creation,
as in this example:


riak-admin security add-user riakuser password=captheorem4life



Or a password can be assigned to an already existing user by modifying
that user’s characteristics:


riak-admin security alter-user riakuser password=captheorem4life



You can specify that all users must authenticate themselves via
password when connecting to Riak from localhost:


riak-admin security add-source all 127.0.0.1/32 password



Or you can specify that any number of specific users must do so:


riak-admin security add-source riakuser 127.0.0.1/32 password
riak-admin security add-source otheruser 127.0.0.1/32 password

# etc



Now, our riakuser must enter a username and password to have any
access to Riak whatsoever:


curl -u riakuser:captheorem4life \
  https://localhost:8098/types/<type>/buckets/<bucket>/keys/<key>






Certificate-based Authentication


This form of authentication (certificate) requires that Riak and a
specified client—or clients—interacting with Riak bear certificates
signed by the same Root Certificate
Authority [http://en.wikipedia.org/wiki/Root_certificate].



Note

At this time, client certificates are not supported in Riak's HTTP
interface, and can be used only through the [[protocol buffers
interface|PBC API]].

Let’s specify that our user riakuser is going to be authenticated
using a certificate on localhost:


riak-admin security add-source riakuser 127.0.0.1/32 certificate



When the certificate source is used, riakuser must also be entered
as the common name, aka CN, that you specified when you generated your
certificate, as in the following OpenSSL example:


openssl req -new ... '/CN=riakuser'



You can add a certificate source to any number of clients, as long as
their CN and Riak username match.


On the server side, you need to configure Riak by specifying a path to
your certificates. First, copy all relevant files to your Riak cluster.
The default directory for certificates is /etc, though you can specify
a different directory in your [[riak.conf|Configuration Files#]] by
either uncommenting those lines if you choose to use the defaults or
setting the paths yourself:


ssl.certfile = /path/to/cert.pem
ssl.keyfile = /path/to/key.pem
ssl.cacertfile = /path/to/cacert.pem



In the client-side example above, the client’s CN and Riak username
needed to match. On the server (i.e. Riak) side, the CN specified on
each node must match the node’s name as registered by Riak. You can
find the node’s name in [[riak.conf|Configuration Files]] under the
parameter nodename. And so if the nodename for a cluster is
riak-node-1, you would need to generate your certificate with that in
mind, as in this OpenSSL example:


openssl req -new ... '/CN=riak-node-1'



Once certificates have been properly generated and configured on all of
the nodes in your Riak cluster, you need to perform a [[rolling
restart]]. Once that process is complete, you can use the client
certificate that you generated for the user riakuser.


How to use Riak clients in conjunction with OpenSSL and other
certificates varies from client library to client library. We strongly
recommend checking the documentation of your client library for further
information.





PAM-based Authentication


This section assumes that you have set up a PAM service bearing the name
riak_pam, e.g. by creating a pam.d/riak_pam service definition
specifying auth and/or other PAM services set up to authenticate a
user named riakuser. As in the certificate-based authentication
example above, the user’s name must be the same in both your
authentication module and in Riak Security.


If we want the user riakuser to use this PAM service on localhost,
we need to add a pam security source in Riak and specify the name of
the service:


riak-admin security add-source all 127.0.0.1/32 pam service=riak_pam



Note: If you do not specify a name for your PAM service, Riak will
use the default, which is riak.


To verify that the source has been properly specified:


riak-admin security print-sources



That command should output the following:


+--------------------+------------+----------+------------------------+
|       users        |    cidr    |  source  |        options         |
+--------------------+------------+----------+------------------------+
|      riakuser      |127.0.0.1/32|   pam    |[{"service","riak_pam"}]|
+--------------------+------------+----------+------------------------+



You can test that setup most easily by using curl. A normal request to
Riak without specifying a user will return an Unauthorized message:


curl -u riakuser: \
  https://localhost:8098/types/<type>/buckets/<bucket>/keys/<key>



Response:


<html><head><title>401 Unauthorized</title></head><body><h1>Unauthorized</h1>Unauthorized<p><hr><address>mochiweb+webmachine web server</address></body></html>



If you identify yourself as riakuser and are successfully
authenticated by your PAM service, you should get either not found or
a Riak object if one is stored in the specified bucket type/bucket/key
path:


curl -u riakuser:<pam_password> \
  https://localhost:8098/types/<type>/buckets/<bucket>/keys/<key>






How Sources Are Applied


When managing security sources—any of the sources explained
above—you always have the option of applying a source to either a
single user, multiple users, or all users (all). If specific users and
all have no sources in common, this presents no difficulty. But what
happens if one source is applied to all and a different source is
applied to a specific user?


The short answer is that the more specifically assigned source—i.e. to
the user—will be consider a user’s security source. We’ll illustrate
that with the following example, in which the certificate source is
assigned to all, but the password source is assigned to riakuser:


riak-admin security add-source all 127.0.0.1/32 certificate
riak-admin security add-source riakuser 127.0.0.1/32 password



If we run riak-admin security print-sources, we’ll get the following
output:


+--------------------+------------+-----------+----------+
|       users        |    cidr    |  source   | options  |
+--------------------+------------+-----------+----------+
|      riakuser      |127.0.0.1/32| password  |    []    |
|                    |127.0.0.1/32|certificate|    []    |
|        all         |127.0.0.1/32|certificate|    []    |
+--------------------+------------+-----------+----------+



As we can see, password is set as the security source for riakuser,
whereas everyone else will authenticate using certificate.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/protocol-buffers/get-bucket-type.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: PBC Get Bucket Type
project: riak
version: 2.0.0+
document: api
toc: true
audience: advanced
keywords: [api, protocol-buffer, bucket-type]
group_by: “Object/Key Operations”




Gets the bucket properties associated with a [[bucket type|Using Bucket
Types]].



Request


message RpbGetBucketTypeReq {
    required bytes type = 1;
}



Only the name of the bucket type needs to be specified (under name).





Response


A bucket type’s properties will be sent to the client as part of an
[[RpbBucketProps|PBC Get Bucket Properties]] message.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/theory/comparisons/hbase.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Riak Compared to HBase
project: riak
version: 1.1.0+
document: appendix
toc: true
index: true
keywords: [comparisons, hbase]
moved: {
‘1.4.0-‘: ‘/references/appendices/comparisons/Riak-Compared-to-HBase’
}




This is intended to be a brief, objective and technical comparison of
Riak and HBase. The HBase version described is 0.94.x. The Riak version
described is Riak 1.2.x. If you feel this comparison is unfaithful for
whatever reason, please submit an issue [https://github.com/basho/basho_docs/issues/new]
or send an email to docs@basho.com.



At A Very High Level



		Riak and HBase are both Apache 2.0 [http://www.apache.org/licenses/LICENSE-2.0.html] licensed


		Riak is based on Amazon’s Dynamo paper [http://docs.basho.com/riak/latest/theory/dynamo/]; HBase is based on Google’s BigTable [http://research.google.com/archive/bigtable.html]


		Riak is written primarily in Erlang with some C; HBase is written in Java








Feature/Capability Comparison


The table below gives a high level comparison of Riak and HBase features
and capabilities. To keep this page relevant in the face of rapid
development on both sides, low level details are found in links to the
online documentation for Riak [http://docs.basho.com/] and
HBase [http://hbase.apache.org/book.html].



    
        		Feature/Capability
        		Riak
        		HBase
    


    
        		Data Model
        		Riak stores key/value pairs under [[keys|Keys and Objects]] in [[buckets]]. [[Using bucket types]] you can set bucket-level configurations for things like [[replication properties]]. In addition to basic [[key/value lookup|Key/Value Modeling]], Riak has a variety of features for discovering objects, including [[Riak Search|Using Search]] and [[secondary indexes|Using Secondary Indexes]].
        		HBase stores data in a pre-defined column family format (each grouping of data has a key, and any number of column attributes which may be versioned individually). Data in HBase is sorted, sparse, and physically grouped by column family (rather than by row, as in a relational database). HBase calls their groupings "tables."
            
                		[[HBase Data Model|http://hbase.apache.org/book/datamodel.html]]


                		[[Supported Data Types|http://hbase.apache.org/book/supported.datatypes.html]]


            


        
    


    
        		Storage Model
        		Riak has a modular, extensible local storage system that lets you plug in a backend store of your choice to suit your use case. The default backend is [[Bitcask]].
            
              		[[Riak Supported Storage Backends|Choosing a Backend]]


            

    You can also write your own storage backend for Riak using our [[backend API|Backend API]].
    </td>
    <td>Hadoop Distributed File System (HDFS) is the storage system used by HBase. Data is stored in MemStores and StoreFiles, where data is streamed to disk (implemented via HFiles, a format based on BigTable's SSTable). Implementations generally use the native JVM-managed I/O file stream.
        <ul>
         <li>[[HDFS|http://en.wikipedia.org/wiki/Apache_Hadoop#Hadoop_Distributed_File_System]]</li>
         <li>[[Hadoop Uses HDFS|http://hbase.apache.org/book/arch.hdfs.html]]</li>
        </ul>
    </td>
</tr>
<tr>
    <td><strong>Data Access and APIs</strong></td>
    <td>Riak offers two primary interfaces (in addition to raw Erlang access):
        <ul>
        <li>[[Protocol Buffers|PBC API]] (strongly recommended)</li>
        <li>[[HTTP|HTTP API]]</li>
        </ul>
        Riak [[client libraries]] are wrappers around these APIs, and client support exists for dozens of languages. Basho currently has officially supported clients for [[Java|https://github.com/basho/riak-java-client]], [[Ruby|https://github.com/basho/riak-ruby-client]], [[Python|https://github.com/basho/riak-python-client]], and [[Erlang|https://github.com/basho/riak-erlang-client]].
        </td>
    <td>HBase communicates primarily through code that runs on the JVM ([[Java|http://hbase.apache.org/book/architecture.html]], Jython, Groovy, etc.). Alternatively, HBase provides external protocols for [REST]() or [Thrift](https://thrift.apache.org/) (a cross-language data service format).
    </td>
</tr>
<tr>
    <td><strong>Query Types and Queryability</strong></td>
    <tr>
    <td>Query Types and Queryability</td>
    <td>There are currently five ways to query data in Riak:
        <ul>
        <li>Via [[primary key operations|The Basics]] (GET, PUT, DELETE, UPDATE)</li>
        <li>[[Using MapReduce]]</li>
        <li>[[Using secondary indexes]]</li>
        <li>[[Using Search]]</li>
        <li>[[Using Data Types]]</li>
        </ul>

    </td>
    <td>HBase has two query options: looking up values by getting/scanning through ordered keys (optionally filtering out values or using a secondary index), or by using Hadoop to perform MapReduce.
        <ul>
            <li>[[Scanning|http://hbase.apache.org/book/client.filter.html]]</li>
            <li>[[MapReduce|http://hbase.apache.org/book/mapreduce.html]]</li>
            <li>[[Secondary Indexes|http://hbase.apache.org/book/secondary.indexes.html]]</li>
        </ul>
</td>
</tr>
<tr>
    <td><strong>Data Versioning and Consistency</strong></td>
    <td>Riak uses a data structure called a vector clock to reason about causality and staleness of stored values. Vector clocks enable clients to always write to the database in exchange for consistency conflicts being resolved at read time by either application or client code. Vector clocks can be configured to store copies of a given datum based on size and age of said datum. There is also an option to disable vector clocks and fall back to simple time-stamp based "last-write-wins".
        <ul>
          <li>[[Vector Clocks]]</li>
          <li>[[Why Vector Clocks Are Easy|http://basho.com/blog/technical/2010/01/29/why-vector-clocks-are-easy/]]</li>
          <li>[[Why Vector Clocks Are Hard|http://basho.com/blog/technical/2010/04/05/why-vector-clocks-are-hard/]]</li>
        </ul>
     </td>
    <td>HBase has strongly consistent reads/writes. Data may be autosharded across regions and redistributed as data changes.

    Column families may contain an unbounded number of versions, with optional TTL.
        <ul>
            <li>[[Consistent Architecture|http://hbase.apache.org/book/architecture.html#arch.overview.nosql]]</li><li>[[Time to Live|http://hbase.apache.org/book/ttl.html]]</li>
        </ul>
 </td>
</tr>
    <td><strong>Concurrency</strong></td>
    <td> In Riak, any node in the cluster can coordinate a read/write operation for any other node. Riak stresses availability for writes and reads, and puts the burden of resolution on the client at read time.
     </td>

    <td>HBase guarantees write atomicity and locks per row. HBase has also recently added multi-action and multi-row local transactions (though you cannot mix read/write actions).
        <ul>
            <li>[[Consistency Guarantees|http://hbase.apache.org/acid-semantics.html]]</li>
            <li>[[http://hadoop-hbase.blogspot.com/2012/03/acid-in-hbase.html]]</li>
        </ul>
 </td>
</tr>
<tr>
    <td><strong>Replication</strong></td>
    <td>Riak's replication system is heavily influenced by the Dynamo Paper and Dr. Eric Brewer's CAP Theorem. Riak uses consistent hashing to replicate and distribute N copies of each value around a Riak cluster composed of any number of physical machines. Under the hood, Riak uses virtual nodes to handle the distribution and dynamic rebalancing of data, thus decoupling the data distribution from physical assets.
        <ul>
          <li>[[Replication]]</li>
          <li>[[Clustering|Clusters]]</li>
        </ul>

        The Riak APIs expose tunable consistency and availability parameters that let you select which level of configuration is best for your use case. Replication is configurable at the bucket level when first storing data in Riak. Subsequent reads and writes to that data can have request-level parameters.
            <ul>
                <li>[[Reading, Writing, and Updating Data|Concepts#Reading, Writing, and Updating Data]]</li>
            </ul>
 </td>
    <td>HBase supports in-cluster and between-cluster replication. In-cluster replication is handled by HDFS and replicates underlying data files according to Hadoop's settings. Between-cluster replicates by an eventually consistent master/slave push, or more recently added (experimental) master/master and cyclic (where each node plays the role of master and slave) replication.
    <ul>
    <li>[[Replication|http://hbase.apache.org/replication.html]]</li>
    </ul>
 </td>
</tr>
<tr>
    <td><strong>Scaling Out and In</strong></td>
    <td>Riak allows you to [[elastically grow and shrink|Adding and Removing Nodes]] your cluster while evenly balancing the load on each machine. No node in Riak is special or has any particular role. In other words, all nodes are masterless. When you add a physical machine to Riak, the cluster is made aware of its membership via gossiping of [[ring state|Clusters#the-ring]]. Once it's a member of the ring, it's assigned an equal percentage of the partitions and subsequently takes ownership of the data belonging to those partitions. The process for removing a machine is the inverse of this. Riak also ships with a comprehensive suite of [[command line tools|riak-admin Command Line]] to help make node operations simple and straightforward.
    </td>
    <td>HBase shards by way or regions, that automatically split and redistribute growing data. A crash on a region requires crash recovery. HBase can be made to scale in with some intervention on the part of the developer or DBA.
        <ul>
            <li>[[Regions|http://hbase.apache.org/book/regions.arch.html]]</li>
            <li>[[Node Management|http://hbase.apache.org/book/node.management.html]]</li>
            <li>[[HBase Architecture|http://hbase.apache.org/book/architecture.html]]</li>
        </ul>
</td>
</tr>
<tr>
    <td><strong>Multi-Datacenter Replication and Awareness</strong></td>

    <td>Riak features two distinct types of [[replication]]. Users can replicate to any number of nodes in one cluster (which is usually contained within one datacenter over a LAN) using the Apache 2.0-licensed database. Riak Enterprise, Basho's commercial extension to Riak, is required for Multi-Datacenter deployments (meaning the ability to run active Riak clusters in N datacenters).

    <ul>
        <li><a href="http://basho.com/products/riak-enterprise/">Riak Enterprise</a></li>
    </ul>

    </td>
    <td>HBase shards by way of regions, that themselves may be replicated across multiple datacenters.
        <ul>
          <li>[[Node Management|http://hbase.apache.org/replication.html]]</li>
        </ul>
</td>
</tr>
<tr>
    <td><strong>Graphical Monitoring/Admin Console</strong></td>
    <td>Riak ships with [[Riak Control]], an open source graphical console for monitoring and managing Riak clusters.</td>
    <td>HBase has a few community supported graphical tools, and a command-line admin console.
    <ul>
    <li>[[Admin Console Tools|http://hbase.apache.org/book/ops_mgt.html#tools]]</li>
    <li>[[Eclipse Dev Plugin|http://wiki.apache.org/hadoop/Hbase/EclipseEnvironment]]</li>
    <li>[[HBase Manager|http://sourceforge.net/projects/hbasemanagergui/]]</li>
    <li>[[GUI Admin|https://github.com/zaharije/hbase-gui-admin]]</li>
    </ul>
 </td>
</tr>











          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/running/authz.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Authentication and Authorization
project: riak
version: 2.0.0+
document: cookbook
toc: true
audience: intermediate
keywords: [operator, security, authentication, authorization]





Note on Network security

This document covers only the 2.0 authentication and authorization
features. For a look at network security in Riak, see [[Security and
Firewalls]].

As of version 2.0, Riak administrators can selectively apportion
access to a wide variety of Riak’s functionality, including accessing,
modifying, and deleting objects, changing bucket properties, and
running MapReduce jobs.



Terminology



		Authentication is the process of identifying a user.


		Authorization is verifying whether a user has access to perform
the requested operation.


		Groups can have permissions assigned to them, but cannot be
authenticated.


		Users can be authenticated and authorized; permissions
(authorization) may be granted directly or via group membership.


		Sources are used to define authentication mechanisms. A user
cannot be authenticated to Riak until a source is defined.








Security Checklist


There are a few key steps that all applications will need to undertake
when turning on Riak security. Missing one of these steps will almost
certainly break your application, so make sure that you have done each
of the following before enabling security:



		Make certain that the original Riak Search (version 1) and link
walking are not required. Enabling security will break this
functionality. If you wish to use security and Search together, you
will need to use the [[new Search feature|Using Search]].


		Because Riak security requires a secure SSL connection, you will need
to generate appropriate SSL certs, [[enable SSL|Authentication and
Authorization#Enabling-SSL]] and establish a [[certification
configuration|Authentication and
Authorization#Certificate-Configuration]] on each node. If you
enable security without having established a functioning SSL
connection, all requests to Riak will fail.


		Define [[users|Authentication and Authorization#User-Management]]
and, optionally, groups


		Define an [[authentication source|Authentication and
Authorization#Managing-Sources]] for each user


		Grant the necessary [[permissions|Authentication and
Authorization#Managing-Permissions]] to each user (and/or group)


		Check any Erlang MapReduce code for invocations of Riak modules other
than riak_kv_mapreduce. Enabling security will prevent those from
succeeding unless those modules are available via the add_path
mechanism documented in [[Installing Custom Code]].


		Make sure that your client software will work properly:
		It must pass authentication information with each request


		It must support HTTPS or encrypted [[Protocol Buffers|PBC API]]
traffic


		If using HTTPS, the proper port (presumably 443) is open from
client to server


		Code that uses Riak’s deprecated [[Link Walking]] feature will
not work with security enabled








		If you have applications that rely on an already existing Riak
cluster, make sure that those applications are prepared to gracefully
transition into using Riak security once security is enabled.





Security should be enabled only after all of the above steps have been
performed and your security setup has been properly vetted.


Clients that use [[Protocol Buffers|PBC API]] will typically have to be
reconfigured/restarted with the proper credentials once security is
enabled.





Security Basics


Riak security may be checked, enabled, or disabled by an administrator
through the command line. This allows an administrator to change
security settings for the whole cluster quickly without needing to
change settings on a node-by-node basis.


Note: Currently, Riak security commands can be run only through
the command line, using the riak-admin security command. In future
versions of Riak, administrators may have the option of issuing
those commands through the Protocol Buffers and HTTP interfaces.



Enabling Security



Warning: Enable security with caution

Enabling security will change the way your client libraries and
your applications interact with Riak. Once security is enabled,
all client connections must be encrypted and all permissions will be
denied by default. Do not enable this in production until you have
worked through the [[security checklist|Authentication and
Authorization#Security-Checklist]] above and tested everything in a
non-production environment.

Riak security is disabled by default. To enable it:


riak-admin security enable



As per the warning above, do not enable security in production without
taking the appropriate precautions.


All users, groups, authentication sources, and permissions can be
configured while security is disabled, allowing you to create a
security configuration of any level of complexity without prematurely
impacting the service. This should be borne in mind when you are
[[managing users|Authentication and Authorization#User-Management]] and
[[managing sources|Authentication and Authorization#Managing-Sources]].





Disabling Security


If you disable security, this means that you have disable all of the
various permissions checks that take place when executing operations
against Riak. Users, groups, and other security attributes remain
available for configuration while security is disabled, and will be
applied if and when security is re-enabled.


riak-admin security disable



While security is disabled, clients will need to be reconfigured to no
longer require TLS and send credentials.





Checking Security Status


To check whether security is currently enabled for the cluster, use the
status command:


riak-admin security status



This command will usually return Enabled or Disabled, but if
security is enabled on a mixed-mode cluster (running a combination of
Riak 2.0 and older versions) it will indicate that security is enabled
but not yet available.







User Management


Riak security enables you to control authorization by creating,
modifying, and deleting user characteristics and granting users
selective access to Riak functionality (and also to revoke access).
Users can be assigned one or more of the following characteristics:



		username


		groups


		password





You may also assign users characteristics beyond those listed
above—e.g., listing email addresses or other information—but those
values will carry no special significance for Riak.


Note: The username is the one user characteristic that cannot be
changed once a user has been created.



Retrieve a Current User or Group List


A list of currently existing users can be accessed at any time:


riak-admin security print-users



The same goes for groups:


riak-admin security print-groups



Example output, assuming user named riakuser with an assigned
password:


+----------+--------+----------------------+------------------------------+
| username | groups |       password       |           options            |
+----------+--------+----------------------+------------------------------+
| riakuser |        |983e8ae1421574b8733824|              []              |
+----------+--------+----------------------+------------------------------+



Note: All passwords are displayed in encrypted form in console
output.


If the user riakuser were assigned to the group dev and a name of
lucius, the output would look like this:


+----------+----------------+----------------------+---------------------+
| username |     groups     |       password       |       options       |
+----------+----------------+----------------------+---------------------+
| riakuser |      dev       |983e8ae1421574b8733824| [{"name","lucius"}] |
+----------+----------------+----------------------+---------------------+



If you’d like to see which permissions have been assigned to
riakuser, you would need to use the print-grants command, detailed
below.


The security print-user or security-print-group (singular) commands
can be used with a name as argument to see the same information as
above, except for only that user or group.





Permissions Grants For a Single User or Group


You can retrieve authorization information about a specific user or
group using the print-grants command, which takes the form of
riak-admin security print-grants <username>.


The output will look like this if the user riakuser has been
explicitly granted a riak_kv.get permission on the bucket
shopping_list and inherits a set of permissions from the admin
group:


Inherited permissions (user/riakuser)

+--------+----------+----------+----------------------------------------+
| group  |   type   |  bucket  |                 grants                 |
+--------+----------+----------+----------------------------------------+
| admin  |    *     |    *     |      riak_kv.get, riak_kv.delete,      |
|        |          |          |              riak_kv.put               |
+--------+----------+----------+----------------------------------------+

Dedicated permissions (user/riakuser)

+----------+-------------+----------------------------------------+
|   type   |   bucket    |                 grants                 |
+----------+-------------+----------------------------------------+
|   ANY    |shopping_list|               riak_kv.get              |
+----------+-------------+----------------------------------------+

Cumulative permissions (user/riakuser)

+----------+-------------+----------------------------------------+
|   type   |   bucket    |                 grants                 |
+----------+-------------+----------------------------------------+
|    *     |      *      |      riak_kv.get, riak_kv.delete,      |
|          |             |               riak_kv.put              |
|   ANY    |shopping_list|               riak_kv.get              |
+----------+-------------+----------------------------------------+



Note: The term admin is not a reserved term in Riak security. It
is used here only for illustrative purposes.


Because the same name can represent both a user and a group, a prefix
(user/ or group/) can be used before the name (e.g., print-grants user/admin). If a name collides and no prefix is supplied, grants for
both will be listed separately.





Add Group


For easier management of permissions across several users, it is
possible to create groups to be assigned to those users.


riak-admin security add-group admin






Add User


To create a user with the username riakuser, we use the add-user
command:


riak-admin security add-user riakuser



Using the command this way will create the user riakuser without any
characteristics beyond a username, which is the only attribute that you
must assign upon user creation.


Alternatively, a password—or other attributes—can be assigned to the
user upon creation. Here, we’ll assign a password:


riak-admin security add-user riakuser password=Test1234






Assigning a Password and Altering Existing User Characteristics


While passwords and other characteristics can be set upon user creation,
it often makes sense to change user characteristics after the user has
already been created. Let’s say that the user riakuser was created
without a password (or created with a password that we’d like to
change). The alter-user command can be used to modify our riakuser
user:


riak-admin security alter-user riakuser password=opensesame



When creating or altering a user, any number of <option>=<value>
pairs can be appended to the end of the command. Any non-standard
options will be stored and displayed via the riak-admin security print-users command.


riak-admin security alter-user riakuser name=bill age=47 fav_color=red



Now, the print-users command should return this:


+----------+--------+----------+--------------------------------------------------+
| username | groups | password |                     options                      |
+----------+--------+----------+--------------------------------------------------+
| riakuser |        |          |[{"fav_color","red"},{"age","47"},{"name","bill"}]|
+----------+--------+----------+--------------------------------------------------+



Note: Usernames cannot be changed using the alter-user command.
If you attempt to do so by running alter-user riakuser username=other-name, for example, this will add the
{"username","other-name"} tuple to riakuser‘s options.





Managing Groups for a User


If we have a user jane_goodall and we’d like to assign her to the
admin group, we assign the value admin to the option groups:


riak-admin security alter-user jane_goodall groups=admin



If we’d like to make the user jane_goodall both an admin and an
archoverlord:


riak-admin alter-user jane_goodall groups=admin,archoverlord



There is no way to incrementally add groups; even if jane_goodall was
already an admin, it is necessary to list it again when adding the
archoverlord group. Thus, to remove a group from a user, use
alter-user and list all other groups.


If the user should be removed from all groups, use groups= with no
list:


riak-admin alter-user jane_goodall groups=






Managing Groups for Groups


Groups can be added to other groups for cascading permissions.


riak-admin alter-group admin groups=dev






Deleting a User or Group


If you’d like to remove a user, use the del-user command:


riak-admin security del-user riakuser



For groups, use the del-group command:


riak-admin security del-group admin






Adding or Deleting Multiple Users


The riak-admin security command does not currently allow you to
add or delete multiple users using a single command. Instead, they must
be added or deleted one by one.







Managing Permissions


Permission to perform a wide variety of operations against Riak can be
granted to—or revoked from—users via the grant and revoke
commands.



Basic Form


The grant command takes one of the following forms:


riak-admin security grant <permissions> on any to all|{<user>|<group>[,...]}
riak-admin security grant <permissions> on <bucket-type> to all|{<user>|<group>[,...]}
riak-admin security grant <permissions> on <bucket-type> <bucket> to all|{<user>|<group>[,...]}



The revoke command is essentially the same, except that to is
replaced with from of to:


riak-admin security revoke <permissions> on any from all|{<user>|<group>[,...]}
riak-admin security revoke <permissions> on <bucket-type> from all|{<user>|<group>[,...]}
riak-admin security revoke <permissions> on <bucket-type> <bucket> from all|{<user>|<group>[,...]}



If you select any, this means that the permission (or set of
permissions) is granted/revoked for all buckets and [[bucket types|Using
Bucket Types]]. If you specify a bucket type only, then the permission
is granted/revoked for all buckets of that type. If you specify a bucket
type and a bucket, the permission is granted/revoked only for that
bucket type/bucket combination.


Note: You cannot grant/revoke permissions with respect to a bucket
alone. You must specify either a bucket type by itself or a bucket type
and bucket. This limitation reflects the naming structure underlying
buckets and bucket types.


Selecting all grants or revokes a permission (or set of permissions)
for all users in all groups. When specifying the user(s)/group(s) to
which you want to apply a permission (or set of permissions), you may
list any number of users or groups comma-separated with no whitespace.
Here is an example of granting multiple permissions across all buckets
and bucket types to multiple users:


riak-admin security grant riak_kv.get,riak_search.query on any to jane,ahmed



If the same name is used for both a user and a group, the grant
command will ask for the name to be prefixed with user/ or group/
to disambiguate.





Key/Value Permissions


Permissions that can be granted for basic key/value access
functionality:


Permission | Operation |
:———-|:———-|
riak_kv.get | Retrieve objects
riak_kv.put | Create or update objects
riak_kv.delete | Delete objects
riak_kv.index | Index objects using secondary indexes (2i)
riak_kv.list_keys | List all of the keys in a bucket
riak_kv.list_buckets | List all buckets



Note on Listing Keys and Buckets

riak_kv.list_keys and riak_kv.list_buckets are
both very expensive operations that should be performed very rarely and
never in production. Access to this functionality should be granted very
carefully.

If you’d like to create, for example, a client account that is
allowed only to run GET and PUT requests on all buckets:


riak-admin security add-user client
riak-admin security grant riak_kv.get,riak_kv.put on any to client






MapReduce Permissions


Permission to perform [[MapReduce|Using MapReduce]] jobs can be assigned
using riak_kv.mapreduce. The following example grants MapReduce
permissions to the user mapreduce-power-user for all buckets and
bucket types:


riak-admin security grant riak_kv.mapreduce on any to mapreduce-power-user






Bucket Type Permissions


In versions 2.0 and later, Riak users can manage [[bucket types|Using
Bucket Types]] in addition to setting bucket properties. riak-admin security allows you to manage the following bucket type-related
permissions:


Permission | Operation
:———-|:———
riak_core.get_bucket | Retrieve the props associated with a bucket
riak_core.set_bucket | Modify the props associated with a bucket
riak_core.get_bucket_type | Retrieve the set of props associated with a bucket type
riak_core.set_bucket_type | Modify the set of props associated with a bucket type





Search Query Permission (Riak Search version 1)


Security is incompatible with the original (and now deprecated) Riak
Search. Riak Search version 1 will stop working if security is enabled.





Search Query Permissions (Riak Search version 2, aka Yokozuna)


If you are using the new Riak Search, i.e. the Solr-compatible search
capabilities included with Riak versions 2.0 and greater, the following
search-related permissions can be granted/revoked:


Permission | Operation
:———-|:———
search.admin | The ability to perform search admin-related tasks, such as creating and deleting indexes and adding and modifying search schemas
search.query | The ability to query an index



Note on Search Permissions

Search must be enabled in order to successfully grant/revoke Search
permissions. If you attempt to grant/revoke permissions while Search is
disabled, you will get the following error:{error,{unknown_permission,"search.query"}}



More information on Riak Search and how to enable it can be found in the
[[Riak Search Settings]] document.




Usage Examples


To grant the user riakuser the ability to query all indexes:


riak-admin security grant search.query on index to riakuser

# To revoke:
# riak-admin security revoke search.query on index from riakuser



To grant the user riakuser the ability to query all schemas:


riak-admin security grant search.query on schema to riakuser

# To revoke:
# riak-admin security revoke search.query on schema from riakuser



To grant the user riakuser admin privileges only on the index
riakusers_index:


riak-admin security grant search.admin on index riakusers_index to riakuser

# To revoke:
# riak-admin security revoke search.admin on index riakusers_index from riakuser



To grant riakuser querying and admin permissions on the index
riakusers_index:


riak-admin security grant search.query,search.admin on index riakusers_index to riakuser

# To revoke:
# riak-admin security revoke search.query,search.admin on index riakusers_index from riakuser










Managing Sources


While user management enables you to control authorization with regard
to users, security sources provide you with an interface for
managing means of authentication. If you create users and grant them
access to some or all of Riak’s functionality as described in the [[User
Management|Authentication and Authorization#User-Management]] section,
you will then need to define security sources required for
authentication.


An more in-depth tutorial can be found in [[Managing Security Sources]].



Add Source


Riak security sources may be applied to a specific user, multiple users,
or all users (all).



Available Sources


Source   | Description
:——–|:———–
trust | Always authenticates successfully if access has been granted to a user or all users on the specified CIDR range
password | Check the user’s password against the PBKFD2 [http://en.wikipedia.org/wiki/PBKDF2]-hashed password stored in Riak
pam  | Authenticate against the given pluggable authentication module (PAM) service
certificate | Authenticate using a client certificate







Example: Adding a Trusted Source


Security sources can be added either to a specific user, multiple users,
or all users (all).


In general, the add-source command takes the following form:


riak-admin security add-source all|<users> <CIDR> <source> [<option>=<value>[...]]



Using all indicates that the authentication source can be added to
all users. A source can be added to a specific user, e.g. add-source superuser, or to a list of users separated by commas, e.g. add-source jane,bill,admin.


Let’s say that we want to give all users trusted access to securables
(without a password) when requests come from localhost:


riak-admin security add-source all 127.0.0.1/32 trust



At that point, the riak-admin security print-sources command would
print the following:


+--------------------+------------+----------+----------+
|       users        |    cidr    |  source  | options  |
+--------------------+------------+----------+----------+
|        all         |127.0.0.1/32|  trust   |    []    |
+--------------------+------------+----------+----------+






Deleting Sources


If we wish to remove the trust source that we granted to all in the
example above, we can simply use the del-source command and specify
the CIDR.


riak-admin security del-source all 127.0.0.1/32



Note that this does not require that you specify which type of source is
being deleted. You only need to specify the user(s) or all, because
only one source can be applied to a user or all at any given time.


The following command would remove the source for riakuser on
localhost, regardless of which source is being used:


riak-admin security del-source riakuser 127.0.0.1/32




Note on Removing Sources

If you apply a security source both to all and to specific
users and then wish to remove that source, you will need to do so in
separate steps. The riak-admin security del-source all ...
command by itself is not sufficient.For example, if you have assigned the source password to
both all and to the user riakuser on the
network 127.0.0.1/32, the following two-step process would
be required to fully remove the source:


riak-admin security del-source all 127.0.0.1/32 password
riak-admin security del-source riakuser 127.0.0.1/32 password







More Usage Examples


This section provides only a very brief overview of the syntax for
working with sources. For more information on using the trust,
password, pam, and certificate sources, please see our [[Managing
Security Sources]] document.







Security Ciphers


To view a list of currently available security ciphers or change Riak’s
preferences, use the ciphers command:


riak-admin security ciphers



That command by itself will return a large list of available ciphers:


Configured ciphers

ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES128-GCM-SHA256: ...

Valid ciphers(35)

ECDHE-RSA-AES128-SHA256:ECDHE-ECDSA-AES128-SHA256: ...

Unknown/Unsupported ciphers(32)

ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES128-GCM-SHA256: ...



To alter the list, i.e. to constrain it and/or to set preferred ciphers
higher in the list:


riak-admin security ciphers DHE-RSA-AES256-SHA:AES128-GCM-SHA256



The list of configured ciphers should now look like this:


Configured ciphers

DHE-RSA-AES256-SHA:AES128-GCM-SHA256

Valid ciphers(1)

DHE-RSA-AES256-SHA

Unknown/Unsupported ciphers(1)

AES128-GCM-SHA256



A list of available ciphers on a server can be obtained using the
openssl command:


openssl ciphers



That should return a list structured like this:


DHE-RSA-AES256-SHA:DHE-DSS-AES256-SHA:AES256-SHA:EDH-RSA-DES-CBC3-SHA: # and so on



Riak’s cipher preferences were taken from Mozilla’s Server-Side TLS
documentation [https://wiki.mozilla.org/Security/Server_Side_TLS].



Client vs. Server Cipher Order


By default, Riak prefers the cipher order that you set on the server,
i.e. the [[honor_cipher_order|Configuration Files#Security]] setting
is set to on. If you prefer, however, that clients’ preferred cipher
order dictate which cipher is chosen, set honor_cipher_order to off.



Note on Erlang versions

Riak's default cipher order behavior has the potential to crash Erlang
VMs that do not support it. Erlang VMs that are known to support it
include Basho's patched version of Erlang R16. Instructions on
installing it can be found in [[Installing Erlang]]. This issue should
not affect Erlang 17.0 and later.






Enabling SSL


In order to use any authentication or authorization features, you must
enable SSL for Riak. SSL is disabled by default, but you will need
to enable it prior to enabling security. If you are using [[Protocol
Buffers|PBC API]] as a transport protocol for Riak (which we strongly
recommend), enabling SSL on a given node requires only that you specify
a [[host and port|Configuration Files#Client-Interfaces]] for the node
as well as a [[certification configuration|Authentication and
Authorization#Certificate-Configuration]].


If, however, you are using the [[HTTP API]] for Riak and would like to
configure HTTPS, you will need to not only establish a [[certificate
configuration|Authentication and
Authorization#Certificate-Configuration]] but also specify an HTTPS host
and port. The following configuration would establish port 8088 on
localhost as the HTTPS port:


listener.https.$name = 127.0.0.1:8088

# By default, "internal" is used as the "name" setting



{riak_core, [
             %% Other configs
             {https, [{"127.0.0.1", 8088}]},
             %% Other configs
            ]}






TLS Settings


When using Riak security, you can choose which versions of SSL/TLS are
allowed. By default, only TLS 1.2 is allowed, but this version can be
disabled and others enabled by setting the following [[configurable
parameters|Configuration Files#Security]] to on or off:



		tls_protocols.tlsv1


		tls_protocols.tlsv1.1


		tls_protocols.tlsv1.2


		tls_protocols.sslv3





Three things to note:



		Among the four available options, only TLS version 1.2 is enabled by
default


		You can enable more than one protocol at a time


		We strongly recommend that you do not use SSL version 3 unless
absolutely necessary








Certificate Configuration


If you are using any of the available [[security sources|Managing
Security Sources]], including [[trust-based authentication|Managing
Security Sources#Trust-based-Authentication]], you will need to do so
over a secure SSL connection. In order to establish a secure connection,
you will need to ensure that each Riak node’s [[configuration
files|Configuration Files#Security]] point to the proper paths for your
generated certs. By default, Riak assumes that all certs are stored in
each node’s /etc directory.


If you are using the newer, riak.conf-based configuration system, you
can change the location of the /etc directory by modifying the
platform_etc_dir. More information can be found in our documentation
on [[configuring directories|Configuration Files#Directories]].



  
    
      		Type
      		Parameter
      		Default
    


  
  
    
      		Signing authority
      		ssl.cacertfile
      		#(platform_etc_dir)/cacertfile.pem
    


    
      		Cert
      		ssl.certfile
      		#(platform_etc_dir)/cert.pem
    


    
      		Key file
      		ssl.keyfile
      		#(platform_etc_dir)/key.pem
    


  


If you are using the older, app.config-based configuration system,
these paths can be set in the ssl subsection of the riak_core
section. The corresponding parameters are shown in the example below:


{riak_core, [
    %% Other configs

    {ssl, [
           {certfile, "./etc/cert.pem"},
           {keyfile, "./etc/key.pem"},
           {cacertfile, "./etc/cacertfile.pem"}
          ]},

    %% Other configs
]}






Referer Checks and Certificate Revocation Lists


In order to provide safeguards against
cross-site-scripting [http://en.wikipedia.org/wiki/Cross-site_scripting]
(XSS) and
request-forgery [http://en.wikipedia.org/wiki/Cross-site_request_forgery]
attacks, Riak performs secure referer
checks [http://en.wikipedia.org/wiki/HTTP_referer] by default. Those
checks make it impossible to serve data directly from Riak. To disable
those checks, set the secure_referer_check parameter to off.


If you are using [[certificate-based authentication|Managing Security
Sources#Certificate-based-Authentication]], Riak will check the
certificate revocation list (CRL) of connecting clients’ certificate by
default. To disable this behavior, set the check_crl parameter to
off.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/protocol-buffers/yz-index-delete.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: PBC Yokozuna Index Delete
project: riak
version: 2.0.0+
document: api
toc: true
audience: advanced
keywords: [api, protocol-buffer, yokozuna, search]
group_by: “Object/Key Operations”




Delete a search index.



Request


The name parameter is the name of the index to delete, as a binary.


message RpbYokozunaIndexDeleteReq {
    required bytes name  =  1;
}







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/theory/comparisons/dynamodb.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Riak Compared to DynamoDB
project: riak
version: 1.3.0+
document: appendix
toc: true
index: true
keywords: [comparisons, dynamodb]
moved: {
‘1.4.0-‘: ‘/references/appendices/comparisons/Riak-Compared-to-DynamoDB’
}




This is intended to be a brief, objective, and technical comparison of
Riak and Amazon DynamoDB. The DynamoDB version described is API Version
2011-12-05. The Riak version described is Riak 2.x. If you feel this
comparison is unfaithful for whatever reason, please submit an issue [https://github.com/basho/basho_docs/issues/new]
or send an email to docs@basho.com.



At A Very High Level



		Riak is an Apache 2.0 [http://www.apache.org/licenses/LICENSE-2.0.html] open-source-licensed project; DynamoDB is a fully managed NoSQL database service that is provided by Amazon as part of Amazon Web Services


		Because DynamoDB is a database service, its implementation details (language, architecture, etc.) cannot be verified








Feature/Capability Comparison


The table below gives a high-level comparison of Riak and DynamoDB’s
features and capabilities. To keep this page relevant in the face of
rapid development on both sides, low-level details can be found in links
to specific pages in the online documentation for both systems.



    
        		Feature/Capability
        		Riak
        		DynamoDB
    


    
        		Data Model
        		Riak stores key/value pairs under [[keys|Keys and Objects]] in [[buckets]]. [[Using bucket types]] you can set bucket-level configurations for things like [[replication properties]]. In addition to basic [[key/value lookup|Key/Value Modeling]], Riak has a variety of features for discovering objects, including [[Riak Search|Using Search]] and [[secondary indexes|Using Secondary Indexes]].
        		DynamoDB's data model contains tables, items, and attributes. A database is a collection of tables. A table is a collection of items and each item is a collection of attributes.
            
              		[[DynamoDB Data Model|http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DataModel.html]]


            


        
    


    
        		Storage Model
        		Riak has a modular, extensible local storage system that lets you plug in a backend store of your choice to suit your use case. The default backend is [[Bitcask]].
            
              		[[Riak Supported Storage Backends|Choosing a Backend]]


            

    You can also write you own storage backend for Riak using our [[backend API|Backend API]].
 </td>
    <td>All data items are stored on Solid State Disks (SSDs) and replicated across multiple [[availability zones|http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html]] within a [[region|http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html]].
    </td>
</tr>
<tr>
    <td><strong>Data Access and APIs</strong></td>
    <td>Riak offers two primary interfaces (in addition to raw Erlang access):
  <ul>
        <li>[[Protocol Buffers|PBC API]] (strongly recommended)</li>
  <li>[[HTTP|HTTP API]]</li>
  </ul>
  Riak [[client libraries]] are wrappers around these APIs, and client support exists for dozens of languages. Basho currently has officially supported clients for [[Java|https://github.com/basho/riak-java-client]], [[Ruby|https://github.com/basho/riak-ruby-client]], [[Python|https://github.com/basho/riak-python-client]], and [[Erlang|https://github.com/basho/riak-erlang-client]].
  </td>
    <td>DynamoDB is a web service that uses HTTP as a transport and JavaScript Object Notation (JSON) as a message serialization format. Alternatively, you can use AWS SDKs that wrap the DynamoDB API calls.
        <ul>
          <li>[[API Reference for DynamoDB|http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/API.html]]</li>
    <li>[[Using the AWS SDKs with DynamoDB|http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/UsingAWSSDK.html]]</li>
        </ul>
 </td>
</tr>
<tr>
    <td><strong>Query Types and Queryability</strong></td>
    <td>There are currently five ways to query data in Riak:
        <ul>
        <li>Via [[primary key operations|The Basics]] (GET, PUT, DELETE, UPDATE)</li>
        <li>[[Using MapReduce]]</li>
        <li>[[Using secondary indexes]]</li>
        <li>[[Using Search]]</li>
        <li>[[Using Data Types]]</li>
        </ul>

</td>
    <td>DynamoDB offers three approaches to quering data:
            <ul>
      <li>Primary key operations (GET, PUT, DELETE, UPDATE)</li>
      <li>[[Query|http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/queryingdynamodb.html]]</li>
      <li>[[Scan|http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/scandynamodb.html]]</li>
      <li>[[Local Secondary Indexes|http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LSI.html]]</li>
        <ul>
</td>
</tr>
<tr>
    <td><strong>Data Versioning and Consistency</strong></td>
    <td>Riak uses a data structure called a [[vector clock|Vector Clocks]] to reason about causality and staleness of stored values. Vector clocks enable clients to always write to the database in exchange for consistency conflicts being resolved either at read time by application or client code or by Riak's [[active anti-entropy]] subsystem. Vector clocks can be configured to store copies of a given object based on the size and age of that object. There is also an option to disable vector clocks and fall back to simple timestamp-based resolution, known as [[last write wins|Conflict Resolution#Client-and-Server-side-Conflict-Resolution]].

    <ul>
        <li>[[Why Vector Clocks Are Easy|http://basho.com/blog/technical/2010/01/29/why-vector-clocks-are-easy/]]</li>
        <li>[[Why Vector Clocks Are Hard|http://basho.com/blog/technical/2010/04/05/why-vector-clocks-are-hard/]]</li>
    </ul>
    
    In addition, as of version 2.0 you can use Riak in a [[strongly consistent|Strong Consistency]] fashion.
    </td>

    <td>DynamoDB data is eventually consistent, meaning that your read request immediately after a write operation might not show the latest change. However, it also offers you the option to request the most up-to-date version of the data.
        <ul>
          <li>[[Data Read and Consistency Considerations|http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/APISummary.html]]</li>
        </ul>
 </td>
</tr>
    </tr>
        <td><strong>Concurrency</strong></td>
        <td>In Riak, any node in the cluster can coordinate a read/write operation for any other node. Riak stresses availability for writes and reads, and puts the burden of resolution on the client at read time.
        </td>

        <td>Dedicated resources are allocated to your table (tunable via API) to meet performance requirements, and data is automatically partitioned over a number of servers to meet request capacity.
            <ul>
                <li>[[Provisioned Throughput|http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ProvisionedThroughputIntro.html]]
            </ul>
    Read and write capacity unit requirements are set at table creation time. When requests such as get, update or delete are issued, capacity units set for the table are consumed.

    <ul>
      <li>[[Capacity Units Calculations|http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithDDTables.html#CapacityUnitCalculations]]</li>
    </ul>
     </td>
    </tr>
<tr>
    <td><strong>Replication</strong></td>
    <td>Riak's replication system is heavily influenced by the Dynamo Paper and Dr. Eric Brewer's CAP Theorem. Riak uses consistent hashing to replicate and distribute N copies of each value around a Riak cluster composed of any number of physical machines. Under the hood, Riak uses virtual nodes to handle the distribution and dynamic rebalancing of data, thus decoupling the data distribution from physical assets.
        <ul>
          <li>[[Replication]]</li>
          <li>[[Clustering|Clusters]]</li>
        </ul>

        The Riak APIs expose tunable consistency and availability parameters that let you select which level of configuration is best for your use case. Replication is configurable at the bucket level when first storing data in Riak. Subsequent reads and writes to that data can have request-level parameters.
            <ul>
                <li>[[Reading, Writing, and Updating Data|Concepts#Reading, Writing, and Updating Data]]</li>
            </ul>
    </td>
    <td>DynamoDB synchronously replicates your data across multiple [[Availability Zones|http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html]] within a [[Region|http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html]] to help protect data against individual machine or facility failures.
 </td>
</tr>
<tr>
    <td><strong>Scaling Out and In</strong></td>
    <td>Riak allows you to [[elastically grow and shrink|Adding and Removing Nodes]] your cluster while evenly balancing the load on each machine. No node in Riak is special or has any particular role. In other words, all nodes are masterless. When you add a physical machine to Riak, the cluster is made aware of its membership via gossiping of [[ring state|Clusters#the-ring]]. Once it's a member of the ring, it's assigned an equal percentage of the partitions and subsequently takes ownership of the data belonging to those partitions. The process for removing a machine is the inverse of this. Riak also ships with a comprehensive suite of [[command line tools|riak-admin Command Line]] to help make node operations simple and straightforward.
    </td>

    <td>DynamoDB requires that you specify your required read and write throughput values when you create a table – throughput values can be increased and decreased later as access requirements change. This is used to reserve sufficient hardware resources and appropriately partitions your data over multiple servers to meet your throughput requirements.
      <ul>
        <li>[[Provisioned Throughput|http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ProvisionedThroughputIntro.html]]
        </ul>
      </td>
</tr>
<tr>
    <td><strong>Multi-Datacenter Replication</strong></td>

    <td>Riak features two distinct types of [[replication]]. Users can replicate to any number of nodes in one cluster (which is usually contained within one datacenter over a LAN) using the Apache 2.0-licensed database. Riak Enterprise, Basho's commercial extension to Riak, is required for Multi-Datacenter deployments (meaning the ability to run active Riak clusters in N datacenters).

    <ul>
        <li><a href="http://basho.com/products/riak-enterprise/">Riak Enterprise</a></li>
    </ul>

    </td>
    <td>DynamoDB has the ability to spread instances over multiple [[Availability Zones|http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html]] within a Region, but not across multiple [[Regions|http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html]]. Availability Zones are not geographically dispersed.
    </td>
</tr>
<tr>
    <td><strong>Graphical Monitoring/Admin Console</strong></td>
    <td>Riak ships with [[Riak Control]], an open source graphical console for monitoring and managing Riak clusters.</td>
    <td>DynamoDB and [[CloudWatch|http://aws.amazon.com/cloudwatch/]] are integrated, which allows you to monitor a variety of metrics.
        <ul>
            <li>[[Monitoring Amazon DynamoDB|http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/MonitoringDynamoDB.html]]</li>
        </ul>
 </td>
</tr>











          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/building/planning/best-practices.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Scaling and Operating Riak Best Practices
project: riak
version: 1.0.0+
document: cookbook
toc: true
audience: intermediate
keywords: [operator, best-practices]
moved: {
‘1.4.0-‘: ‘/cookbooks/best-practices’
}




Riak is a database that’s designed to be as easily operable and
painlessly scalable as possible. But as with all databases, there are
some best practices that will enable you to improve performance and
reliability at all stages in the like of your Riak cluster.



Disk Capacity


Filling up disks is a serious problem in Riak. In general, you should
add capacity under the following conditions:



		a disk becomes more than 80% full


		you have fewer than 10 days of capacity remaining at current rates of
growth








RAID Levels


Riak provides resilience through its built-in redundancy.



		RAID0 can be used to increase the performance at the expense of
single-node reliability


		RAID5/6 can be used to increase the reliability over RAID0 but still
offers higher performance than single disks


		You should choose a RAID level (or no RAID) that you’re comfortable
with








Disk Leeway



		Adding new nodes instantly increases the total capacity of the
cluster, but you should allow enough internal network capacity that
[[handing off|Handoff]] existing data outpaces the arrival of new
data.


		Once you’ve reached a scale at which the amount of new data arriving
is a small fraction of the cluster’s total capacity, you can add new
nodes when you need them. You should be aware, however, that adding
new nodes can actually increase disk usage on existing nodes in the
short term as data is rebalanced within the cluster.


		If you are certain that you are likely to run out of capacity, we
recommend allowing a week or two of leeway so that you have plenty of
time to add nodes and for [[handoff]] to occur before the disks reach
capacity


		For large volumes of storage it’s usually prudent to add more capacity
once a disk is 80% full








CPU Capacity Leeway



		In a steady state, your peak CPU utilization, ignoring other
processes, should be less than 30%


		If you provide sufficient CPU capacity leeway, you’ll have spare
capacity to handle other processes, such as backups, [[handoff]], and
[[active anti-entropy]]








Network Capacity Leeway



		Network traffic tends to be “bursty,” i.e. it tends to vary both quite
a bit and quickly


		Your normal load, as averaged over a 10-minute period, should be no
more than 20% of maximum capacity


		Riak generates 3-5 times the amount of intra-node traffic as inbound
traffic, so you should allow for this in your network design








When to Add Nodes


You should add more nodes in the following scenarios:



		you have reached 80% of storage capacity


		you have less than 10 days of leeway before you expect the cluster to
fill up


		the current node’s IO/CPU activity is higher than average for extended
period of time, especially for [[MapReduce|Using MapReduce]]
operations





An alternative to adding more nodes is to add more storage to existing
nodes. However, you should do this only if:



		you’re confident that there is plenty of spare network and CPU
capacity, and


		you can upgrade storage equally across all nodes. If storage is
added in an unbalanced fashion, Riak will continue storing data
equally across nodes, and the node with the smallest available storage
space is likely to fail first. Thus, if one node uses 1 TB but the
rest use 1.5 TB, Riak will overload the 1 TB node first.





The recommendations above should be taken only as general guidelines
because the specifics of your cluster will matter a great deal when
making capacity decisions. The following considerations are worth
bearing in mind:



		If your disks are 90% full but only filling up 1% per month, this
might be a perfectly “safe” scenario. In cases like this, the velocity
of adding new data is more important than any raw total.


		The burstiness of your write load is also an important consideration.
If writes tend to come in large batches that are unpredictably timed,
it can be more difficult to estimate when disks will become full,
which means that you should probably over-provision storage as a
precaution.


		If Riak shares disks with other processes or is on the system root
mount point, i.e. /, we recommend leaving a little extra disk space
in addition to the estimates discussed above, as other system
processes might use disk space unexpectedly.








How to Add Nodes



		You should add as many additional nodes as you require in one
operation


		Don’t add nodes one at a time if you’re adding multiple nodes


		You can limit the transfer rate so that priority is given to live
customer traffic





This process is explored in more detail in [[Adding and Removing
Nodes]].





Scaling



		All large-scale systems are bound by the availability of some
resources


		From a stability point of view, the best state for a busy Riak cluster
to maintain is the following:
		New network connections are limited to ensure that existing network
connections consume most network bandwidth


		CPU at < 30%


		Disk IO at < 90%








		You should use HAProxy or your application servers to limit new
network connections to keep network and IO below 90% and CPU below
30%.









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/http/search-query.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: HTTP Search Query
project: riak
version: 2.0.0+
document: api
audience: advanced
keywords: [api, http, search, yokozuna]
group_by: “Search-related Operations”




Performs a [[Riak Search|Using Search]] query.



Request


GET /search/query/<index_name>






Optional Query Parameters



		wt — The response
writer [https://cwiki.apache.org/confluence/display/solr/Response+Writers]
to be used when returning the Search payload. The currently
available options are json and xml. The default is xml.


		q — The actual Search query itself. Examples can be found in
[[Using Search]]. If a query is not specified, Riak will return
information about the index itself, e.g. the number of documents
indexed.








Normal Response Codes



		200 OK








Typical Error Codes



		400 Bad Request — Returned when, for example, a malformed query is
supplied


		404 Object Not Found — Returned if the Search index you are
attempting to query does not exist


		503 Service Unavailable — The request timed out internally








Response


If a 200 OK is returned, then the Search query has been successful.
Below is an example JSON response from querying an index that currently
has no documents associated with it:


{
  "response": {
    "docs": [],
    "maxScore": 0.0,
    "numFound": 0,
    "start": 0
  },
  "responseHeader": {
    "QTime": 10,
    "params": { /* internal info from the query */ },
    "wt": "json"
  },
  "status": 0
}







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/theory/concepts/vnodes.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Vnodes
project: riak
version: 2.0.0+
document: appendix
audience: intermediate
keywords: [appendix, concepts, vnodes, partition]




Virtual nodes, more commonly referred to as vnodes, are processes
that manage partitions in the Riak [[ring|Clusters#The-Ring]]. Each data
partition in a Riak cluster has a vnode that claims that partition.
Vnodes perform a wide variety of operations, from K/V storage operations
to guaranteeing [[strong consistency]] if you choose to use that
feature.



The Number of Vnodes in a Cluster


The term [[node|Riak Glossary#Node]] refers to a full instance of Riak,
be it on its own physical machine or alongside others on a single
machine, as in a development cluster on your laptop. Each Riak node
contains multiple vnodes. The number per node is the [[ring
size|Clusters#The-Ring]] divided by the number of nodes in the cluster.


This means that in some clusters different nodes will have different
numbers of data partitions (and hence a different number of vnodes),
because (ring size / number of nodes) will not produce an even integer.
If the ring size of your cluster is 64 and you are running three nodes,
two of your nodes will have 21 vnodes, while the third node holds 22
vnodes.


The output of the [[riak-admin member-status|riak-admin Command Line]]
command shows this:


================================= Membership ==================================
Status     Ring    Pending    Node
-------------------------------------------------------------------------------
valid      34.4%      --      'dev1@127.0.0.1'
valid      32.8%      --      'dev2@127.0.0.1'
valid      32.8%      --      'dev3@127.0.0.1'
-------------------------------------------------------------------------------
Valid: 3 / Leaving:0 / Exiting:0 / Joining:0 / Down:0



In this cluster, one node accounts for 34.4% of the ring, i.e. 22 out of
64 partitions, while the other two nodes account for 32.8%, i.e. 21 out
of 64 partitions. This is normal and expected behavior in Riak.


We strongly recommend setting the appropriate ring size, and by
extension the number of vnodes, prior to building a cluster. A full
guide can be found in our [[cluster planning|Cluster Capacity
Planning#Ring-Size-Number-of-Partitions]] documentation. If you do need
to change your cluster’s ring size, however, Riak has a [[ring
resizing]] feature that you can use to accomplish precisely that.





The Role of Vnodes


Vnodes essentially watch over a designated subset of a cluster’s key
space. Riak computes a 160-bit binary hash of each bucket/key pair and
maps this value to a position on an ordered [[ring|Clusters#The-Ring]]
of all such values. The illustration below provides a visual
representation of the Riak ring:


[image: The RiakRing]


You can think of vnodes as managers, responsible for handling incoming
requests from other nodes/vnodes, storing objects in the appropriate
storage backend, fetching objects from backends, interpreting [[causal
context]] metadata for objects, acting as [[strong consistency
ensembles|Managing Strong Consistency#Implementation-Details]] and much
more.  At the system level, vnodes are Erlang processes build on top of
the gen_fsm [http://www.erlang.org/doc/design_principles/fsm.html]
abstraction in Erlang, i.e. you can think of vnodes as finite state
machines that are constantly at work ensuring that Riak’s key
goals—high availability, fault tolerance, etc.—are guaranteed for
their allotted portion of the cluster’s key space. Whereas nodes are
essentially a passive container for a wide variety of Riak processes,
vnodes are the true workhorses of Riak.


While each vnode has a main Erlang process undergirding it, vnodes may
also spawn new worker processes (i.e. new Erlang actors) to perform
asynchronous tasks on behalf of the vnode.


If you’re navigating through the file system of a Riak node, you’ll
notice that each node’s /data directory holds a variety of
subdirectories. If you’re using, say, [[Bitcask]] as a backend, navigate
into the /bitcask directory (you’ll also see a /ring directory and
several others). If you open up the /bitcask directory, you’ll see a
wide assortment of directories with numbers as names, e.g. 0 or
1004782375664995756265033322492444576013453623296. These directories
each house the data from a particular partition.





Vnodes and Replication Properties


In our documentation on [[replication properties]], we make frequent
mention of users’ ability to choose how many nodes store copies of
data, how many nodes must respond for a read request to succeed, and so
on. This is slightly misleading, as the fundamental units of replication
are not nodes but rather vnodes.


This can be illustrated by way of a potential user error.  If you store
an object and set N=5, this means that you want the object to be stored
on 5 different nodes. But imagine that your cluster only has 3 nodes.
Setting N=5 on a 3-node cluster is actually just fine. The data will be
managed by 5 vnodes, but some of that data may end up being stored more
than once on different nodes. A likely scenario is that two nodes will
store two copies of the data a piece, while the third node will store
only one. Absent such an error, however, nodes will not contain multiple
vnodes responsible for the same partition.





Vnode Status


You can check the current status of all vnodes in your cluster using the
[[riak-admin vnode-status|riak-admin Command Line#vnode-status]]
command. When you run that command, you will see a series of reports on
each of the vnodes active on the local node. The output of this command
consists of a series of reports on each active vnode. The report for a
specific vnode should look something like this:


VNode: 1278813932664540053428224228626747642198940975104
Backend: riak_kv_bitcask_backend
Status:
[{key_count, 275},
 {status,[{"./data/bitcask/1278813932664540053428224228626747642198940975104/2.bitcask.data",
           0,0,335}]}]
Status:
{vnodeid,<<"ÅR±\vi80\f">>}



The meaning of each field is given in the table below.


Field | Description
:—–|:———–
VNode | The ID of the vnode in question
Backend | The storage backend utilized by the vnode
Status | The number of keys managed by the vnode and the file where the vnode stores its data. The other information can be ignored.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/building/planning/cluster.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Cluster Capacity Planning
project: riak
version: 0.10.0+
document: appendix
toc: true
keywords: [planning, cluster]
moved: {
‘1.4.0-‘: ‘/references/appendices/Cluster-Capacity-Planning’
}




This document outlines the various elements and variables that should be
considered when planning your Riak cluster. Your use case and
environment variables will be specific to what you’re building, but this
document should set you on the right path when planning and launching a
Riak cluster.



RAM


RAM [http://en.wikipedia.org/wiki/Random-access_memory] should be
viewed as the most important resource when sizing your Riak cluster.
Aside from helping you keep more data closer to your users, memory will
also be required when running complex MapReduce queries and for caching
data to provide low-latency request times.



Bitcask and Memory Requirements


Your choice of local storage backend for Riak directly impacts your RAM
needs. Though Riak has pluggable backend storage, Bitcask is the
default.  Why? Because it’s built for:



		low-latency request times


		high throughput


		the ability to handle data sets much larger than RAM w/o degradation





Bitcask’s one major requirement, however, is that it must keep the
entire keydir in memory. The keydir is a hash table that maps each
concatenated bucket + key name in a Bitcask (“a Bitcask” is the name for
each file contained within each Bitcask backend) to a fixed-size
structure giving the file, offset, and size of the most recently written
entry for that bucket + key on disk.


If you want to read more about what the keydir is and what it entails,
as well as more about Bitcask in general, see the Hello
Bitcask [http://basho.com/hello-bitcask/] article from
the Basho blog as well as Basho’s Introduction to
Bitcask [http://basho.com/assets/bitcask-intro.pdf] paper.


When you calculate that your RAM needs will exceed your hardware
resources–in other words, if you can’t afford the RAM to enable you to
use Bitcask—we recommend that you use LevelDB.


Check out [[Bitcask Capacity Planning]] for more details on designing a
Bitcask-backed cluster.





LevelDB


If RAM requirements for Bitcask are prohibitive, Basho recommends use of
the LevelDB backend. While LevelDB doesn’t require a large amount of RAM
to operate, supplying it with the maximum amount of memory available
will lead to higher performance.


For more information see [[LevelDB]].







Disk


Now that you have an idea of how much RAM you’ll need, it’s time to
think about disk space. Disk space needs are much easier to calculate
and essentially boil down to this simple equation:



Estimated Total Objects * Average Object Size * n_val


For example, with



		50,000,000 objects


		an average object size of two kilobytes (2,048 bytes)


		the default n_val of 3





then you would need just over approximately 286 GB of disk space in
the entire cluster to accommodate your data.


We believe that databases should be durable out of the box. When we
built Riak, we did so in a way that you could write to disk while
keeping response times below your users’ expectations. So this
calculation assumes that you’ll be keeping the entire data set on disk.


Many of the considerations taken when configuring a machine to serve a
database can be applied to configuring a node for Riak as well. Mounting
disks with noatime and having separate disks for your OS and Riak data
lead to much better performance. See [[System Planning|Planning for a
Riak System]] for more information.





Disk Space Planning and Ownership Handoff


When Riak nodes fail or leave the cluster for some other reason, other
nodes in the cluster begin engaging in the process of ownership
handoff, whereby the remaining nodes assume ownership of the data
partitions handled by the node that has left. While this is an expected
state of affairs in Riak, one side effect is that this requires more
intensive disk space usage from the other nodes, in rare cases to the
point of filling the disk of one or more of those nodes.


When making disk space planning decisions, we recommend that you:



		assume that one or more nodes may be down at any time, and


		monitor your disk space usage and add additional space when usage
exceeds 50-60% of available space.





Another possibility worth considering is using Riak with a filesystem
that allows for growth, for example
LVM [http://en.wikipedia.org/wiki/Logical_Volume_Manager_(Linux)],
RAID [http://en.wikipedia.org/wiki/RAID], or
ZFS [http://en.wikipedia.org/wiki/ZFS].







Read/Write Profile


Read/write ratios, as well as the distribution of key access, should
influence the configuration and design of your cluster. If your use case
is write heavy, you will need less RAM for caching, and if only a
certain portion of keys is accessed regularly, such as a Pareto
distribution [http://en.wikipedia.org/wiki/Pareto_distribution], you
won’t need as much RAM available to cache those keys’ values.





Number of Nodes


The number of nodes (i.e. physical servers) in your Riak Cluster depends
on the number of times data is [[replicated|Replication]] across the
cluster.  To ensure that the cluster is always available to respond to
read and write requests, Basho recommends a “sane default” of N=3
replicas.  This requirement can be met with a three- or four-node
cluster (you can tweak nodes installed through the [[Five Minute
Install]]).


For production deployments, however, we recommend using no fewer than 5
nodes, as node failures in smaller clusters can compromise the
fault-tolerance of the system.  Additionally, in clusters smaller than 5
nodes, a high percentage of the nodes (75-100% of them) will need to
respond to each request, putting undue load on the cluster that may
degrade performance.  For more details on this recommendation, see our
blog post on Why Your Riak Cluster Should Have at Least Five
Nodes [http://basho.com/blog/technical/2012/04/27/Why-Your-Riak-Cluster-Should-Have-At-Least-Five-Nodes/].





Scaling


Riak can be scaled in two ways: vertically, via improved hardware, and
horizontally, by adding more nodes. Both ways can provide performance
and capacity benefits, but should be used in different circumstances.
The [[riak-admin cluster command|riak-admin Command Line#cluster]] can
assist in scaling in both directions.



Vertical Scaling


Vertical scaling, or improving the capabilities of a node/server,
provides greater capacity to the node but does not decrease the overall
load on existing members of the cluster. That is, the ability of the
improved node to handle existing load is increased but the load itself
is unchanged. Reasons to scale vertically include increasing IOPS (I/O
Operations Per Second), increasing CPU/RAM capacity, and increasing disk
capacity.





Horizontal Scaling


Horizontal scaling, or increasing the number of nodes in the cluster,
reduces the responsibilities of each member node by reducing the number
of partitions and providing additional endpoints for client connections.
That is, the capacity of each individual node does not change but its
load is decreased. Reasons to scale horizontally include increasing I/O
concurrency, reducing the load on existing nodes, and increasing disk
capacity.



Note on horizontal scaling

When scaling horizontally, it's best to add all planned nodes at once
with multiple riak-admin cluster join commands followed by
a riak-admin cluster plan and riak-admin cluster
commit.  This will help reduce the amount of data transferred
between nodes in the cluster.




Reducing Horizontal Scale


In the case in which a Riak cluster is over provisioned, or in response
to seasonal usage decreases, the horizontal scale of a Riak cluster can
be decreased using the riak-admin cluster leave command.







Ring Size/Number of Partitions


Ring size is the number of partitions that make up your Riak cluster.
This is a number that is configured before you cluster is started, and
is set in your [[configuration files]].


The default number of partitions in a Riak cluster is 64. This works for
smaller clusters, but if you plan to grow your cluster past 5 nodes it
is recommended that you consider a larger ring size. Ring sizes must be
a power of 2. The minimum number of partitions recommended per node is
10, and you can determine the number of partitions that will be
allocated per node by dividing the number of partitions by the number of
nodes.


Because Riak clusters vary so greatly in terms of the features that are
used, the use cases that are served, and so on, there are no
hard-and-fast rules regarding the ideal partitions-per-node ratio. A
good rule of thumb, however, is that you should have between 10 and 50
data partitions per node. So if you’re running a 3-node development
cluster, a ring size of 64 or 128 should work just fine, while a 10-node
cluster should work well with a ring size of 128 or 256 (64 is too small
while 512 is likely too large).


The table below provides some suggested combinations:


Number of nodes | Number of data partitions
:—————|:————————-
3, 4, 5 | 64, 128
5 | 64, 128
6 | 64, 128, 256
7, 8, 9, 10 | 128, 256
11, 12 | 128, 256, 512


By extension, a ring size of 1024 is advisable only in clusters with
more than 20 nodes, 2048 in clusters with more than 40 nodes, etc.


If you’re unsure about the best number of partitions to use, consult the
Riak mailing
list [http://lists.basho.com/mailman/listinfo/riak-users_lists.basho.com]
for suggestions from the Riak community.





Other Factors


Riak is built to run in a clustered environment, and while it will
compensate for network partitions, they do cause increased load on the
system. In addition, running in a virtualized environment that lacks
low-latency IO access can drastically decrease performance. Before
putting your Riak cluster in production is recommended that you gain a
full understanding of your environment’s behavior so that you know how
your cluster performs under load for an extended period of time. Doing
so will help you size your cluster for future growth and lead to optimal
performance.


Basho recommends using [[Basho Bench]] for benchmarking the performance
of your cluster.



Bandwidth


Riak uses Erlang’s built-in distribution capabilities to provide
reliable access to data. A Riak cluster can be deployed in many
different network topologies, but it is recommended that you produce as
little latency between nodes as possible, as high latency leads to
sub-optimal performance. It is not recommended that you deploy a single
Riak cluster across two datacenters. If your use case requires this
capability, Basho offers a [[Multi Data Center Replication:
Architecture]] option that is built to keep multiple Riak clusters in
sync across several geographically diverse deployments.



		Learn more about Riak Enterprise [http://basho.com/products/riak-overview/].








I/O


In general, the biggest bottleneck for Riak will be the amount of I/O
available to it, especially in the case of write-heavy workloads. Riak
functions much like any other database and the design of your disk
access should take this into account. Because Riak is clustered and your
data is stored on multiple physical nodes, you should consider forgoing
a traditional RAID setup for redundancy and focus on providing the least
latency possible using SATA Drives or SSDs, for example.







Additional resources



		[[System Planning|Planning for a Riak System]]


		[[Basho Bench]]









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/http/list-keys.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: HTTP List Keys
project: riak
version: 0.10.0+
document: api
toc: true
audience: advanced
keywords: [api, http]
group_by: “Bucket-related Operations”
moved: {
‘1.4.0-‘: ‘/references/apis/http/HTTP-List-Keys’
}




Lists keys in a bucket.



Not for production use
This operation requires traversing all keys stored in the cluster and should not be used in production.




Request


GET /buckets/bucket/keys?keys=true    # List all keys
GET /buckets/bucket/keys?keys=stream  # Stream keys to the client



Required query parameters:



		keys - defaults to false. When set to true all keys will be returned in
a single payload.  When set to stream, keys will be returned in
chunked-encoding.








Response


Normal response codes:



		200 OK





Important headers:



		Content-Type - application/json


		Transfer-Encoding - chunked when the keys query parameter is set to
stream.





The JSON object in the response will contain up to two entries,
"props" and "keys" which are present or missing according to the
query parameters and format used.  If keys=stream in the query
parameters, multiple JSON objects in chunked-encoding will be returned
containing "keys" entries.





Example


$ curl -i http://localhost:8098/buckets/jsconf/keys?keys=true
HTTP/1.1 200 OK
Vary: Accept-Encoding
Server: MochiWeb/1.1 WebMachine/1.9.0 (participate in the frantic)
Date: Fri, 30 Sep 2011 15:24:35 GMT
Content-Type: application/json
Content-Length: 239

{"keys":["challenge.jpg","puddi.png","basho.gif","puddikid.jpg","yay.png","
thinking.png","victory.gif","slides","joyent.png","seancribbs-small.jpg","
trollface.jpg","riak_logo_animated1.gif","victory.jpg","challenge.png","
team_cribbs.png"]}







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/theory/concepts/glossary.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Riak Glossary
project: riak
version: 0.10.0+
document: appendix
toc: true
audience: intermediate
keywords: [appendix, concepts]
moved: {
‘1.4.0-‘: ‘/references/appendices/concepts/Riak-Glossary’
}




Below is a list of terms that you may run into frequently in the
documentation for Riak, along with links to more in-depth treatments.



Active Anti-Entropy (AAE)


A continuous background process that compares and repairs any divergent,
missing, or corrupted replicas. Unlike [[read
repair|Replication#Read-Repair]], which is only triggered when data is
read, the Active Anti-Entropy system ensures the integrity of all data
stored in Riak. This is particularly useful in clusters containing “cold
data,” i.e. data that may not be read for long periods of time,
potentially years. Furthermore, unlike the repair command, Active
Anti-Entropy is an automatic process requiring no user intervention. It
is enabled by default in Riak 1.3 and greater.



		[[Replication|Replication#Active-Anti-Entropy-AAE-]]








Basho Bench


Basho Bench is a benchmarking tool created to conduct accurate and
repeatable performance tests and stress tests and to produce performance
graphs.



		[[Basho Bench]]


		[[GitHub repository|http://github.com/basho/basho_bench/]]








Bucket


A bucket is a namespace for data stored in Riak, with a set of common
properties for its contents, e.g. the number of replicas (n_val),
whether siblings are returned on reads (allow_mult), etc. Buckets’
properties are determined by their bucket type (see below).



		[[Buckets]]


		[[HTTP Bucket Operations|HTTP API#Bucket-Operations]]








Bucket Type


Bucket types enable you to create and manage sets of bucket properties
that, when applied to buckets, dictate those buckets’ behavior. They
also act as a third namespace in Riak in addition to buckets and keys.



		[[Bucket Types|Using Bucket Types]]








Cluster


A Riak cluster is a 160-bit integer space which is divided into
equally-sized partitions. Each vnode in the Riak Ring is responsible for
one of these partitions.



		[[Clusters]]


		[[Dynamo]]








Consistent Hashing


Consistent hashing is a technique used to limit the reshuffling of keys
when a hash-table data structure is rebalanced (i.e. when slots are
added or removed). Riak uses consistent hashing to organize its data
storage and replication. Specifically, the vnodes in the Riak Ring
responsible for storing each object are determined using the consistent
hashing technique.



		[[Clusters]]


		[[Dynamo]]


		[[Wikipedia:Consistent Hashing|http://en.wikipedia.org/wiki/Consistent_hashing]]








Data Types


Riak Data Types are data objects inspired by research on
CRDTs [http://hal.upmc.fr/docs/00/55/55/88/PDF/techreport.pdf] that use
certain rules of convergence to dictate how conflicts between replicas
are resolved in Riak’s eventually consistent system. There are five Riak
Data Types in total: flags, registers, counters, sets, and maps.



		[[Data Types Concept|Data Types]]


		[[Using Data Types]]


		[[Data Modeling with Riak Data Types]]








Eventual Consistency


A consistency model that informally guarantees that if no new updates
are made to a given data item, all reads on that item will eventually
return the last updated value. Details about what this means in Riak can
be found in the document below.



		[[Eventual Consistency]]








Gossiping


Riak uses a “gossip protocol” to share and communicate ring state and
bucket properties around the cluster. Whenever a node changes its claim
on the ring, it announces its change via this protocol. Each node also
periodically sends its current view of the ring state to a randomly
selected peer in case any nodes missed previous updates.



		[[Clusters]]


		[[Adding and Removing Nodes|Adding and Removing Nodes#The-Node-Join-Process]]








Hinted Handoff


Hinted handoff is a technique for dealing with node failure in the Riak
cluster in which neighboring nodes temporarily take over storage
operations for the failed node. When the failed node returns to the
cluster, the updates received by the neighboring nodes are handed off to
it.


Hinted handoff allows Riak to ensure database availability.  When a node
fails, Riak can continue to handle requests as if the node were still
there.



		[[Recovering a Failed Node]]








Key


Keys are unique object identifiers in Riak and are scoped within buckets
and bucket types.



		[[Keys and Objects]]


		[[Developer Basics|The Basics]]








Lager


[[Lager|https://github.com/basho/lager]] is an Erlang/OTP framework that
ships as Riak’s default logger.





MapReduce


Riak’s MapReduce gives developers the capability to perform more
powerful queries over the data stored in their key/value data.



		[[Using MapReduce]]


		[[Advanced MapReduce]]








Node


A node is analogous to a physical server. Nodes run a certain number of
nodes, each of which claims a partition in the Riak Ring key space.



		[[Clusters]]


		[[Adding and Removing Nodes]]








Object


An object is another name for a value.



		[[Keys and Objects]]


		[[Developer Basics|The Basics]]








Partition


Partitions are the spaces into which a Riak cluster is divided. Each
vnode in Riak is responsible for a partition. Data is stored on a set
number of partitions determined by the n_val setting, with the target
partitions chosen statically by applying consistent hashing to an
object’s key.



		[[Clusters]]


		[[Eventual Consistency]]


		[[Cluster Capacity Planning|Cluster Capacity Planning#Ring-Size-Number-of-Partitions]]








Quorum


Quorum in Riak has two meanings:



		The quantity of replicas that must respond to a read or write request
before it is considered successful. This is defined as a bucket
property or as one of the relevant parameters to a single request
(R,W,DW,RW).


		A symbolic quantity for the above, quorum, which is equivalent to
n_val / 2 + 1. The default setting is 2.


		[[Eventual Consistency]]


		[[Replication Properties]]


		[[Understanding Riak’s Configurable Behaviors: Part
2|http://basho.com/riaks-config-behaviors-part-2/]]








Sloppy Quorum


During failure scenarios, in which available nodes < total nodes, sloppy
quorum is used to ensure that Riak is still available to take writes.
When a primary node is unavailable, another node will accept its write
requests. When the node returns, data is transferred to the primary node
via the [[Hinted Handoff|Riak Glossary#Hinted-Handoff]] process.





Read Repair


Read repair is an anti-entropy mechanism that Riak uses to
optimistically update stale replicas when they reply to a read request
with stale data.



		[[More about Read Repair|Replication]]








Replica


Replicas are copies of data stored in Riak. The number of replicas
required for both successful reads and writes is configurable in Riak
and should be set based on your application’s consistency and
availability requirements.



		[[Eventual Consistency]]


		[[Understanding Riak’s Configurable Behaviors: Part
2|http://basho.com/riaks-config-behaviors-part-2/]]








Riak Core


Riak Core is the modular distributed systems framework that serves as
the foundation for Riak’s scalable architecture.



		[[Riak Core|https://github.com/basho/riak_core]]


		[[Where To Start With Riak
Core|http://basho.com/where-to-start-with-riak-core/]]








Riak KV


Riak KV is the key/value datastore for Riak.



		[[Riak KV|https://github.com/basho/riak_kv]]








Riak Pipe


Riak Pipe is the processing layer that powers Riak’s MapReduce. It’s
best described as “UNIX pipes for Riak.”



		[[Riak Pipe|https://github.com/basho/riak_pipe]]


		[[Riak Pipe - the New MapReduce Power|http://basho.com/riak-pipe-the-new-mapreduce-power/]]


		[[Riak Pipe - Riak’s Distributed Processing Framework|http://vimeo.com/53910999]]








Riak Search


Riak Search is a distributed, scalable, failure-tolerant, realtime,
full-text search engine integrating Apache
Solr [https://lucene.apache.org/solr/] with Riak KV.



		[[Using Search]]


		[[Search Details]]








Ring


The Riak Ring is a 160-bit integer space. This space is equally divided
into partitions, each of which is claimed by a vnode, which themselves
reside on actual physical server nodes.



		[[Clusters]]


		[[Dynamo]]


		[[Cluster Capacity Planning|Cluster Capacity Planning#Ring-Size-Number-of-Partitions]]








Secondary Indexing (2i)


Secondary Indexing in Riak gives developers the ability to tag an object
stored in Riak with one or more values which can then be queried.



		[[Using Secondary Indexes]]


		[[Advanced Secondary Indexes]]


		[[Repairing Indexes]]








Strong Consistency


While Riak is most well known as an [[eventually consistent|Eventual
Consistency]] data storage system, versions of Riak 2.0 and greater
enable you to apply strong consistency guarantees to some or all of your
data, thus using Riak as a CP (consistent plus partition-tolerant)
rather than AP (highly available plus partition-tolerant) system.



		[[Strong Consistency Concept|Strong Consistency]]


		[[Using Strong Consistency]]








Value


Riak is best described as a key/value store. In versions of Riak prior
to 2.0, all “values” are opaque BLOBs (binary large objects) identified
with a unique key. Values can be any type of data, including a string, a
JSON object, a text document, etc. Modifying values involves fetching
the value that exists in Riak and substituting it for a new value;
operations on values are thus basic CRUD operations.


[[Riak Data Types|Data Types]], added in version 2.0, are an important
exception to this. While still considered values—because they are
stored in bucket type/bucket/key locations, like anything in Riak—Riak
Data Types are not BLOBs and are modified by Data Type-specific
operations.



		[[Keys and Objects]]


		[[Developer Basics|The Basics]]


		[[Data Types]]


		[[Using Data Types]]








Vector Clock


Riak utilizes vector clocks (or vclocks) to handle version control.
Since any node in a Riak cluster is able to handle a request, and not
all nodes need to participate, data versioning is required to keep track
of a current value. When a value is stored in Riak, it is tagged with a
vector clock and establishes the initial version. When it is updated,
the client provides the vector clock of the object being modified so
that this vector clock can be extended to reflect the update.  Riak can
then compare vector clocks on different versions of the object and
determine certain attributes of the data.



		[[Vector clocks]]








Vnode


Vnodes, or “virtual nodes,” are responsible for claiming a partition in
the Riak Ring, and they coordinate requests for these partitions.



		[[Vnodes]]


		[[Clusters]]


		[[Dynamo]]









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/building/planning/bitcask.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Bitcask Capacity Planning
project: riak
version: 0.10.0+
document: appendix
toc: true
keywords: [planning, bitcask]
moved: {
‘1.4.0-‘: ‘/references/appendices/Bitcask-Capacity-Planning’
}




These calculators will assist you in sizing your cluster if you plan to
use the default [[Bitcask]] storage back end.


This page is designed to give you a rough estimate when sizing your
cluster.  The calculations are a best guess, and they tend to be a bit
on the conservative side. It’s important to include a bit of head room
as well as room for unexpected growth so that if demand exceeds
expectations you’ll be able to add more nodes to the cluster and stay
ahead of your requirements.





   
     		
       Total Number of Keys:
       
       
     


     		
       Average Bucket Size (Bytes):
       
       
     


     		
       Average Key Size (Bytes):
       
       
     


     		
       Average Value Size (Bytes):
       
       
     


     		
       RAM Per Node (in GB):
       
       
     


     		
       N (Number of Write Copies):
       
       
     







Recommendations








Details on Bitcask RAM Calculation


With the above information in mind, the following variables will factor
into your RAM calculation:


Variable | Description
:——–|:———–
Static Bitcask per-key overhead | 44.5 bytes per key
Estimated average bucket-plus-key length | The combined number of characters your bucket + keynames will require (on average). We’ll assume 1 byte per character.
Estimated total objects | The total number of key/value pairs your cluster will have when started
Replication Value (n_val) | The number of times each key will be replicated when written to Riak (the default is 3)



The actual equation


Approximate RAM Needed for Bitcask = (static bitcask per key overhead +
estimated average bucket+key length in bytes) * estimate total number of
keys * n_val


Example:



		50,000,000 keys in your cluster to start


		approximately 30 bytes for each bucket+key name


		default n_val of 3





The amount of RAM you would need for Bitcask is about 9.78 GBs across
your entire cluster.


Additionally, Bitcask relies on your operating system’s filesystem cache
to deliver high performance reads. So when sizing your cluster, take
this into account and plan on having several more gigabytes of RAM
available for your filesystem cache.








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/building/planning/backends.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Choosing a Backend
project: riak
version: 0.10.0+
document: tutorials
toc: true
audience: intermediate
keywords: [backends, planning]
next: “[[Bitcask]]“
interest: false
moved: {
‘1.4.0-‘: ‘/tutorials/choosing-a-backend’
}




Pluggable storage backends are a key feature of Riak. They enable you to
choose a low-level storage engine that suits specific operational needs.
For example, if your use case requires maximum throughput, data
persistence, and a bounded keyspace, then Bitcask is a good choice. On
the other hand, if you need to store a large number of keys or to use
secondary indexes, LevelDB is likely a better choice.


The following backends are supported:



		[[Bitcask]]


		[[LevelDB]]


		[[Memory]]


		[[Multi]]





Riak supports the use of custom storage backends as well. See the
storage [[Backend API]] for more details.


Feature or Characteristic                      |Bitcask|LevelDB|Memory|
:———————————————-|:—–:|:—–:|:—-:|
Default Riak backend                           |✓      |       |      |
Persistent                                     |✓      |✓      |      |
Keyspace in RAM                                |✓      |       |✓     |
Keyspace can be greater than available RAM     |       |✓      |      |
Keyspace loaded into RAM on startup1|✓      |       |      |
Objects in RAM                                 |       |       |✓     |
Object expiration                              |✓      |       |✓     |
Secondary indexes                              |       |✓      |✓     |
Tiered storage


1 Noted here since this can affect Riak start times for large
keyspaces.




          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/protocol-buffers/index.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: PBC API
project: riak
version: 1.0.0+
document: api
toc: true
audience: advanced
keywords: [api, protocol-buffer]
index: true
moved: {
‘1.4.0-‘: ‘/references/apis/protocol-buffers’
}




This is an overview of the operations you can perform using the
Protocol Buffers [https://code.google.com/p/protobuf/] Client (PBC)
interface to Riak, and can be used as a guide for developing a
PBC-compliant Riak client.



Protocol


Riak listens on a TCP port (8087 by default) for incoming connections.
Once connected, the client can send a stream of requests on the same
connection.


Each operation consists of a request
message [https://developers.google.com/protocol-buffers/docs/encoding]
and one or more response messages. Messages are all encoded the same
way, consisting of:



		32-bit length of message code + Protocol Buffers message in network
order


		8-bit message code to identify the Protocol Buffers message


		N bytes of Protocol Buffers-encoded message






Example


00 00 00 07 09 0A 01 62 12 01 6B
|----Len---|MC|----Message-----|

Len = 0x07
Message Code (MC) = 0x09 = RpbGetReq
RpbGetReq Message = 0x0A 0x01 0x62 0x12 0x01 0x6B

Decoded Message:
bucket: "b"
key: "k"








Message Codes


Code | Message |
:—-|:——–|
0 | RpbErrorResp |
1 | RpbPingReq |
2 | RpbPingResp |
3 | RpbGetClientIdReq |
4 | RpbGetClientIdResp |
5 | RpbSetClientIdReq |
6 | RpbSetClientIdResp |
7 | RpbGetServerInfoReq |
8 | RpbGetServerInfoResp |
9 | RpbGetReq |
10 | RpbGetResp |
11 | RpbPutReq |
12 | RpbPutResp |
13 | RpbDelReq |
14 | RpbDelResp |
15 | RpbListBucketsReq |
16 | RpbListBucketsResp |
17 | RpbListKeysReq |
18 | RpbListKeysResp |
19 | RpbGetBucketReq |
20 | RpbGetBucketResp |
21 | RpbSetBucketReq |
22 | RpbSetBucketResp |
23 | RpbMapRedReq |
24 | RpbMapRedResp |
25 | RpbIndexReq |
26 | RpbIndexResp |
27 | RpbSearchQueryReq |
28 | RbpSearchQueryResp |
29 | RpbResetBucketReq |
30 | RpbResetBucketResp |
31 | RpbGetBucketTypeReq |
32 | RpbSetBucketTypeResp |
40 | RpbCSBucketReq |
41 | RpbCSUpdateReq |
50 | RpbCounterUpdateReq |
51 | RpbCounterUpdateResp |
52 | RpbCounterGetReq |
53 | RpbCounterGetResp |
54 | RpbYokozunaIndexGetReq |
55 | RpbYokozunaIndexGetResp |
56 | RpbYokozunaIndexPutReq |
57 | RpbYokozunaIndexPutResp |
58 | RpbYokozunaSchemaGetReq |
59 | RpbYokozunaSchemaGetResp |
60 | RpbYokozunaSchemaPutReq |
80 | DtFetchReq |
81 | DtFetchResp |
82 | DtUpdateReq |
83 | DtUpdateResp |
253 | RpbAuthReq |
254 | RpbAuthResp |
255 | RpbStartTls |



Message Definitions

All Protocol Buffers messages are defined in the riak.proto
and other .proto files in the /src directory
of the RiakPB project.


Error Response


If the request does not result in an error, Riak will return one of a
variety of response messages, e.g. RpbGetResp or RpbPutResp,
depending on which request message is sent.


If the server experiences an error processing a request, however, it
will return an RpbErrorResp message instead of the response expected
for the given request (e.g. RbpGetResp is the expected response to
RbpGetReq). Error messages contain an error string and an error code,
like this:


message RpbErrorResp {
    required bytes errmsg = 1;
    required uint32 errcode = 2;
}






Values



		errmsg — A string representation of what went wrong


		errcode — A numeric code. Currently, only RIAKC_ERR_GENERAL=1
is defined.










Bucket Operations



		[[PBC List Buckets]]


		[[PBC List Keys]]


		[[PBC Get Bucket Properties]]


		[[PBC Set Bucket Properties]]


		[[PBC Reset Bucket Properties]]








Object/Key Operations



		[[PBC Fetch Object]]


		[[PBC Store Object]]


		[[PBC Delete Object]]








Query Operations



		[[PBC MapReduce]]


		[[PBC Secondary Indexes]]


		[[PBC Search]]








Server Operations



		[[PBC Ping]]


		[[PBC Server Info]]








Bucket Type Operations



		[[PBC Get Bucket Type]]


		[[PBC Set Bucket Type]]








Data Type Operations



		[[PBC Data Type Fetch]]


		[[PBC Data Type Union]]


		[[PBC Data Type Store]]


		[[PBC Data Type Counter Store]]


		[[PBC Data Type Set Store]]


		[[PBC Data Type Map Store]]








Yokozuna Operations



		[[PBC Yokozuna Index Get]]


		[[PBC Yokozuna Index Put]]


		[[PBC Yokozuna Index Delete]]


		[[PBC Yokozuna Schema Get]]


		[[PBC Yokozuna Schema Put]]









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/cookbooks/Multipart-Upload-Overview.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Multipart Upload Overview
project: riakcs
version: 1.3.0+
document: cookbook
toc: true
index: true
audience: intermediate
keywords: [operator, developer]




Multipart upload allows users of Riak CS to do the following:



		upload large objects, potentially multiple terabytes, as a set of
smaller parts


		pause and resume the upload of a large object


		begin an upload without prior knowledge of the total size of the whole
object





In general, multipart uploads tend to be more efficient because parts
may be uploaded in parallel. In Riak CS they are designed to both behave
like Amazon S3 multipart uploads and to utilize the same user-facing
API.



Note on file size limit

The size limit on individual parts of a multipart upload is 5 gigabytes.

There are three phases to a multipart upload: initiation, parts
upload, and completion. Each phase is described in more detail
below.



Multipart Upload Phases



Initiation


Initiation is done by sending a properly formatted multipart upload
initiation request to Riak CS. If the upload initiation is successful,
the response from Riak CS includes an upload ID.


This ID is a unique identifier for a particular multipart upload and
must be included with all subsequent requests to Riak CS pertaining to
this upload. This includes any of the upload operations described in the
remainder of this document except for listing all active multipart
uploads.


Metadata may be attached to an object uploaded using multipart upload
just like any other object stored in Riak CS. To do so, the metadata
should be included with the multipart upload initiation request.





Parts Upload


A part upload must include both the upload ID received in response to an
initiation request and a part number. Part numbers should be integers
between 1 and 10,000. These numbers identify a part within the context
of the multipart upload and also specify positioning within the final
object. Uploading a part with a part number that has previously been
uploaded results in the previous part associated with that part number
being overwritten.


For each part that is uploaded, Riak CS returns an ETag header as part
of the response. Each ETag value and the part number it corresponds to
should be reserved for use in the multipart upload completion request.


The size of each part may be in the range of 5MB to 5GB.





Completion


Once a complete multipart upload request is received, Riak CS assembles
the object from the uploaded parts. Subsequently, the object is
presented as a single entity to the user with no difference from any
other object stored in Riak CS. The uploaded parts are no longer
individually accessible.


A complete multipart upload request must include the upload ID and a
list of all part numbers and their corresponding ETag values. Riak CS
returns another ETag that identifies the completed object. It should
be noted that this ETag value is not necessarily an MD5 hash of the
object data and that this fact may cause warnings to be issued by some
client libraries or tools.







Terminating an upload



Abort Multipart Upload


A multipart upload request may be aborted prior to sending an upload
completion request. The storage for all parts that have been fully
uploaded will be released.


Part uploads that are in-progress may not have their storage released,
so the abort request should only be sent after all parts already in
progress have uploaded to ensure that all storage is reclaimed.


Once a multipart upload is aborted, the upload ID is no longer valid.







Listing uploads



Active Multipart Uploads


Riak CS can list all of the active multipart uploads for each user
account. The number of multipart uploads included in the response is
capped at 1000. If there are more than 1000 active multipart uploads for
a particular user account, they can be listed by using multiple
requests.





Completed Parts From An Active Upload


Riak CS can list the parts that have been successfully uploaded for a
specific multipart upload. If a multipart upload is comprised of more
than 1000 parts then the parts must be retrieved using multiple parts
requests.


The results of this request are not intended to be used when sending a
complete multipart upload request. The proper procedure is to record the
part numbers and the associated ETag values returned with part upload
responses and use that information when completing a multipart upload.







Storage Calculation


As with Amazon
S3 [http://docs.aws.amazon.com/AmazonS3/latest/dev/mpuoverview.html],
once you initiate a multipart upload, Riak CS retains all of the parts
of the upload until it is either completed or aborted. If the upload is
aborted, Riak CS deletes all upload artifacts and they will no longer be


For example, if a user has uploaded a 10 GB object via multipart upload without
completing the request, the object won’t appear in the list objects
result but its object size will be included in the user’s usage
statistics.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/cookbooks/Using-Riak-CS-With-Keystone.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Using Riak CS With Keystone
project: riakcs
version: 1.4.0+
document: api
toc: true
index: true
audience: advanced
keywords: [authentication, openstack]




This document shows you how to configure Riak CS to work with the
OpenStack Keystone [http://docs.openstack.org/developer/keystone/]
authentication service.


Riak CS can be configured to use either the OpenStack Object Storage API
or the S3 API in conjunction with Keystone for authentication.



Terminology


In a system that uses Keystone for authentication, there are three main
entity types to be aware of: tenants, users, and roles.



		tenant — A tenant is a collection entity that can contain a number
of users


		user — A user represents an individual that uses the OpenStack
system


		role — A role is used to define a link between a user and a tenant
and to indicate permissions of the user within that tenant





The OpenStack tenant_id maps to a key_id to identify a user account
in Riak CS. In OpenStack, only users who are assigned an operator role
for a tenant may perform operations. Other users that belong to a tenant
may be granted access using ACLs.


Currently, Riak CS does not support OpenStack ACLs and only permits
access to  tenant operators. ACLs will be supported at a later date.


By default, Riak CS recognizes admin and swiftoperator as valid
operator roles, but that list can be configured.


Riak CS does not currently support the use of multiple authentication
servers via reseller prefixes, but if this turns out to be important
based on user feedback, support may be added in the future.





Configuration



API


Set the API using the rewrite_module configuration in the Riak CS
riak-cs.conf file, or the old-style app.config file in the riak_cs
section.


To use the S3 API, insert the following:


rewrite_module = riak_cs_s3_rewrite



{riak_cs, [
           %% Other configs
           {rewrite_module, riak_cs_s3_rewrite},
           %% Other configs
          ]}



To use the OpenStack object storage API:


rewrite_module = riak_cs_oos_rewrite



{riak_cs, [
           %% Other configs
           {rewrite_module, riak_cs_oos_rewrite},
           %% Other configs
          ]}






Authentication Module


Set the authentication module using the auth_module configuration in the Riak
CS riak-cs.conf file, or the old-style app.config file in the riak_cs
section.


To specify the Keystone authentication module:


auth_module = riak_cs_keystone_auth



{riak_cs, [
           %% Other configs
           {auth_module, riak_cs_keystone_auth},
           %% Other configs
          ]}






Operator Roles


You may optionally override the default list of valid operator roles in the
advanced.config file, or theapp.config file. The default roles are admin
and swiftoperator, but others may be used:


 {riak_cs, [
            %% Other configs
            {os_operator_roles, [<<"admin">>, <<"swiftoperator">>, <<"cinnamon">>]},
            %% Other configs
           ]}



 {riak_cs, [
            %% Other configs
            {os_operator_roles, [<<"admin">>, <<"swiftoperator">>, <<"cinnamon">>]},
            %% Other configs
           ]}



Note: Each role should be formatted as shown above, with two angle
brackets preceding and following each role value.





Root Host


Make sure that the value of the root_host key in the Riak CS riak-cs.conf
file, or the cs_root_host key in the old-style advanced.config or
app.config files matches the root host used for the object store in the
Keystone configuration.


For example, given the following config snippet from a Keystone configuration
file, the value for root_host (or cs_root_host) should be set to
object.store.host:


catalog.RegionOne.object_store.publicURL = http://object.store.host/v1/AUTH_$(tenant_id)s
catalog.RegionOne.object_store.adminURL = http://object.store.host/
catalog.RegionOne.object_store.internalURL = http://object.store.host/v1/AUTH_$(tenant_id)s



The entry in the Riak CS configuration file would be as follows:


root_host = object.store.host



 {riak_cs, [
            %% Other configs
            {cs_root_host, "object.store.host"},
            %% Other configs
           ]}



 {riak_cs, [
            %% Other configs
            {cs_root_host, "object.store.host"},
            %% Other configs
           ]}






Admin Token


Riak CS needs to know the administration token so that it can successfully
validate user tokens with Keystone. If no value for os_admin_token is
specified, the default value is ADMIN. The value can be set by adding the
following to the riak_cs section of the Riak CS advanced.config or
app.config files:


 {riak_cs, [
            %% Other configs
            {os_admin_token, "SNARFSNARFSNARF"},
            %% Other configs
           ]}



 {riak_cs, [
            %% Other configs
            {os_admin_token, "SNARFSNARFSNARF"},
            %% Other configs
           ]}






Auth URL


Riak CS also needs to know the authentication URL to use to communicate with
Keystone. The default value is "http://localhost:5000/v2.0". To override this
value add the following to the riak_cs section of the Riak CS
advanced.config or app.config files:


 {riak_cs, [
            %% Other configs
            {os_auth_url, "http://host.with.the.most.com:5000/v2.0"},
            %% Other configs
           ]}



 {riak_cs, [
            %% Other configs
            {os_auth_url, "http://host.with.the.most.com:5000/v2.0"},
            %% Other configs
           ]}






Keystone Resources


Riak CS needs to be be aware of a few resources to be able to perform
authentication with Keystone. These resources are unlikely to need to be
changed from their defaults, but that capability is provided in case the
need arises.



		Token Resources





The default is "tokens/". To override this, add the following to the riak_cs
section of the Riak CS advanced.config or app.config files:


 {riak_cs, [
            %% Other configs
            {os_tokens_resource, "mytokens/"},
            %% Other configs
           ]}



 {riak_cs, [
            %% Other configs
            {os_tokens_resource, "mytokens/"},
            %% Other configs
           ]}




		S3 Token Resources





This resource is only used when the S3 API is used in conjunction with Keystone
authentication. The default is "s3tokens/". To override this, add the
following to the riak_cs section of the Riak CS advanced.config or
app.config files:


 {riak_cs, [
            %% Other configs
            {os_s3_tokens_resource, "mys3tokens/"},
            %% Other configs
           ]}



 {riak_cs, [
            %% Other configs
            {os_s3_tokens_resource, "mys3tokens/"},
            %% Other configs
           ]}




		User Resources





The default is "users/". To override this, add the following to the riak_cs
section of the Riak CS advanced.config or app.config files:


 {riak_cs, [
            %% Other configs
            {os_users_resource, "users/"},
            %% Other configs
           ]}



 {riak_cs, [
            %% Other configs
            {os_users_resource, "users/"},
            %% Other configs
           ]}








Testing



Keystone Setup


Follow the procedures documented in [[Keystone Setup]] to set up and run
Keystone.



		Create a tenant called test:


keystone tenant-create --name test






		Using the tenant id of the tenant created in the previous step and
create a user called test that is a member of tenant test:


keystone user-create --name test \
  --pass test --email test@test.com \
  --tenant-id <tenant-id> --enabled true






		Create a role called swiftoperator:


keystone role-create --name swiftoperator






		Add the swiftoperator role for user test:


keystone user-role-add --user-id <user-id>  \
--role-id <role-id> --tenant-id <tenant-id>






		Create ec2 credentials for the user test:


keystone ec2-credentials-create --user_id <user-id> \
--tenant_id <tenant-id>












Testing Openstack API and Keystone authentication



		Start Riak, Riak CS, and Stanchion. Make sure that the values for the
rewrite_module and auth_module keys in the Riak CS riak-cs.conf file,
or the old-style advanced.config or app.config file in the riak_cs
section, are set as follows:


rewrite_module = riak_cs_oos_rewrite
auth_module = riak_cs_keystone_auth



{riak_cs, [
           %% Other configs
           {rewrite_module, riak_cs_oos_rewrite},
           {auth_module, riak_cs_keystone_auth},
           %% Other configs
          ]}



{riak_cs, [
           %% Other configs
           {rewrite_module, riak_cs_oos_rewrite},
           {auth_module, riak_cs_keystone_auth},
           %% Other configs
          ]}






		Get an auth token for the test user to use in requests to Riak CS:


curl -s -d '{"auth": {"tenantName": "test", "passwordCredentials": {"username": "test", "password": "test"}}}' \
  -H 'Content-type: application/json' \
  http://localhost:5000/v2.0/tokens | python -mjson.tool



The value of the id field of the token object in the response is
used as the value for the X-Auth-Token header in all subsequent
requests to Riak CS. The publicURL for the object-store service
listed in the serviceCatalog of the response is the base URL used
for all API requests to Riak CS.


Now export the token and public URL, like this:


export ID=20f1a9e46ebd42a3bdd03e009722eeb8
export URL=http://localhost:8080/v1/AUTH_8d84a17ac99d49fcb6f35c767dd562db






		Create a bucket (S3 bucket == OpenStack container)


curl -X PUT \
  -H 'X-Auth-Token: $ID' \
  $URL/bucket1






		List the buckets


curl -H 'X-Auth-Token: $ID' \
  $URL






		Put an object into the bucket


curl -X PUT \
  -H 'X-Auth-Token: $ID' \
  --data 'abcdefghi123456789' \
  $URL/bucket1/object1






		List the objects in the bucket


curl -H 'X-Auth-Token: $ID' \
  $URL/bucket1






		Fetch the object from the bucket


curl -H 'X-Auth-Token: $ID' \
  $URL/bucket1/object1






		Delete the object


curl -X DELETE \
  -H 'X-Auth-Token: $ID' \
  $URL/bucket1/object1






		Delete the bucket


curl -X DELETE \
  -H 'X-Auth-Token: $ID' \
  $URL/bucket1












Testing S3 API and Keystone Authentication



		If Riak and Stanchion are not already running, start them now.





		Edit the Riak CS riak-cs.conf, or the old-style advanced.config or
app.config file and restart Riak CS. The values for rewrite_module and
auth_module should be set as follows:


rewrite_module = riak_cs_s3_rewrite
auth_module = riak_cs_keystone_auth



 {riak_cs, [
            %% Other configs
            {rewrite_module, riak_cs_s3_rewrite},
            {auth_module, riak_cs_keystone_auth},
            %% Other configs
           ]}



 {riak_cs, [
            %% Other configs
            {rewrite_module, riak_cs_s3_rewrite},
            {auth_module, riak_cs_keystone_auth},
            %% Other configs
           ]}






		Use the values of access and secret from the EC2 credentials
created for the test user as the key_id and key_secret for
signing requests. For example, if you are using s3cmd, use these
credentials for the access_key and secret_key fields of the
.s3cfg file. The subsequent examples are done using s3cmd since
it is a fairly common tool.





		Create a sample file to upload


echo "ilovechickenilovelivermeowmixmeowmixwilldeliver" > upload.txt






		Create a bucket (i.e. container)


s3cmd mb s3://bucket2






		List the buckets


s3cmd ls






		Put an object into the bucket


s3cmd put upload.txt s3://bucket2






		Fetch the object from the bucket


ss3cmd get s3://bucket2/upload.txt download.txt






		Delete the object


s3cmd del s3://bucket2/upload.txt






		Delete the bucket


s3cmd rb s3://bucket2















          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/cookbooks/Usage-and-Billing-Data.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Usage and Billing Data
project: riakcs
version: 1.2.0+
document: cookbook
toc: true
index: true
audience: intermediate
keywords: [developer]




Like many other object storage systems, Riak CS gathers a variety of
usage statistics and makes them available through its administrative
API.



Note on terminology

In this and other documents in the Riak CS documentation, the terms
"storage" and "billing" are used interchangeably. The same goes for the
terms "usage" and access.


Access Statistics


Access stats are tracked on a per-user basis, as rollups for slices of
time. They are stored just like other Riak CS data, in the cs.access
bucket in particular. For information about querying access statistics,
please read [[Querying Access Statistics]].





Overview


The basic process driving usage and billing data in Riak CS is the
following:



		Riak CS determines whom, if anyone, should be billed for each access


		Riak CS send this and some statistical information about the
accesses to an aggregation subsystem


		The aggregation subsystem periodically sends its accumulated log to
be archived


		The archival subsystem sums all recorded accesses for each user and
stores a record for each user for the time slice





Log retrieval then involves simply making a request to Riak for all
slice objects for a user in a time period. No access data will be logged
unless the user for the access is known.



Tracked Statistics


Several statistics are logged automatically is a user is specified for
the request:



		Count — the number of times this operation was used, where each
request counts as one (1)


		BytesIn — the number of bytes that were included in the request
body


		BytesOut — the number of bytes that were sent in the response body





For successful requests, each of these stats is logged under the name
given. For unsuccessful requests, they are logged under this name with a
prefix of either SystemError for requests that end in response codes
500+, or UserError for requests that end in response codes 400-499.
For example, if a user tries to download a nonexistent file, it will be
logged under UserErrorCount with the bytes of the message logged under
UserErrorBytesOut.


These three metrics are logged for each operation separately. The access
logger determines the operation type by comparing the method, resource
module, and path to a known table. For example, it knows that a GET on
the key module with the acl query parameter in the path is a
KeyReadACL operation. A PUT to the same resource without the acl
query parameter is a KeyWrite operation. See [[Querying Access
Statistics]] for a list of all operation types.





Log Accumulation


As resources finish their processing, the access logger module is called
by Webmachine to log the access. This module implements a server that
finds all of the access notes in the request’s log data and stores them
until the current interval ends.


When the current interval ends, the access module transfers ownership of
its accumulated data to the archiver module. The logger module then
resets for logging the next slice’s accesses.



Interval Duration


The length of the log flushing interval is configured by the application
environment variable access_log_flush_factor. The value is expressed
as an integer divisor of the access_archive_period setting. That is,
if access_log_flush_factor is 5 and access_archive_period is 3600
(== 1 hour) seconds, the log will be flushed every 720 seconds (== 12
minutes), which is 5 times per archive period.


The value of access_log_flush_factor must be an integer factor of
access_archive_period. If the factor does not divide the period
evenly, an error will be printed in the log, and the Riak CS node will
refuse to start.


The default value for access_log_flush_factor is 1 (once per archive
period). These settings may be manipulated in the Riak CS app.config
file, normally located at /etc/riak-cs/app.config.





Log Size Trigger for Archival


Archival of the access log will also be triggered if the number of
records waiting to be archived reaches a certain configured level. When
the threshold is reached, all accumulated records are transferred to the
archiver, which writes out a sample with now as the end-time.
Accumulation is then restarted with now as the start time, and will
continue until either the end of the time interval or until the log
threshold is reached again.


This level is configured by the application environment variable
access_log_flush_size. Its default value is 1000000 (one million).





Backlog Caveat


If the logger finds itself so far behind that it would need to schedule
its next archival in the past—that is, after sending a log
accumulation for interval N to the archiver, it finds that the end of
interval N+1 has already passed—the logger will drop the backlog in
its message box by exiting and allowing its supervisor process to
restart it. Just before exiting, it will print an error message
describing how far behind it was:


09:56:02.584 [error] Access logger is running 302 seconds behind, skipping 0 log messages to catch up



With the default one-hour archive period, this case will only be
encountered when the logger is an entire hour behind. This behavior is
meant as a safety valve to prevent that hour lag from growing due to
memory pressure from the logger processes’s message queue.





Manually Triggering Archival


When taking a machine out of service, it may be desirable to trigger log
archival before the end of the interval. To do so, use the
riak-cs-access script with the command flush. It should be installed
on the same path as the riak-cs script. For most OS distributions this
will be at /usr/local/sbin.


By default, the script will wait up to 50 seconds for the logger to
acknowledge that it has passed its accumulation to the archiver and
another 50 seconds for the archiver to acknowledge that it has finished
archiving all accumulations it has received. To wait longer, use the
-w parameter on the command line with an integer number of 5-second
intervals to wait. That is, to wait for 100 seconds for each phase, use:


riak-cs-access flush -w 20








Archive Retrieval


When a request is received for a user’s access stats over some time
period, the objects for all intervals in that time period must be
retrieved.


It is important to note that the archival process does not attempt a
read/modify/write cycle when writing a slice record. The cs.access
bucket should have the allow_mult=true flag set, and so multiple Riak
CS nodes writing the same slice record for the same user create
siblings. Riak CS attempts to check and set the allow_mult bucket
property when it starts up, and will print a warning in the log about
being unable to configure or unable to verify bucket settings if it
fails.


Siblings should be handled at read time. Sibling resolution should be
nothing more than a set union of all records. The HTTP resource serving
the statistics expects to provide them on a node-accumulated basis, so
it is important to set a unique Erlang node name for each Riak CS
node.







Storage Statistics


Storage statistics are also tracked on a per-user basis, as rollups for
slices of time. They are stored in the same Riak cluster as other Riak
CS data, in the cs.storage bucket.


For detailed information about querying storage statistics, please read
[[Querying Storage Statistics]].



High Level



		Storage is calculated for all users either
a.  on a regular schedule or
b.  when manually triggered with the riak-cs-storage script


		Each user’s sum is stored in an object named for the timeslice in
which the aggregation took place


		Sums are broken down by bucket





Log retrieval is then simply making a request to Riak for all slice
objects for a user in a particular time period.



Prerequisite: Code Paths for MapReduce


The storage calculation system uses MapReduce to sum the files in a
bucket. This means you must tell all of your Riak nodes where to find
Riak CS’s compiled files before calculating storage.


See [[Configuring Riak for CS]] for directions on setting this up.







Scheduling and Manual Triggering


Triggering the storage calculation is a matter of setting up a regular
schedule or manually starting the process via the riak-cs-storage
script.



Regular Schedules


If you would like to have an Riak CS node calculate the storage used by every
user at the same time (or times) each day, specify a schedule in that node’s
Riak CS riak-cs.conf file, or in the old-style advanced.config or
app.config file.


In the riak_cs section of the file, add an entry for
storage_schedule like this:


stats.storage.schedule.1 = "06:00"



{storage_schedule, "0600"}



{storage_schedule, "0600"}



The time is given as a string of the form HH:MM (omit the : in the old-style
advanced.config/app.config files, so it’s simply HHMM), representing the
hour and minute GMT to start the calculation process. In this example, the node
would start the storage calculation at 6am GMT every day.


To set up multiple times, simply specify multiple times. For example,
to schedule the calculation to happen at both 6am and 6pm, use:


stats.storage.schedule.1 = "06:00"
stats.storage.schedule.2 = "18:00"



{storage_schedule, ["0600", "1800"]}



{storage_schedule, ["0600", "1800"]}




Note on archive periods

When using multiple times in a storage schedule, they must be scheduled
for different archive periods (see details for `storage_archive_period`
in the **Archival** section below). Extra scheduled times in the same
archive period are skipped. This is intended to allow more than one Riak
CS node to calculate storage statistics concurrently, as they will take
notice of users already calculated by other nodes and skip them (see
details in the Manual Triggering section about overriding this
behavior).

By default, no schedule is specified, so the storage calculation is
never done automatically.





Manual Triggering


If you would rather trigger storage calculations manually, simply use
the batch command in the riak-cs-storage script:


riak-cs-storage batch
# Response:
# Batch storage calculation started.



If there is already a calculation in progress, or if starting the
calculation fails for some other reason, the script will print an error
message saying so.


By default, a manually triggered calculation run will skip users that
have already been calculated in the current archive period (see the
Archival section below for details about storage_archive_period). If
you would rather calculate an additional sample for every user in this
period, add the --recalc (or -r for short) option to the command
line:


riak-cs-storage batch -r # force recalculation of every user






Further Control


In-process batch calculations can also be paused or canceled using the
riak-cs-storage script.


To pause an in-process batch, use:


riak-cs-storage pause
# Response:
# The calculation was paused.



To resume a paused batch, use:


riak-cs-storage resume
# Response:
# The calculation was resumed.



To cancel an in-process batch (whether paused or active), use:


riak-cs-storage cancel
# Response:
# The calculation was canceled.



You can also retrieve the current state of the daemon by using the
status command. The first line will indicate whether the daemon is
idle, active, or paused, and it will be followed by further
details based on progress. For example:


A storage calculation is in progress
Schedule: none defined
Last run started at: 20120316T204135Z
Current run started at: 20120316T204203Z
Next run scheduled for: unknown/never
Elapsed time of current run: 3
Users completed in current run: 1
Users left in current run: 4








Results


When the node finishes calculating every user’s storage, it will print a
message to the log noting how long the entire process took:


08:33:19.282 [info] Finished storage calculation in 1 seconds.






Process


The calculation process is coordinated by a long-lived finite state
machine process that handles both the scheduling (if a schedule is
defined) and the running of the process.


When a storage calculation starts, the first step is to obtain a list of
known users of the system. Each user’s record contains information about
the buckets that the user owns.


For each bucket that a user owns, a MapReduce query is run. The query’s
inputs are the list of the keys in the bucket (the input is
BucketName, so the keys stay on the server). The query then has two
phases: a map that produces tuples of the form {1, ByteSize(File)}—if active; nothing if inactive—and a reduce
that sums those tuples element-wise. The result is one tuple whose first
element is the number of files in the bucket and whose second element is
the total number of bytes stored in that file.


Only one bucket is calculated at a time to prevent putting too much load
on the Riak cluster. Only one user is calculated at a time as well to
prevent too large of a temporary list on the Riak CS node.


Once the sum for each of the user’s buckets is calculated, a record is
written to the cs.storage Riak bucket.





Archival


Records written to the cs.storage bucket are very similar to records
written to the cs.access bucket used for logging access statistics.
The value is a JSON object with one field per bucket. The key is a
combination of the user’s key_id and the timestamp of the time slice
for which the calculation was run.


The period for storage archival is separate from the period for access
archival. The storage archival period is configured by the application
environment variable storage_archive_period. The default is 86400 (one
day). This is because storage calculations are expected to be archived
much less frequently than access logs, and so specifying fewer possible
keys to look up later reduces overhead at reporting time.








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/cookbooks/multibag.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Riak CS Multibag Support
project: riakcs
version: 1.5.0+
document: cookbook
header: riakee
audience: advanced
keywords: [cs, multibag, operator]





Technical Preview

Riak CS Multibag is currently in technical preview mode and is
available only to Riak
Enterprise customers. It is not yet suitable for production use.

While Riak CS Enterprise [http://basho.com/riak-enterprise] enables
you to distribute Riak CS objects across multiple data centers in a
[[source/sink pattern|Multi Data Center Replication v3 Architecture]],
all linked clusters are treated the same. In Riak CS version 1.5.0,
however, Basho has added multibag support to Riak CS Enterprise.


With multibag support, you can store object manifests and blocks in
separate clusters or groups of clusters, a.k.a. bags, enhancing the
scalability and overall storage capabilities of a Riak CS installation.



Bags


A bag is a set of clusters linked together via [[Multi-Datacenter
Replication|Multi Data Center Replication v3 Architecture]] (MDC).
Without MDC support, a bag consists of a single cluster. With MDC
support, however, a bag can consist of several linked clusters. You can
assign bags weights that determine the likelihood that objects,
blocks, and manifests will be stored there. For example, if you expect
to use one bag more heavily than another you can increase the weight of
that bag using the interface described in [[Riak CS Command-line
Tools]].





The Master Bag


In a Riak CS multibag setup, there is one special bag, known as the
master bag, that bears a set of special responsibilities. It stores
objects such as:



		User information (for authentication and other purposes)


		Bucket-related information, e.g. the bag in which each bucket is
stored


		Access statistics regarding Riak CS usage








Multibag Configuration


In order to use Riak CS multibag, you need to modify multiple configuration
files. First, in each Riak CS node you need to alter the node’s
advanced.config or app.config file to specify the host and port of each bag.
For example, if you wanted to set up bags on host 127.0.0.1 with three different
ports – 10017,10027, and 10037 – you would add the following section:


{riak_cs_multibag, [
    %% Other configs
    {bags,
     [
      {"bagA", "127.0.0.1", 10017},
      {"bagB", "127.0.0.1", 10027},
      {"bagC", "127.0.0.1", 10037}
     ]},
     %% Other configs
]},



{riak_cs_multibag, [
    %% Other configs
    {bags,
     [
      {"bagA", "127.0.0.1", 10017},
      {"bagB", "127.0.0.1", 10027},
      {"bagC", "127.0.0.1", 10037}
     ]},
     %% Other configs
]},



As with all configuration changes, each node must be restarted for the
changes to take effect.


In addition to configuring Riak CS to use multibag support, you will need to
mirror the configuration changes shown above in Stanchion. In the
advanced.config or app.config file in each Stanchion node, the following
section would need to be inserted:


{stanchion, [
    %% Other configs
    {bags,
     [
      {"bagA", "127.0.0.1", 10017},
      {"bagB", "127.0.0.1", 10027},
      {"bagC", "127.0.0.1", 10037}
     ]
    }
    %% Other configs
]},



{stanchion, [
    %% Other configs
    {bags,
     [
      {"bagA", "127.0.0.1", 10017},
      {"bagB", "127.0.0.1", 10027},
      {"bagC", "127.0.0.1", 10037}
     ]
    }
    %% Other configs
]},






Transitioning to Multibag Support


If you have an existing Riak CS installation without multibag support
and would like to add it, there is a series of basic steps to follow.



Stanchion


Stanchion houses some of the basic functionality required for Riak CS
multibag support. The first step in transitioning to multibag support
is to upgrade Stanchion to a version that supports Riak CS multibag.
That involves performing the following steps on each node:



		Stop the node


		Upgrade Stanchion to a version that supports Riak CS multibag, i.e.
Riak CS 1.5.0 and later


		Set your desired Stanchion [[configuration|Configuring Stanchion]]


		Start Stanchion on each node








Add Clusters


To add clusters to a multibag installation, you must set up Riak CS and
Stanchion to communicate with those clusters. You can specify the
connection information as explained above in the [[Multibag
Configuration|Riak CS Multibag Support#Multibag-Configuration]] section.





Set Weights


When a new bag is added, you must first set the weight of that bag to
zero using the [[riak-cs-multibag|Riak CS Command-Line Tools]]
command-line interface. The example below sets the weight of the
recently added bag bagA to zero:


riak-cs-multibag weight bagA 0



All weights are stored in the [[master bag|Riak CS Multibag
Support#The-Master-Bag]] and shared with all Riak CS nodes, which means
that you only have to set weights once for them to be valid throughout
your cluster.


All bags must begin their life with a weight of zero. However, you can
set non-zero weights once all Riak CS and Stanchion nodes are properly
set up to recognize one another in the cluster. Let’s say that we’ve set
up three bags, bagA, bagB, and bagC. We want to assign them the
weights 40, 40, and 20, respectively. The following commands would
accomplish that:


riak-cs-multibag weight bagA 40
riak-cs-multibag weight bagB 40
riak-cs-multibag weight bagC 20



The weights don’t need to add up to 100 or to any specific number. Each
weight will be calculated as a percentage of the total assigned weights.
Thus, if a fourth bag were added, you could assign it a weight of 30
without changing the other weights.


Congratulations! Your Riak CS installation is now ready to use the new
multibag feature.







Command Line Interface


Complete documentation for the riak-cs-multibag interface can be found
in our documentation on [[Riak CS Command Line Tools|Riak CS Command
Line Tools#riak-cs-multibag]].





Limitations


Riak CS multibag does not currently support [[proxy
gets|Multi Data Center Replication v3 Operations#Riak-CS-MDC-Gets]] from
sink clusters.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/cookbooks/command-line-tools.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Riak CS Command-line Tools
project: riakcs
version: 1.5.0+
document: cookbook
toc: true
audience: intermediate
keywords: [command-line, riak-cs]




Riak CS comes equipped with a variety of command-line interfaces that
you can use to manage each node in your Riak CS cluster. The scripts for
these commands are available by default in the /bin directory of each
node.



riak-cs


This is the primary script for controlling the processes associated with
a Riak CS node. Running the riak-cs command by itself will output a
listing of available commands:


Usage: riak-cs {start | stop | restart | reboot | ping | console | attach |
                    attach-direct | ertspath | chkconfig | escript | version |
                    getpid | top [-interval N] [-sort reductions|memory|msg_q] [-lines N] }




start


Starts the Riak CS node.


riak-cs start



If starting the node is successful, you will see no return output. If
the node is already running, this command will return Node is already running!.





stop


Stops the Riak CS node.


riak-cs stop



This command will print ok if the stoppage is successful.


If you attempt to run riak-cs stop on a node that is not currently
running, you will see the following:


Node <nodename> not responding to pings.
Node is not running!






restart


Stops and then starts a running Riak CS node without exiting the Erlang
VM.


riak-cs restart



Prints ok when successful. If the node is already stopped or not
responding, you will see the following output:


Node <nodename> not responding to pings.






reboot


Stops all applications and starts without restarting the Erlang VM.


riak-cs reboot




Deprecation notice

The riak-cs reboot command has been deprecated. We
recommend using the riak-cs restart command instead.




ping


Checks whether the Riak CS node is currently running.


riak-cs ping



Prints pong when the node is running or Node <nodename> not responding to pings when the node is stopped or not responding.





console


Starts the Riak CS node in the foreground, providing direct access to
the node via the Erlang shell.


riak-cs console



If the node is already running in the background, you will see the
output Node is already running - use 'riak-cs attach' instead. If the
command is successful, you can exit the shell by pressing Ctrl-C
twice.





attach


Attaches to the console of a Riak CS node running in the background,
providing access to the Erlang shell and to runtime messages.


riak-cs attach



Prints Node is not running! when the node cannot be reached.





attach-direct


Attaches to the console of a Riak CS node running in the background
using a directly connected first-in-first-out (FIFO), providing access
to the Erlang shell and to runtime messages.


riak-cs attach-direct



Prints Node is not running! when the node cannot be reached. You can
exit the shell by pressing Ctrl-D.





ertspath


Outputs the path of Riak CS’s Erlang runtime environment.


riak-cs ertspath






chkconfig


Checks whether the Riak CS nodes configuration files are valid.


riak-cs chkconfig



If the files are valid, config is OK will be included in the output.





escript


Provides a means of calling escript [http://www.erlang.org/doc/man/escript.html]
scripts using Riak CS’s Erlang runtime environment.


riak-cs escript <filename>






version


Outputs the Riak CS version identifier.


riak-cs version






getpid


Outputs the process identifier for the currently running instance of
Riak CS.


riak-cs getpid






top


The riak-cs top command provides information about what the Erlang
processes inside of Riak CS are doing. top reports process reductions
(an indicator of CPU utilization), memory used, and message queue sizes.


riak-cs top [-interval N] [-sort reductions|memory|msg_q] [-lines N]



Options:



		interval specifies the number of seconds between each update of the
top output and defaults to 5


		sort determines the category on which riak-cs top sorts and
defaults to reductions


		lines specifies the number of processes to display in the top
output and defaults to 10





More information about Erlang’s etop tool can be found in the
official documentation [http://www.erlang.org/doc/man/etop.html].







riak-cs-admin gc


This command controls Riak CS’s [[garbage collection]] system.


riak-cs-admin gc <subcommand>




batch


Starts garbage collection for a batch of eligible objects.


riak-cs-admin gc batch



Optionally, you can specify the number of leeway seconds:


riak-cs-admin gc batch <leeway_seconds>






status


Returns the status of the garbage collection daemon, depending on its
current state.


riak-cs-admin gc status






pause


Pauses the current batched garbage collection process and halts any
further garbage collection until the daemon is resumed.


riak-cs-admin gc pause






resume


Resumes a paused garbage collection process. This will have no effect if
there is no previously paused process.


riak-cs-admin gc resume






cancel


Cancels the current batch of garbage collection. This will have no
effect if there is no currently running garbage collection process.


riak-cs-admin gc cancel






set-interval


Sets or updates the garbage collection interval. Expressed in terms of
seconds:


riak-cs-admin gc set-interval <interval_in_seconds>






set-leeway


Sets or updates the garbage collection leeway time, which indicates how
many seconds must elapse after an object is deleted or overwritten
before the garbage collection system may reap the object. Expressed in
seconds.


riak-cs-admin gc set-leeway <interval_in_seconds>








riak-cs-stanchion


This command interface controls aspects of the interaction between Riak
CS and Stanchion, the access control and user management platform
undergirding Riak CS.



switch


Temporarily changes the host and/or port used by Stanchion. This change
is effective until the node is restarted, at which point Stanchion will
begin listening on the host and port specified in your [[configuration
files]].


riak-cs-stanchion switch HOST PORT



The following command would change the host to 100.0.0.1 and the port to
9999:


riak-cs-stanchion switch 100.0.0.1 9999



The following output would appear if the change were successful:


Successfully switched stanchion to 100.0.0.1:9999: This change is only effective until restart.
To make permanent change, be sure to edit app.config file.






show


Shows the current host/port address for Stanchion.


riak-cs-stanchion show



The output should look something like this:


Current Stanchion Address: http://127.0.0.1:8085








riak-cs-admin storage


This command is the direct equivalent of riak-cs-admin storage
documented [[above|Riak CS Command Line Tools#riak-cs-admin]].





stanchion


This command interface enables you to control Stanchion, the user
management and access control platform undergirding Riak CS.



start


Starts Stanchion in the background.


stanchion start



If Stanchion is already running on the node, the message Node is already running! will be returned.





stop


Stops Stanchion on the node.


stanchion stop



Prints ok when successful or Node <nodename> not responding to pings if the Stanchion node is not running.





restart


Stops and then starts the running Stanchion node without exiting the
Erlang VM. Prints ok when successful or Node <nodename> not responding to pings. when the node is stopped or not responding.


stanchion restart






reboot


Stops and then restarts the running node, exiting the Erlang VM. Prints
ok when successful or Node <nodename> not responding to pings. when
the node is stopped or not responding.


stanchion reboot






ping


Checks that the Stanchion node is running. Prints pong when
successful or Node <nodename> not responding to pings. when the
Stanchion node is stopped or not responding.


stanchion ping






console


Starts the Stanchion node in the foreground, providing access to the
Erlang shell and to runtime messages.


stanchion console



Prints Node is already running - use 'stanchion attach' instead if
the node is already running in the background.





attach


Attaches to the console of a Stanchion node running in the background,
providing access to the Erlang shell and to runtime messages.


stanchion attach



Prints Node is not running! when the node cannot be reached.





attach-direct


Attaches to the console of a Stanchion node running in the background
using a directly connected first-in-first-out (FIFO), providing access
to the Erlang shell and to runtime messages.


stanchion attach-direct



Prints Node is not running! when the node cannot be reached. You can
exit the shell by typing Ctrl-D.





ertspath


Outputs the path of the Stanchion node’s Erlang runtime environment.


stanchion ertspath






chkconfig


Checks whether Stanchion’s configuration file is valid.


stanchion chkconfig



If the file is valid, config is OK will be returned. If not,
appropriate error messages will be returned.





escript


Provides a means of calling escript [http://www.erlang.org/doc/man/escript.html]
scripts using Stanchion’s Erlang runtime environment.


stanchion escript <filename>






version


Outputs the Stanchion version identifier.


stanchion version






getpid


Outputs the process identifier for the currently running instance of
Stanchion.


stanchion getpid






top


The stanchion top command provides information about what the Erlang
processes inside of Stanchion are doing. top reports process
reductions (an indicator of CPU utilization), memory used, and message
queue sizes.


stanchion top [-interval N] [-sort reductions|memory|msg_q] [-lines N]



Options:



		interval specifies the number of seconds between each update of the
top output and defaults to 5


		sort determines the category on which riak-cs top sorts and
defaults to reductions


		lines specifies the number of processes to display in the top
output and defaults to 10





More information about Erlang’s etop tool can be found in the
official documentation [http://www.erlang.org/doc/man/etop.html].







riak-cs-access


This command is the direct equivalent of riak-cs-admin access,
documented [[above|Riak CS Command-line Tools#riak-cs-admin-access]].





riak-cs-multibag


Riak CS version 1.5 offers support for multibag operations. The
multibag command interface enables you to interact with that system.
More information can be found in [[Riak CS Multibag Support]].



Note: technical preview

Riak CS multibag support is available only as a technical preview for
users of Riak CS installations with support for Multi-Datacenter
Replication.


list-bags


Lists the bags currently available in a multi-cluster Riak CS setup.


riak-cs-multibag list-bags



The output will list the name, host, and port for each bag, as in the
following example output:


bag-A 127.0.0.1:10017
bag-B 127.0.0.1:10027
# and so on






weight


When new buckets are created, they are randomly assigned to a bag. The
weight of each bag is the likelihood, expressed as a percentage, that
new buckets will be stored in a given bag. You can use the commands
under the weight heading to set, list, and refresh weight information
stored in the master bag (which is shared between all Riak nodes).


When the weight command itself is used without an argument, it will
return the weights of all bags.


riak-cs-multibag weight



You can also return the weight for a specific bag on the basis of its
bag ID:


riak-cs-multibag weight <bag id>



You can also set the weight for a bag:


riak-cs-multibag weight <bag id> <weight>



This command would set the weight for bag bag-A to 40:


riak-cs-multibag weight bag-A 40



Weights are assigned to bags as an integer. The percentage weight
applied to a given bag is a function of the total weight assigned to all
bags. So if you assign 30 to bag A, 30 to bag B, and 60 to bag C, they
will bear the following weights, respectively: 25%, 25%, and 50%.
Consequently, there is no specific number to which all bag weights need
to add up.





weight-manifest


Retrieves the manifest weights for all currently available bags.


riak-cs-multibag weight-manifest



You can also retrieve the manifest weights for a specific bag on the
basis of its bag ID:


riak-cs-multibag weight-manifest <bag id>



You can also set the manifest weight for a specific bag:


riak-cs-multibag weight-manifest <bag id> <weight>






weight-block


Retrieves the block weights for all currently available bags.


riak-cs-multibag weight-block



You can also retrieve the block weight for a specific bag on the basis
of its bag ID:


riak-cs-multibag weight-block <bag id>



Or you can set the weight block for a specific bag:


riak-cs-multibag weight-block <bag id> <weight>






refresh


Fetches all current weights from the master bag.


riak-cs-multibag refresh



When a bag’s weight is updated, that weight is stored in the [[master
bag|Riak CS Multibag Support#The-Master-Bag]] and cached in Riak CS.
Riak CS fetches weights from the master bag only periodically. The
refresh command syncs the weights stored in the master bag with the
weights cached in Riak CS so that there is no discrepancy.


This command is particularly useful immediately after any bag weight
changes are made that need to be registered across all clusters.








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/cookbooks/Querying-Access-Statistics.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Querying Access Statistics
project: riakcs
version: 1.2.0+
document: cookbook
toc: true
audience: intermediate
keywords: [operator, troubleshooting]




Access statistics are tracked on a per-user basis as rollups for slices
of time. Querying these statistics is done via the
/riak-cs/usage/$USER_KEY_ID resource.



Note on terminology

In this and other documents in the Riak CS documentation, the terms
"storage" and "billing" are used interchangeably. The same goes for the
terms "usage" and access.

For information about how access statistics are logged, please read
[[Usage and Billing Data]].


The following sections discuss accessing the access statistics using
bare HTTP requests. Query parameters are used to specify the types and
date ranges of information to include. For information on using s3cmd
(or other tools) to fetch statistics as S3 objects, skip to the The
Magic usage Bucket section.


The examples on this page assume that the admin_port has not
been configured to something other than default CS port of 8080.



Choosing the Result Format


Results are available as either JSON or XML. Request the appropriate
format by using the HTTP Accept header with either application/json
or application/xml, respectively.





Specifying the User


Access statistics are provided on a per-user basis. Specify which user’s
statistics you want by providing that user’s key_id in the URL. For
example, to get access statistics for the user key
8NK4FH2SGKJJM8JIP2GU, use the URL
/riak-cs/usage/8NK4FH2SGKJJM8JIP2GU.


Note: The new user id generator should not include non-URL-safe
characters, but if it does, those characters will need to be escaped
in this URL.


A 404 code with an error message body will be returned if the user
does not exist. For example, there is no ASDF user in my cluster, so
fetching http://localhost:8080/riak-cs/usage/ASDF produces the
following JSON/XML (reformatted for easy reading):


HTTP/1.1 404 Object Not Found

{
  "Error": {
    "Message":"Unknown user"
  }
}



HTTP/1.1 404 Object Not Found

<?xml version="1.0" encoding="UTF-8"?>
  <Error>
    <Message>Unknown user</Message>
  </Error>






Enable Access Results


Authentication Required

Queries to the usage resources described here must be authenticated as
described in the [[Authentication documentation|Authentication]]. Keep
this in mind when using `curl`. Authentication credentials for `s3cmd`
or `s3-curl` can be specified in their respective configuration
files.

The usage HTTP resource provides both access and storage statistics.
Since each of these queries can be taxing in its own right, they are
both omitted from the result by default:


curl http://localhost:8080/riak-cs/usage/8NK4FH2SGKJJM8JIP2GU



Sample responses (reformatted for easy reading):


{
  "Access" :"not_requested",
  "Storage":"not_requested"
}



<?xml version="1.0" encoding="UTF-8"?>
  <Usage>
    <Access>not_requested</Access>
    <Storage>not_requested</Storage>
  </Usage>



To request that access results be included, pass the query parameter a
to the resource (any true-ish value will work, including just the bare
a, t, true, 1, y, and yes):


curl http://localhost:8080/riak-cs/usage/8NK4FH2SGKJJM8JIP2GU?a



Sample responses (reformatted for easy reading):


{
  "Access": [
    { "Errors": [] }
  ],
  "Storage": "not_requested"
}



<?xml version="1.0" encoding="UTF-8"?>
  <Usage>
    <Access>
      <Errors/>
    </Access>
    <Storage>not_requested</Storage>
  </Usage>



There are no statistics included in this report because the default time
span is now, which is not available in the archives.





Specifying the Time Span to Report


Request the time span you want data for by passing s (start) and e
(end) query parameters to the resource. The slices for which data will
be returned are all of those between s and e, as well as the slice
including s and the slice including e.


For example, for slices A-I:


   A     B     C     D     E     F     G     H     I
|-----|-----|-----|-----|-----|-----|-----|-----|-----|
               s                 e



Specifying an s that falls somewhere in slice C and an e that
falls somewhere in slice F means that data for slices C, D, E,
and F will be returned.


Each should be provided in ISO 8601 format (yyyymmddThhmmssZ). For
example, the following values would request the span between 2:00pm and
4:00pm (GMT) on January 30, 2012:


http://localhost:8080/riak-cs/usage/8NK4FH2SGKJJM8JIP2GU?a&s=20120315T140000Z&e=20120315T160000Z



Sample responses (reformatted for easy reading):


{
  "Access": [
    {
      "Node": "riak_cs@127.0.0.1",
      "Samples": [
        {
          "StartTime": "20120315T150000Z",
          "EndTime":"20120315T152931Z",
          "KeyWrite": { "BytesIn": 32505856, "Count": 1 },
          "KeyRead": { "BytesOut": 32505856, "Count": 1 },
          "BucketRead": { "BytesOut": 3633, "Count": 5 }
        }
      ]
    },
    { 
      "Errors": []
    }
  ],
  "Storage": "not_requested"
}



<?xml version="1.0" encoding="UTF-8"?>
  <Usage>
    <Access>
      <Node name="riak_cs@127.0.0.1">
        <Sample StartTime="20120315T150000Z" EndTime="20120315T152931Z">
          <Operation type="KeyWrite">
            <BytesIn>32505856</BytesIn>
            <Count>1</Count>
          </Operation>
          <Operation type="KeyRead">
            <BytesOut>32505856</BytesOut>
            <Count>1</Count>
          </Operation>
          <Operation type="BucketRead">
            <BytesOut>3633</BytesOut>
            <Count>5</Count>
          </Operation>
        </Sample>
      </Node>
      <Errors/>
    </Access>
    <Storage>not_requested</Storage>
  </Usage>



The behavior of the resource when the s or e parameter is omitted
may change, but is currently as follows:



		Omitting e will cause the resource to return only data for the slice
in which s falls


		Omitting s will cause the resource to return data for all slices
from e through the current time





Or, more simply, the default s is now and the default e is equal
to s.



Time Span Limit


To prevent excessive time and memory from being accidentally consumed,
the amount of time that may be retrieved in any request is limited.


The limit is configured by the riak_cs application environment
variable usage_request_limit. The value is expressed as an integer
number of archive intervals (see [[Usage and Billing Data]] for a
description of archive intervals).


The default value is 744, which is 31 days at the default archive
interval of one hour.







The Magic usage Bucket


If you would prefer to use s3cmd or another S3 library to fetch access
stats, you may do so by referencing objects in the global usage
bucket. The format for objects in the usage bucket is:


s3://riak-cs/usage/UserKeyId/Options/StartTime/EndTime



Or, if / is automatically quoted (%2f) by your client, the .
character may be used (this is also nicer for s3cmd, since it will
automatically choose a more useful name for the file it creates):


s3://riak-cs/usage/UserKeyId.Options.StartTime.EndTime



That is, in the usage bucket, this is a sub-bucket named for the user’s
key_id (the UserKeyId part of the path).


Inside the user’s bucket is a sub-bucket named for the contents and
their representation (the Options part of the path). This portion
should be:



		aj to receive access statistics as JSON data


		ax to receive access statistics as XML data





The next two portions of the path, StartTime and EndTime, are the
start and end times for the window to report, respectively. These take
the same ISO 8601 format that the s and e query parameters take in
the other request method.


As an example, making the same request as the last example, for
JSON-format access statistics between 2:00pm and 4:00pm GMT on January
30, 2012, looks like this:


s3cmd get s3://riak-cs/usage/8NK4FH2SGKJJM8JIP2GU/aj/20120315T140000Z/20120315T160000Z



Note: All objects in the usage bucket are read-only. PUT and
DELETE requests will fail for them.


Note: Regular users are only allowed to access the statistics bucket
for their own key_id. The admin user is allowed to access any stat
bucket.





Interpreting the Results


Results of the access query are grouped by node. That is, within the
access field of the result will be one entry for each Riak CS node that
had data for the requested time span.


Each node entry will contain one or more “samples” for each time slice
that the user accessed that Riak CS node. The sample will have a start
time and end time describing what span the sample covers.


The other entries of each sample are the operations the user performed
during the sampled time. Operation statistics are provided as rollups
for each operation type. The rollup includes one or more of the
following fields:



		Count — the number of times this operation was used successfully


		UserErrorCount — the number of times this operation was used but
ended in a 400-499 response code


		SystemErrorCount — the number of times this operation was used but
ended in a 500-599 response code


		BytesIn — the number of bytes that were included in the request
bodies of successful operations


		UserErrorBytesIn — the number of bytes that were included in the
request bodies of operations that ended in 400-499 response codes


		SystemErrorBytesIn — the number of bytes that were included in the
request bodies of operations that ended in 500-599 response codes


		BytesOut — the number of bytes that were included in the response
bodies of successful operations


		UserErrorBytesOut — the number of bytes that were included in the
response bodies of operations that ended in 400-499 response codes


		SystemErrorBytesOut — the number of bytes that were included in
the response bodies of operations that ended in 500-599 response codes


		BytesOutIncomplete — the number of bytes that were sent in
response bodies before the client disconnected, if there was more that
could have been sent afterward (i.e. the byte count of partial
downloads)





It is important to note that accesses are only logged when the
Webmachine request finishes. This means that, for example, an upload
started in one time slice but ended in another will only add to the
bytes in field for the time slice in which in finished, rather than
splitting the statistics between the slices in which they actually
happened.



Operation Types


The operation types that are currently tracked are the following:


Operation | Description
:———|:———–
ListBuckets | Lists a user’s buckets (GET /)
UsageRead | Reads a user’s usage statistics (GET /riak-cs/usage/user/*)
BucketRead | Lists the files in a bucket (GET /bucket)
BucketStat | Checks for the existence of a bucket (HEAD /bucket)
BucketCreate | Creates a bucket (PUT /bucket)
BucketDelete | Deletes a bucket (DELETE /bucket)
BucketUnknown | Unknown bucket operation (?? /bucket)
BucketReadACL | Retrieves the ACL of a bucket (GET /bucket?acl)
BucketStatACL | Checks for the existence of a bucket (HEAD /bucket?acl)
BucketWriteACL | Changes the ACL of a bucket (PUT /bucket?acl)
BucketUnknownACL | Unknown bucket ACL operation (?? /bucket?acl)
KeyRead | Fetches an object (GET /bucket/key)
KeyStat | Checks for the existence of an object (HEAD /bucket/key)
KeyWrite | Uploads an object (PUT /bucket/key)
KeyDelete | Deletes an object (DELETE /bucket/key)
KeyUnknown | Unknown object operation (?? /bucket/key)
KeyReadACL | Retrieves the ACL of a key (GET /bucket/key?acl)
KeyStatACL | Checks for the existence of an object (HEAD /bucket/key?acl)
KeyWriteACL | Changes the ACL of an object (PUT /bucket/key?acl)
KeyUnknownACL | Unknown key ACL operation (?? /bucket/key?acl)
UnknownGET | A GET was issued on an unrecognized resource, which likely means that the riak_cs_access_logger:operation/1 function is out of date
UnknownHEAD | See UnknownGET
UnknownPUT | See UnknownGET
UnknownPOST | See UnknownGET
UnknownDELETE | See UnknownGET





Lookup Errors


In addition to the node entries in the access results, there is also an
entry for errors that Riak CS encountered while fetching access
archives. The errors list is very similar to the samples of a node list:
each entry will contain the start and end times of the period, as well
as the “reason” the lookup failed.


For example, if the Riak lookups that Riak CS uses end in timeout
instead of success, the result including an errors list might look like
the following (reformatted for easy reading):


{
  "Access": [
    {
      "Errors": [
        {
          "StartTime": "20120315T160000Z",
          "EndTime": "20120315T170000Z",
          "Reason": "timeout"
        }
      ]
    }
  ],
  "Storage": "not_requested"
}



<?xml version="1.0" encoding="UTF-8"?>
  <Usage>
    <Access>
      <Errors>
        <Sample StartTime="20120315T160000Z" EndTime="20120315T170000Z">
          <Reason>timeout</Reason>
        </Sample>
      </Errors>
    </Access>
    <Storage>not_requested</Storage>
  </Usage>









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/cookbooks/Account-Management.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Account Management
project: riakcs
version: 1.2.0+
document: cookbook
toc: true
audience: intermediate
keywords: [operator]





Creating a User Account


Create a user account by performing an HTTP POST or PUT with a
unique email address and username. Here’s an example:


curl -X POST http://localhost:8080/riak-cs/user \
  -H 'Content-Type: application/json' \
  --data '{"email":"foobar@example.com", "name":"foo bar"}' \




Note on admin users

By default, only the admin user may create new user accounts. If you
need to create a user account without authenticating yourself, you must
set `{anonymous_user_creation, true}` in the Riak CS `app.config`.

The submitted user document may be either JSON or XML, but the type
should match the value of the Content-Type header used. Here are some
examples for JSON and XML input formats.


{
  "email": "foobar@example.com",
  "name": "foo bar"
}



<User>
  <Email>foobar@example.com</Email>
  <Name>foo bar</Name>
</User>



The response will be in JSON or XML, and resembles the following examples.


{
  "email": "foobar@example.com",
  "display_name": "foobar"
  "key_id": "324ABC0713CD0B420EFC086821BFAE7ED81442C",
  "key_secret": "5BE84D7EEA1AEEAACF070A1982DDA74DA0AA5DA7",
  "name": "foo bar",
  "id": "8d6f05190095117120d4449484f5d87691aa03801cc4914411ab432e6ee0fd6b",
  "buckets": []
}



<User>
  <Email>foobar@example.com</Email>
  <DisplayName>foobar</DisplayName>
  <KeyId>324ABC0713CD0B420EFC086821BFAE7ED81442C</KeyId>
  <KeySecret>5BE84D7EEA1AEEAACF070A1982DDA74DA0AA5DA7</KeySecret>
  <Name>foo bar</Name>
  <Id>8d6f05190095117120d4449484f5d87691aa03801cc4914411ab432e6ee0fd6b</Id>
  <Buckets></Buckets>
</User>



Once the user account exists, you can use the key_id and key_secret
to authenticate requests with Riak CS. To do that, add the key_id and
key_secret values to your s3cmd configuration file, which is located
by default in the ~/.s3cmd folder,


The canonical id represented by the id field can be used as an
alternative to an email address for user identification when granting or
revoking ACL permissions, for example with the --acl-grant or
--acl-revoke options to s3cmd setacl.





Retrieving User Account Information


A user may retrieve their account information by sending a properly
signed request to the riak-cs/user resource. Additionally, the admin
user may request the information for any individual user on the system
as part of their role as administrator. Users are only permitted to
retrieve information for their account.


Assuming the proper credentials were set in the .s3cfg file, an s3cmd
request to retrieve this information would look like this:


s3cmd get s3://riak-cs/user -



Using the admin credentials to retrieve another user’s info would look
like this:


s3cmd -c ~./s3cfg-admin get s3://riak-cs/user/XQKMYF4UL_MMTDFD6NCN



In this example, XQKMYF4UL_MMTDFD6NCN is the key_id of the user
whose information the administrator wishes to retrieve.





Modifying User Account Information



Changing the User Account Name and Email Address


A user may use a PUT to /riak-cs/user to update the name and email
address associated with an account. The PUT must include a document
with a name and email field. JSON or XML formats are supported for this
document. Samples of each are shown below. The Content-Type header
should also be set appropriately. The admin user may also update a
user’s account via a PUT to /riak-cs/user/<user-key-id>. The value
for the email field must be a valid email address and must not be
already used by another user account in the system. Violation of either
condition results in an error response.


Sample JSON and XML status update documents:


{
  "name": "foobaz",
  "email": "foobaz@example.com"
}



<?xml version="1.0" encoding="UTF-8"?>
  <UserUpdate>
    <Name>foobaz</Name>
    <Email>foobaz@example.com</Email>
  </UserUpdate>






Enabling and Disabling a User Account


A user may use a PUT to /riak-cs/user to disabled their account. The
PUT must include a document with a status field whose value is
disabled. JSON or XML formats are supported for this document. Samples
of each are shown below. The Content-Type header should also be set
appropriately. The admin user may also disable or re-enable a user’s
account via a PUT to /riak-cs/user/<user-key-id>. Users may not
re-enable their own account once it is disabled.


Sample JSON and XML status update documents:


{
  "status": "enabled"
}



<?xml version="1.0" encoding="UTF-8"?>
  <UserUpdate>
    <Status>disabled</Status>
  </UserUpdate>






Issuing New User Credentials


The key_secret for a user account can be reissued by a PUT to
/riak-cs/user with the appropriate JSON or XML document. For admin
users, the PUT would be to /riak-cs/user/<key-id>.


The documents should resemble the following examples.


{
  "new_key_secret": true
}



<?xml version="1.0" encoding="UTF-8"?>
<UserUpdate>
  <NewKeySecret>true</NewKeySecret>
</UserUpdate>




Note on update fields

The `new_key_secret` field (or `NewKeySecret` in XML) may be combined
with other user update fields in the same request.  Currently, the only
other supported field is status, but more may be added in the future.
Unsupported fields are ignored.






Retrieving a List of All Users


The admin user may retrieve a list of all user accounts on the system.
This accomplished via a properly signed HTTP GET request to the
/riak-cs/users resource. Any non-admin user request for the user list
is rejected and a 403 Forbidden error is returned. This request does
not properly work with s3cmd, but can be performed using a less dogmatic
tool such as s3-curl [http://aws.amazon.com/code/128].



Note on hostname

You must modify the `@endpoints` variable in the `s3curl.pl` script to
include your Riak CS hostname so that the following example will return
the list of users.

A sample URL for a user listing request looks like this:


GET http://data.example.com/riak-cs/users -



An example using s3-curl that assumes properly specified credentials for
the admin user in the .s3curl configuration file with an id of
admin is as follows:


s3curl --id admin -- http://data.mystorage.me/riak-cs/users



By default, the listing of all users includes accounts that are both
enabled and disabled. The list can be filtered to only include enabled
or disabled accounts by using the status query parameter with a value of
enabled or disabled respectively.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/cookbooks/Designating-an-Admin-User.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Designating an Admin User
project: riakcs
version: 1.2.0+
document: cookbook
toc: true
audience: intermediate
keywords: [operator]




Once a user has been created, you should designate a user as an admin by
editing and replacing the admin_key and admin_secret in app.config
with the user’s credentials. Once this is done, do not forget to update
the same credentials in the Stanchion app.config as well.



Note on the admin role

This is a powerful role and gives the designee administrative
capabilities within the system. As such, caution should be used to
protect the access credentials of the admin user.



          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/cookbooks/Rolling-Upgrades-For-Riak-CS.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Rolling Upgrades for Riak CS
project: riakcs
version: 1.2.0+
document: cookbook
toc: true
audience: advanced
keywords: [upgrading]




Each node in a Riak CS cluster contains settings that define its
operating modes and API coverage. The following steps outline the
process of upgrading Riak CS in a rolling fashion.


Be sure to check the Riak CS [[Version Compatibility]] chart to ensure
that your version of Riak, Riak CS, and Stanchion have been tested to
work together.  As Basho supports upgrades from the previous two major
versions, this document will cover upgrades from Riak CS 1.4.x and Riak CS
1.5.x.


As Riak CS 2.0.0 only works with Riak 2.0.5, the underlying Riak installation
must be upgraded to Riak 2.0.5.


Note on upgrading from Riak CS < 1.5.4


Some key objects changed names after the upgrade. Applications may need to
change their behaviour due to this bugfix.
Note on upgrading from Riak CS < 1.5.1


Bucket number limitation per user have been introduced in 1.5.1. Users who
have more than 100 buckets cannot create any bucket after the upgrade unless
the limit is extended in the system configuration.
Note on upgrading From Riak CS 1.4.x

An operational procedure

to clean up incomplete multipart under deleted buckets is needed. Otherwise
new buckets with names that used to exist in the past can't be created. The
operation will fail with a `409 Conflict` error.

Leeway seconds and disk space should also be carefully watched during the
upgrade, because timestamp management of garbage collection has changed since
the 1.5.0 release. Consult the

Leeway seconds and disk space section of the 1.5 release notes
for a more detailed description.






		Stop Riak, Riak CS, and Stanchion:


riak stop
riak-cs stop
stanchion stop






		Back up Riak’s configuration files:


sudo tar -czf riak_config_backup.tar.gz /etc/riak






		Optionally, back up your data directories:


sudo tar -czf riak_data_backup.tar.gz /var/lib/riak



 Note on Patches

 Remember to remove all patches from the `basho-patches` directory, as the
 version of Erlang has changed in Riak CS 2.0.  All official patches
 previously released by Basho have been included in this release.
 



		Upgrade Riak, Riak CS, and Stanchion. See the Riak
CS Downloads and Riak Downloads
pages to find the appropriate packages.


Debian / Ubuntu


sudo dpkg -i <riak_package_name>.deb
sudo dpkg -i <riak-cs_package_name>.deb
sudo dpkg -i <stanchion_package_name>.deb



RHEL / CentOS


sudo rpm -Uvh <riak_package_name>.rpm
sudo rpm -Uvh <riak-cs_package_name>.rpm
sudo rpm -Uvh <stanchion_package_name>.rpm






		The add_paths setting in your configuration file must be updated to reflect
the current version’s /ebin directory.  To give an example, if the
previous /ebin directory was located at
/usr/lib/riak-cs/lib/riak_cs-1.5.2/ebin and you’re upgrading to version
2.0.0, you will need to change the value in add_paths:


{add_paths, ["/usr/lib/riak-cs/lib/riak_cs-2.0.0/ebin"]}



{add_paths, ["/usr/lib/riak-cs/lib/riak_cs-2.0.0/ebin"]}










		Riak CS 2.0 introduces a new style of configuration known as riak-cs.conf.
You may choose to continue the use of the app.config file, or migrate your
existing configuration to riak-cs.conf (recommended).  If you choose to
use riak-cs.conf, you should migrate all supported settings to the new
format, and copy all others to the new advanced.config file.


 Note on Legacy app.config usage

 **If you choose to use the legacy `app.config` files for Riak CS and/or
 Stanchion, some parameters have changed names and must be updated**.In particular, for the Riak CS app.config:- cs_ip and cs_port have been combined into listener.- riak_ip and riak_pb_port have been combined into riak_host.- stanchion_ip and stanchion_port have been combined into
stanchion_host.- admin_ip and admin_port have been combined into admin_listener.- webmachine_log_handler has become webmachine_access_log_handler.- {max_open_files, 50} has been deprecated and should be replaced with
{total_leveldb_mem_percent, 30}.


For the Stanchion app.config:- stanchion_ip and stanchion_port have been combined into listener.- riak_ip and riak_port have been combined into riak_host.


Each of the above pairs follows a similar form. For example, if your legacy
app.config configuration was previously:


{riak_cs, [
    {cs_ip, "127.0.0.1"},
    {cs_port, 8080 },
    . . .
]},



It should now read:


{riak_cs, [
    {listener, {"127.0.0.1", 8080}},
    . . .
]},



and so on. More details can be found at [[Configuring Riak CS]].


 
 Note on Memory Sizing

 Some changes have been made to both Riak and Riak CS that may warrant
 some performance tuning. Please consult the
 
 Release Notes for more details.
 



		Riak has also moved to the new configuration format, using a file called
riak.conf. Remember to migrate all existing Riak configurations during
the upgrade process. For example, the default bucket properties:


buckets.default.allow_mult = true



{riak_core, [
   ...
   {default_bucket_props, [{allow_mult, true}]},
   ...
]}.






		Start the node:


riak start
stanchion start
riak-cs start






		Wait for any handoff to complete:


riak-admin transfers






		Move on to the next node and repeat this process throughout the
cluster.










          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/http/delete-search-index.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: HTTP Delete Search Index
project: riak
version: 2.0.0+
document: api
audience: advanced
group_by: “Search-related Operations”
keywords: [http, api, search, index, yokozuna]




Deletes a Riak Search index.



Request


DELETE /search/index/<index_name>






Normal Response Codes



		204 No Content — The index was successfully deleted (also returned
if the index did not exist to begin with)








Typical Error Codes



		503 Service Unavailable — The request timed out internally









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/theory/concepts/keys-and-values.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Keys and Objects
project: riak
version: 0.10.0+
document: appendix
audience: intermediate
keywords: [appendix, concepts]
moved: {
‘1.4.0-‘: ‘/references/appendices/concepts/Keys-and-Objects’
}




In an RDBMS, data is organized by tables that are individually
identifiable entities. Within those tables exist rows of a data
organized into columns. It is possible to retrieve or update entire
tables, individual rows, or a group of columns within a set of
rows. In contrast, Riak has a simpler data model in which the Object
(explained below) is both the largest and smallest data element. When
performing any fetch or update operation in Riak, the entire Riak
Object must be retrieved or modified; there are no partial fetches or
updates.



Keys


Keys in Riak are simply binary values (or strings) used to identify
Objects. From the perspective of a client interacting with Riak,
each bucket appears to represent a separate keyspace. It is important
to understand that Riak treats the bucket-key pair as a single entity
when performing fetch and store operations (see: [[Buckets]]).





Objects


Objects are the only unit of data storage in Riak. Riak Objects are
essentially structs identified by bucket and key and composed of the
following parts: a bucket, key, vector clock, and a list of
metadata-value pairs. Normally, objects have only one metadata-value
pair, but when there are more than one, the object is said to have
“siblings”. These siblings may occur both within a single node and
across multiple nodes, and do occur when either more than one actor
updates an object, a network partition occurs, or a stale vector clock
is submitted when updating an object (see: [[Vector Clocks]]).






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/theory/concepts/Clusters.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Clusters
project: riak
version: 0.10.0+
document: appendix
audience: intermediate
keywords: [appendix, concepts]
moved: {
‘1.4.0-‘: ‘/references/appendices/concepts/Clusters’
}




Riak’s default mode of operation is to work as a cluster consisting of
multiple [[nodes|Riak Glossary#Node]], i.e. multiple well-connected data
hosts.


Each host in the cluster runs a single instance of Riak, referred to as
a Riak node. Each Riak node manages a set of virtual nodes, or
[[vnodes|Riak Glossary#vnode]], that are responsible for storing a
separate portion of the keys stored in the cluster.


In contrast to some high-availability systems, Riak nodes are not
clones of one another, and they do not all participate in fulfilling
every request. Instead, you can configure, at runtime or at request
time, the number of nodes on which data is to be replicated, as well as
when [[replication]] occurs and which [[merge strategy|Conflict
Resolution]] and failure model are to be followed.



The Ring


Though much of this section is discussed in our annotated discussion of
the Amazon [[Dynamo paper|Dynamo]], it nonetheless provides a summary of
how Riak implements the distribution of data throughout a cluster.


Any client interface to Riak interacts with objects in terms of the
[[bucket|Buckets]] and [[key|Keys and Objects]] in which a value is
stored, as well as the [[bucket type|Using Bucket Types]] that is used
to set the bucket’s properties.


Internally, Riak computes a 160-bit binary hash of each bucket/key pair
and maps this value to a position on an ordered ring of all such
values. This ring is divided into partitions, with each Riak vnode
responsible for one of these partitions (we say that each vnode
claims that partition).


Below is a visual representation of a Riak ring:


[image: A Riak Ring]


The nodes of a Riak cluster each attempt to run a roughly equal number
of vnodes at any given time. In the general case, this means that each
node in the cluster is responsible for 1/(number of nodes) of the ring,
or (number of partitions)/(number of nodes) vnodes.


If two nodes define a 16-partition cluster, for example, then each node
will run 8 vnodes. Nodes attempt to claim their partitions at intervals
around the ring such that there is an even distribution amongst the
member nodes and that no node is responsible for more than one replica
of a key.





Intelligent Replication


When an object is being stored in the cluster, any node may participate
as the coordinating node for the request. The coordinating node
consults the ring state to determine which vnode owns the partition in
which the value’s key belongs, then sends the write request to that
vnode as well as to the vnodes responsible for the next N-1 partitions
in the ring (where N is a [[configurable parameter|Replication
Properties]] that describes how many copies of the value to store). The
write request may also specify that at least W (=< N) of those vnodes
reply with success, and that DW (=< W) reply with success only after
durably storing the value.


A read, or GET, request operates similarly, sending requests to the
vnode  that “claims” the partition in which the key resides, as well as
to the next N-1 partitions. The request also specifies R (=< N), the
number of vnodes that must reply before a response is returned.


Here is an illustration of this process:


[image: A Riak Ring]


When N is set to 3, the value REM is stored in the key artist. That
key is assigned to 3 partitions out of 32 available partitions. When a
read request is made to Riak, the ring state will be used to determine
which partitions are responsible. From there, a variety of
[[configurable parameters|Replication Properties]] determine how Riak
will behave in case the value is not immediately found.





Gossiping


The ring state is shared around the cluster by means of a “gossip
protocol.” Whenever a node changes its claim on the ring, it announces,
i.e. “gossips,” this change to other nodes so that the other nodes can
respond appropriately. Nodes also periodically re-announce what they
know about ring in case any nodes happened to miss previous updates.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/building/installing/debian-ubuntu.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Installing on Debian and Ubuntu
project: riak
version: 0.10.0+
document: tutorial
audience: beginner
keywords: [tutorial, installing, debian, ubuntu, linux]
prev: “[[Installing Erlang]]“
up:   “[[Installing and Upgrading]]“
next: “[[Installing on RHEL and CentOS]]“
download:
key: debian
name: “Debian or Ubuntu”
moved: {
‘1.4.0-‘: ‘/tutorials/installation/Installing-on-Debian-and-Ubuntu’
}




Riak can be installed on Debian- or Ubuntu-based systems using a binary
package or by [[compiling Riak from source code|Installing Riak from
Source]]. The following steps have been tested to work with Riak on
Debian versions 6.05 and 7.6 and Ubuntu version 14.04.



Installing with apt


For versions of Riak prior to 2.0, Basho used a self-hosted
apt [http://en.wikipedia.org/wiki/Advanced_Packaging_Tool] repository
for Debian and Ubuntu packages. For versions 2.0 and later, Basho has
moved those packages to the
packagecloud.io [https://packagecloud.io/basho/riak?filter=debs]
hosting service. Instructions for installing via shell scripts, manual
installation, Chef, and Puppet can be found in packagecloud’s
installation docs [https://packagecloud.io/basho/riak/install].


Platform-specific pages are linked below:



		Lucid [https://packagecloud.io/basho/riak/riak_{{VERSION}}-1_amd64.deb?distro=lucid]


		Precise [https://packagecloud.io/basho/riak/riak_{{VERSION}}-1_amd64.deb?distro=precise]


		Squeeze [https://packagecloud.io/basho/riak/riak_{{VERSION}}-1_amd64.deb?distro=squeeze]


		Trusty [https://packagecloud.io/basho/riak/riak_{{VERSION}}-1_amd64.deb?distro=trusty]


		Wheezy [https://packagecloud.io/basho/riak/riak_{{VERSION}}-1_amd64.deb?distro=wheezy]





Our documentation also includes instructions regarding signing keys and
sources lists, which can be found in the [[Advanced apt
Installation|Installing on Debian and Ubuntu#Advanced-apt-Installation]]
section immediately below.





Advanced apt Installation



Note on Debian 7

If you wish to install Riak on Debian 7, you may need to install
[libc6](://packages.debian.org/search?keywords=libc6) version 2.15 or
later, which in turn requires upgrading your system to
[sid](https://www.debian.org/releases/sid/). Installation instructions
can be found
[here](https://wiki.debian.org/DebianUnstable#How_do_I_install_Sid.3F).Once sid has been installed, you can install libc6 with the following
command:


apt-get -t sid install libc6 libc6-dev libc6-dbg




For the simplest installation process on LTS (Long-Term Support)
releases, use apt-get. First, you must retrieve the signing key:


curl https://packagecloud.io/gpg.key | sudo apt-key add -



Second, you must install the apt-transport-https package in order to
be able to fetch packages over HTTPS:


sudo apt-get install -y apt-transport-https



With HTTPS enabled, we recommend adding the desired Riak package to your
.list file. packagecloud can autogenerate such a file on the basis of
a name that you specify, e.g. a hostname, and the desired operating
system and distribution. The following example script would store your
hostname in the variable HOSTNAME, send that information to
packagecloud to autogenerate a .list file, and then store the return
value in a file called basho.list, which is stored in the
/etc/apt/sources.list.d directory. This example script is specific to
the Precise Ubuntu distribution:


#!/bin/bash

HOSTNAME=`hostname -f`
FILENAME=/etc/apt/sources.list.d/basho.list
OS=ubuntu
DIST=precise
PACKAGE_CLOUD_RIAK_DIR=https://packagecloud.io/install/repositories/basho/riak
curl "${PACKAGE_CLOUD_RIAK_DIR}/config_file.list?os=${OS}&dist=${DIST}&name=${HOSTNAME}" > $FILENAME



The name that you submit to packagecloud can be anything you like. The
HOSTNAME used above was for example purposes. The resulting file
should hold contents like the following:


# this file was generated by packagecloud.io for
# the repository at https://packagecloud.io/basho/riak

deb https://packagecloud.io/basho/riak/ubuntu/ precise main
deb-src https://packagecloud.io/basho/riak/ubuntu/ precise main



With your basho.list file populated, you can update your apt sources
list:


sudo apt-get update



Now install the riak package.


sudo apt-get install riak



That should be all.





Installing From Package


If you wish to install the deb packages by hand, follow these
instructions.



Installing on Non-LTS Ubuntu Releases


Typically we only package Riak for LTS releases to keep our build and
testing matrix focused.  In some cases, such as Ubuntu 11.04 (Natty),
there are changes that affect how Riak is packaged, so we will release a
separate package for that non-LTS release. In most other cases, however,
if you are running a non-LTS release (such as 12.10) it is safe to
follow the below instructions for the LTS release prior to your release.
In the case of Ubuntu 12.10, follow the installation instructions for
Ubuntu 12.04.





PAM Library Requirement for Ubuntu


One dependency that may be missing on your machine is the libpam0g-dev
package used for Pluggable Authentication Module (PAM) authentication,
associated with [[Riak security|Authentication and Authorization]].


To install:


sudo apt-get install libpam0g-dev






SSL Library Requirement for Ubuntu


Riak currently requires libssl version 0.9.8 on some versions of Ubuntu.
Starting at Ubuntu 12.04 this is no longer an issue. Before installing
Riak via package on Ubuntu, install the libssl0.9.8 package. Note that
this version of libssl can be safely installed alongside
current/existing libssl installations.


To install the libssl version 0.9.8 package, execute the following
command:


sudo apt-get install libssl0.9.8



After the libssl package installation, proceed to installing Riak from
the pre-built package by executing the following commands as appropriate
for the target platform:





Riak 64-bit Installation



Ubuntu Lucid Lynx (10.04)


wget http://s3.amazonaws.com/downloads.basho.com/riak/{{V.V}}/{{VERSION}}/ubuntu/lucid/riak_{{VERSION}}-1_amd64.deb
sudo dpkg -i riak_{{VERSION}}-1_amd64.deb






Ubuntu Natty Narwhal (11.04)


wget http://s3.amazonaws.com/downloads.basho.com/riak/{{V.V}}/{{VERSION}}/ubuntu/natty/riak_{{VERSION}}-1_amd64.deb
sudo dpkg -i riak_{{VERSION}}-1_amd64.deb






Ubuntu Precise Pangolin (12.04)


wget http://s3.amazonaws.com/downloads.basho.com/riak/{{V.V}}/{{VERSION}}/ubuntu/precise/riak_{{VERSION}}-1_amd64.deb
sudo dpkg -i riak_{{VERSION}}-1_amd64.deb










Installing Riak From Source


First, install Riak dependencies using apt:


sudo apt-get install build-essential libc6-dev-i386 git



Riak requires an Erlang [http://www.erlang.org/] installation.
Instructions can be found in [[Installing Erlang]].


wget http://s3.amazonaws.com/downloads.basho.com/riak/{{V.V}}/{{VERSION}}/riak-{{VERSION}}.tar.gz
tar zxvf riak-{{VERSION}}.tar.gz
cd riak-{{VERSION}}
make rel



If the build was successful, a fresh build of Riak will exist in the
rel/riak directory.





Next Steps?


Now that Riak is installed, check out the following resources:



		[[Post-Installation Notes|Post Installation]] — For checking Riak
health after installation


		[[Five Minute Install]] — A guide that will show you how to go from
one node to as many as you would like









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/http/mapreduce.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: HTTP MapReduce
project: riak
version: 0.10.0+
document: api
toc: true
audience: advanced
keywords: [api, http]
group_by: “Query-related Operations”
moved: {
‘1.4.0-‘: ‘/references/apis/http/HTTP-MapReduce’
}




[[MapReduce|Using MapReduce]] is a generic way to query Riak by specifying inputs and constructing a set of map, reduce, and link phases through which data will flow.



Request


POST /mapred



Important headers:



		Content-Type - must always be application/json.  The format of the request body is described in detail on the [[MapReduce|Using MapReduce]] page.





Optional query parameters:



		chunked - when set to true, results will be returned as they are received in multipart/mixed format using chunked-encoding.





+This request must include an entity (body), which is the JSON form of the MapReduce query.+





Response


Normal status codes:



		200 OK





Typical error codes:



		400 Bad Request - if an invalid job is submitted.


		500 Internal Server Error - if there was an error in processing a map or reduce function


		503 Service Unavailable - if the job timed out before it could complete





Important headers:



		Content-Type - application/json when chunked is not true, otherwise multipart/mixed with application/json sections.








Example


$ curl -v -d '{"inputs":"test", "query":[{"link":{"bucket":"test"}},{"map":{"language":"javascript","name":"Riak.mapValuesJson"}}]}' -H "Content-Type: application/json" http://127.0.0.1:8098/mapred
* About to connect() to 127.0.0.1 port 8098 (#0)
*   Trying 127.0.0.1... connected
* Connected to 127.0.0.1 (127.0.0.1) port 8098 (#0)
> POST /mapred HTTP/1.1
> User-Agent: curl/7.19.4 (universal-apple-darwin10.0) libcurl/7.19.4 OpenSSL/0.9.8l zlib/1.2.3
> Host: 127.0.0.1:8098
> Accept: */*
> Content-Type: application/json
> Content-Length: 117
>
< HTTP/1.1 200 OK
< Server: MochiWeb/1.1 WebMachine/1.9.0 (participate in the frantic)
< Date: Fri, 30 Sep 2011 15:24:35 GMT
< Content-Type: application/json
< Content-Length: 30
<
* Connection #0 to host 127.0.0.1 left intact
* Closing connection #0
[{"foo":"bar"},{"riak":"CAP"}]







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/theory/concepts/Vector-Clocks.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Vector Clocks
project: riak
version: 0.10.0+
document: appendix
toc: true
audience: intermediate
keywords: [appendix, concepts]
moved: {
‘1.4.0-‘: ‘/references/appendices/concepts/Vector-Clocks’
}




This page is no longer valid. We recommend taking a look at our
documentation on [[Causal Context]], in particular the section that
deals with [[vector clocks|Causal Context#Vector-Clocks]] specifically.




          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/building/installing/post-install.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Post Installation
project: riak
version: 0.10.0+
document: tutorial
audience: beginner
keywords: [tutorial, installing, upgrading]
prev: “[[Installing Riak From Source]]“
up:   “[[Installing and Upgrading]]“
moved: {
‘1.4.0-‘: ‘/tutorials/installation/Post-Installation’
}




After you’ve installed Riak, we recommend checking the liveness of
each node to ensure that requests are being properly served.


In this document, we cover ways of verifying that your Riak nodes are operating
correctly. After you’ve determined that your nodes are functioning and you’re
ready to put Riak to work, be sure to check out the resources in the
Now What? section below.



Starting a Riak Node



Note about source installations

To start a Riak node that was installed by compiling the source code, you
can add the Riak binary directory from the installation directory you've
chosen to your PATH.For example, if you compiled Riak from source in
the /home/riak directory, then you can add the binary directory
(/home/riak/rel/riak/bin) to your PATH so that Riak commands can be used in the same manner as with a packaged installation.



To start a Riak node, use the riak start command:


riak start



A successful start will return no output. If there is a problem starting the
node, an error message is printed to standard error.


To run Riak with an attached interactive Erlang console:


riak console



A Riak node is typically started in console mode as part of debugging or
troubleshooting to gather more detailed information from the Riak startup
sequence. Note that if you start a Riak node in this manner, it is running as
a foreground process that will be exited when the console is closed.


You can close the console by issuing this command at the Erlang prompt:


q().



Once your node has started, you can initially check that it is running with
the riak ping command:


riak ping



The command will respond with pong if the node is running or Node <nodename> not responding to pings if it is not.



Open Files Limit

As you may have noticed, if you haven't adjusted your open files limit (`ulimit -n`), Riak will warn you at startup. You're advised
to increase the operating system default open files limit when running Riak.
You can read more about why in the [[Open Files Limit]] documentation.




Does it work?


One convenient means of testing the readiness of an individual Riak node and
its ability to read and write data is with the riak-admin test command:


riak-admin test



Successful output from riak-admin test looks like this:


Attempting to restart script through sudo -H -u riak
Successfully completed 1 read/write cycle to '<nodename>'



You can also test whether Riak is working by using the curl command-line
tool. When you have Riak running on a node, try this command to retrieve
the the properties associated with the [[bucket type|Using Bucket Types]] test:


curl -v http://127.0.0.1:8098/types/default/props



Replace 127.0.0.1 in the example above with your Riak node’s IP address or
fully qualified domain name, and you should get a response that looks like this:


* About to connect() to 127.0.0.1 port 8098 (#0)
*   Trying 127.0.0.1... connected
* Connected to 127.0.0.1 (127.0.0.1) port 8098 (#0)
> GET /riak/test HTTP/1.1
> User-Agent: curl/7.21.6 (x86_64-pc-linux-gnu)
> Host: 127.0.0.1:8098
> Accept: */*
>
< HTTP/1.1 200 OK
< Vary: Accept-Encoding
< Server: MochiWeb/1.1 WebMachine/1.9.0 (someone had painted it blue)
< Date: Wed, 26 Dec 2012 15:50:20 GMT
< Content-Type: application/json
< Content-Length: 422
<
* Connection #0 to host 127.0.0.1 left intact
* Closing connection #0
{"props":{"name":"test","allow_mult":false,"basic_quorum":false,
 "big_vclock":50,"chash_keyfun":{"mod":"riak_core_util",
 "fun":"chash_std_keyfun"},"dw":"quorum","last_write_wins":false,
 "linkfun":{"mod":"riak_kv_wm_link_walker","fun":"mapreduce_linkfun"},
 "n_val":3,"notfound_ok":true,"old_vclock":86400,"postcommit":[],"pr":0,
 "precommit":[],"pw":0,"r":"quorum","rw":"quorum","small_vclock":50,
 "w":"quorum","young_vclock":20}}



The output above shows a successful response (HTTP 200 OK) and additional
details from the verbose option. The response also contains the bucket
properties for the default bucket type.





Riaknostic


It is a good idea to verify some basic configuration and general health
of the Riak node after installation by using Riak’s built-in diagnostic
utility Riaknostic [http://riaknostic.basho.com/].


To start up Riaknostic, ensure that Riak is running on the node and issue the following command:


riak-admin diag



More extensive documentation for Riaknostic can be found in the [[Inspecting a Node]] guide.





Now what?


You have a working Riak node!


From here you might want to check out the following resources:



		[[Client Libraries]] to use Riak with your favorite programming language









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/http/list-buckets.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: HTTP List Buckets
project: riak
version: 0.14.0+
document: api
toc: true
audience: advanced
keywords: [api, http]
group_by: “Bucket-related Operations”
moved: {
‘1.4.0-‘: ‘/references/apis/http/HTTP-List-Buckets’
}




Lists all known buckets (ones that have keys stored in them).


Not for production use

Similar to the list keys operation, this requires traversing all keys stored
in the cluster and should not be used in production.


Request


GET /buckets?buckets=true



Required query parameter:



		buckets=true - required to invoke the list-buckets functionality








Response


Normal status codes:



		200 OK





Important headers:



		Content-Type - application/json





The JSON object in the response will contain a single entry, “buckets”, which
will be an array of bucket names.





Example


$ curl -i http://localhost:8098/buckets?buckets=true
HTTP/1.1 200 OK
Vary: Accept-Encoding
Server: MochiWeb/1.1 WebMachine/1.9.0 (participate in the frantic)
Date: Fri, 30 Sep 2011 15:24:35 GMT
Content-Type: application/json
Content-Length: 21

{"buckets":["files"]}







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/theory/concepts/aae.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Active Anti-Entropy
project: riak
version: 1.4.9+
document: appendix
audience: intermediate
keywords: [aae, active anti-entropy]




In a [[clustered|Clusters]], [[eventually consistent|Eventual
Consistency]] system like Riak, conflicts between object replicas stored
on different nodes are an expected byproduct of node failure, concurrent
client updates, physical data loss and corruption, and other events that
distributed systems are built to handle. These conflicts occur when
objects are either



		missing, as when one node holds a replica of the object and
another node does not, or


		divergent, as when the values of an existing object differ across
nodes.





Riak offers two means of resolving object conflicts: read repair and
active anti-entropy (AAE). Both of these conflict resolution mechanisms
apply both to normal key/value data in Riak as well as to
[[search indexes|Search Details#indexes]].


{{#2.0.0+}}



Note on AAE and strong consistency

If you wish to use Riak's [[strong consistency]] feature for some or all
of your data, you will need to activate AAE. Instructions on doing so
can be found in the documentation on [[using strong consistency]].

{{/2.0.0+}}



Read Repair vs. Active Anti-Entropy


In versions of Riak prior to 1.3, replica conflicts were healed via
[[read repair|Riak Glossary#read-repair]] alone, which is a passive
anti-entropy mechanism that heals object conflicts only when a read
request reaches Riak from a client. Under read repair, if the
[[vnode|Riak Glossary#vnode]] coordinating the read request determines
that different nodes hold divergent values for the object, the repair
process will be set in motion.


One advantage of using read repair alone is that it doesn’t require any
kind of background process to take effect, which can cut down on CPU
resource usage. The drawback of the read repair-only approach, however,
is that the healing process only can only ever reach those objects that
are read by clients. Any conflicts in objects that are not read by
clients will go undetected.


The active anti-entropy (AAE) subsystem was added to Riak in
versions 1.3 and later to enable conflict resolution to run as a
continuous background process, in contrast with read repair, which does
not run continuously. AAE is most useful in clusters containing so-
called “cold data” that may not be read for long periods of time, even
months or years, and is thus not reachable by read repair.


Although AAE is enabled by default, it can be turned off if necessary.
See our documentation on [[managing active anti-entropy]] for
information on how to enable and disable AAE, as well as on configuring
and monitoring AAE.





Active Anti-Entropy and Hash Tree Exchange


In order to compare object values between replicas without using more
resources than necessary, Riak relies on Merkle
tree [http://en.wikipedia.org/wiki/Merkle_tree] hash exchanges between
nodes.


Using this type of exchange enables Riak to compare a balanced tree of
Riak object hashes. Any difference at a higher level in the hierarchy
means that at least one value has changed at a lower level. AAE
recursively compares the tree, level by level, until it pinpoints exact
values with a difference between nodes. The result is that AAE is able
to run repair operations efficiently regardless of how many objects are
stored in a cluster, since it need only repair specific objects instead
of all objects.


In contrast with related systems, Riak uses persistent, on-disk hash
trees instead of in-memory hash trees. The advantages of this approach
are twofold:



		Riak can run AAE operations with a minimal impact on memory usage


		Riak nodes can be restarted without needing to rebuild hash trees





In addition, hash trees are updated in real time as new writes come in,
which reduces the time that it takes to detect and repair missing or
divergent replicas.


As an additional fallback measure, Riak periodically clears and
regenerates all hash trees from on-disk key/value data, which enables
Riak to detect silent data corruption to on-disk data arising from disk
failure, faulty hardware, and other sources. The default time period for
this regeneration is one week, but this can be adjusted in each node’s
[[configuration file|Configuration Files#active-anti-entropy]].





Resources



* [Riak 1.3 Release Notes](https://github.com/basho/riak/blob/1.3/RELEASE-NOTES.md#active-anti-entropy)



          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/building/installing/erlang.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Installing Erlang
project: riak
version: 0.10.0+
document: tutorial
audience: beginner
keywords: [tutorial, installing, erlang]
prev: “[[Installing and Upgrading]]“
up:   “[[Installing and Upgrading]]“
next: “[[Installing on Debian and Ubuntu]]“
moved: {
‘1.4.0-‘: ‘/tutorials/installation/Installing-Erlang’
}




While pre-packaged versions of Riak include an
Erlang [http://erlang.org] installation, you will need to install
Erlang on your own if you wish to build and run Riak from source. We
strongly recommend using Basho’s patched version of Erlang to install
Riak 2.0. All of the patches in this version have been incorporated into
later versions of the official Erlang/OTP release.


The tar file for this version of Erlang can be downloaded
here [http://s3.amazonaws.com/downloads.basho.com/erlang/otp_src_R16B02-basho8.tar.gz].
If you do not use this version, you will not be able to use Riak’s
[[security features|Authentication and Authorization]].


For Erlang to build and install, you must have a GNU-compatible build
system, and the development bindings of
ncurses [http://www.gnu.org/software/ncurses/] and
OpenSSL [https://www.openssl.org/]. The Riak binary packages for Debian
and Ubuntu, Mac OS X, and RHEL and CentOS include an Erlang
distribution, and do not require that you build Erlang from source.
However, you must download and install Erlang if you are planning on
completing the [[Five-Minute Install]].



Install using kerl


You can install different Erlang versions in a simple manner using the
kerl [https://github.com/yrashk/kerl] script. This is probably the
easiest way to install Erlang from source on a system, and typically
only requires a few commands to do so. Install kerl by running the
following commands:


curl -O https://raw.githubusercontent.com/spawngrid/kerl/master/kerl
chmod a+x kerl



Once kerl is installed, you can install Basho’s recommended version of
Erlang from Github [https://github.com/basho/otp] using the following
command:


kerl build git git://github.com/basho/otp.git OTP_R16B02_basho8 R16B02-basho8




Note on building on Mac OS X, FreeBSD, or Solaris

If you are building Basho's recommended version of Erlang using kerl on
Mac OS X, FreeBSD, or Solaris, consult the corresponding sections below
for a list of prerequisites that should be fulfilled prior to
building with kerl.  
This builds the Erlang distribution and performs all of the steps
required to manually install Erlang for you.


When successfully built, you can install the build as follows:


./kerl install R16B02-basho8 ~/erlang/R16B02-basho8
. ~/erlang/R16B02-basho8/activate



The last line activates the Erlang build that was just installed into
~/erlang/R16B02-basho8. See the kerl
README [https://github.com/yrashk/kerl] for more details on the
available commands.


If you prefer to install Erlang manually from the source code, the
following section will show you how.



Mac OS X Prerequisites


To compile Erlang as 64-bit on Mac OS X, prior to running the build
command shown above you need to instruct kerl to pass the correct flags
to the configure command. The easiest way to do this is by creating a
~/.kerlrc file with the following contents:


KERL_CONFIGURE_OPTIONS="--disable-hipe --enable-smp-support --enable-threads
                        --enable-kernel-poll --without-odbc --enable-darwin-64bit"



If you are running OS X 10.9 (Mavericks) or later, you may need to
install autoconf [https://www.gnu.org/software/autoconf/]. To check for
the presence of autoconf, run which autoconf. If this returns
autoconf not found, the simplest way to install it is via Homebrew:


brew install autoconf






FreeBSD/Solaris Prerequisites


When building Erlang using kerl on a FreeBSD/Solaris system (including
SmartOS), HIPE should be disabled on these platforms as well with the
--disable-hipe option shown in the Mac OS X Prerequisites section
above.







Installing on GNU/Linux


Most GNU/Linux distributions do not make the most recent Erlang release
available, so you will need to install from source.


First, make sure you have a compatible build system and that you have
installed the necessary dependencies.



Debian/Ubuntu Dependencies


Use this command to install the required dependency packages:


sudo apt-get install build-essential libncurses5-dev openssl libssl-dev fop xsltproc unixodbc-dev



If you’ll be using a graphical environment (such as for development
purposes) and would like to use Erlang’s GUI utilities, then you’ll need
to install some additional dependencies.



Note on build output

Note that these packages are not required for operation of a Riak node
and notes in the build output about missing support for wxWidgets can be
safely ignored when installing Riak in a typical non-graphical server
environment.  
To install packages for graphics support, use this command:


sudo apt-get install libwxbase2.8 libwxgtk2.8-dev libqt4-opengl-dev






RHEL/CentOS Dependencies


Use this command to install the required dependency packages:


sudo yum install gcc gcc-c++ glibc-devel make ncurses-devel openssl-devel autoconf java-1.8.0-openjdk-devel






Erlang


Next, download, build, and install Erlang:


wget http://s3.amazonaws.com/downloads.basho.com/erlang/otp_src_R16B02-basho8.tar.gz
tar zxvf otp_src_R16B02-basho8.tar.gz
cd otp_src_R16B02-basho8
./configure && make && sudo make install




Note for RHEL6/CentOS6

In certain versions of RHEL6 and CentO6 the `openSSL-devel` package
ships with Elliptical Curve Cryptography partially disabled. To
communicate this to Erlang and prevent compile- and run-time errors, the
environment variable `CFLAGS="-DOPENSSL_NO_EC=1"` needs to be added to
Erlang's `./configure` call.The full make invocation then becomes


CFLAGS="-DOPENSSL_NO_EC=1" ./configure && make && sudo make install









Installing on Mac OS X


You can install Erlang in several ways on OS X: from source, with
Homebrew, or with MacPorts.



Source


To build from source, you must have Xcode tools installed from the Apple
Developer website [http://developer.apple.com/].


First, download and unpack the source:


curl -O http://s3.amazonaws.com/downloads.basho.com/erlang/otp_src_R16B02-basho8.tar.gz
tar zxvf otp_src_R16B02-basho8.tar.gz
cd otp_src_R16B02-basho8



Next, configure Erlang.



Mavericks (OS X 10.9), Mountain Lion (OS X 10.8), and Lion (OS X 10.7)


If you’re on Mavericks (OS X 10.9), Mountain Lion (OS X 10.8), or Lion
(OS X 10.7) you can use LLVM (the default) or GCC to compile Erlang.


Using LLVM:


CFLAGS=-O0 ./configure --disable-hipe --enable-smp-support --enable-threads \
--enable-kernel-poll --enable-darwin-64bit



Or if you prefer GCC:


CC=gcc-4.2 CPPFLAGS='-DNDEBUG' MAKEFLAGS='-j 3' \
./configure --disable-hipe --enable-smp-support --enable-threads \
--enable-kernel-poll --enable-darwin-64bit






Snow Leopard (OS X 10.6)


If you’re on Snow Leopard (OS X 10.6) or Leopard (OS X 10.5) with an
Intel processor:


./configure --disable-hipe --enable-smp-support --enable-threads \
--enable-kernel-poll  --enable-darwin-64bit



If you’re on a non-Intel processor or older version of OS X:


./configure --disable-hipe --enable-smp-support --enable-threads \
--enable-kernel-poll



Now build and install:


make && sudo make install



You will be prompted for your sudo password.







Homebrew


If you want to install Riak with Homebrew, follow the [[Mac OS X
Installation documentation|Installing-on-Mac-OS-X]], and Erlang will be
installed automatically.


To install Erlang separately with Homebrew, use this command:


brew install erlang






MacPorts


Installing with MacPorts is easy:


port install erlang +ssl









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/http/search-index-info.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: HTTP Search Index Info
project: riak
version: 2.0.0+
document: api
audience: advanced
group_by: “Search-related Operations”
keywords: [http, api, search, index, yokozuna]




Retrieves information about all currently available [[Search
indexes|Using Search]] in JSON format.



Request


GET /search/index






Response


If there are no currently available Search indexes, a 200 OK will be
returned but with an empty list as the response value.


Below is the example output if there is one Search index, called
test_index, currently available:


[
  {
    "n_val": 3,
    "name": "test_index",
    "schema": "_yz_default"
  }
]




Normal Response Codes



		200 OK








Typical Error Codes



		404 Object Not Found — Typically returned if Riak Search is not
currently enabled on the node


		503 Service Unavailable — The request timed out internally











          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/theory/concepts/dotted-version-vectors.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Dotted Version Vectors
project: riak
version: 2.0.0+
document: appendix
audience: advanced




This page is no longer valid. We recommend taking a look at our
documentation on [[Causal Context]], in particular the section that
deals with [[dotted version vectors|Causal
Context#Dotted-Version-Vectors]] specifically.




          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/building/installing/from-source.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Installing Riak from Source
project: riak
version: 0.10.0+
document: tutorial
audience: beginner
keywords: [tutorial, installing, suse]
prev: “[[Installing on AWS Marketplace]]“
up:   “[[Installing and Upgrading]]“
next: “[[Post Installation]]“
download:
key: source
name: “any OS in Source Form”
moved: {
‘1.4.0-‘: ‘/tutorials/installation/Installing-Riak-from-Source’
}




Riak should be installed from source if you are building on a platform
for which a package does not exist or if you are interested in
contributing to Riak.



Dependencies


To install Riak, you will need to have Erlang installed. We strongly
recommend using Basho’s patched version of Erlang to install Riak 2.0.
All of the patches in this version have been incorporated into later
versions of the official Erlang/OTP release.


If you do not have Erlang already installed, see [[Installing Erlang]].
Don’t worry, it’s easy!


Riak depends on source code located in multiple Git repositories; ensure
that Git is also installed on the target system before attempting the
build.



Note on Clang

Riak will not compile with Clang. Please make sure your default C/C++
compiler is GCC.




Installation


The following instructions generate a complete, self-contained build of
Riak in $RIAK/rel/riak where $RIAK is the location of the unpacked
or cloned source.



Installing from source package


Download the Riak source package from the [[Download
Center|http://basho.com/resources/downloads/]] and build:


curl -O http://s3.amazonaws.com/downloads.basho.com/riak/{{V.V}}/{{VERSION}}/riak-{{VERSION}}.tar.gz
tar zxvf riak-{{VERSION}}.tar.gz
cd riak-{{VERSION}}
make locked-deps
make rel






Installing from GitHub


The Riak Github respository [http://github.com/basho/riak] has much
more information on building and installing Riak from source. To clone
and build Riak from source, follow the steps below.


Clone the repository using Git [http://git-scm.com] and build:


git clone git://github.com/basho/riak.git
cd riak
make locked-deps
make rel








Platform-Specific Instructions


For instructions about specific platforms, see:



		[[Installing on Debian and Ubuntu]]


		[[Installing on Mac OS X]]


		[[Installing on RHEL and CentOS]]


		[[Installing on SUSE]]





If you are running Riak on a platform not in the list above and need
some help getting it up and running, join The Riak Mailing List and
inquire about it there. We are happy to help you get up and running with
Riak.



Windows


Riak is not currently supported on Microsoft Windows.







Next Steps?


From here you might want to check out:



		[[Post Installation Notes|Post Installation]]: for checking Riak
health after installation


		[[Five Minute Install]]: a guide that will show you how to go from one
node to as many as you would like









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/http/set-bucket-props.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: HTTP Set Bucket Properties
project: riak
version: 0.10.0+
document: api
toc: true
audience: advanced
keywords: [api, http]
group_by: “Bucket-related Operations”
moved: {
‘1.4.0-‘: ‘/references/apis/http/HTTP-Set-Bucket-Properties’
}




Sets bucket properties like “n_val” and “allow_mult”.



Request


PUT /buckets/bucket/props



Important headers:



		Content-Type - application/json





The body of the request should be a JSON object with a single entry “props”.
Unmodified bucket properties may be omitted.


Available properties:



		n_val (integer > 0) - the number of replicas for objects in this bucket


		allow_mult (true or false) - whether to allow sibling objects to be created
(concurrent updates)


		last_write_wins (true or false) - whether to ignore object history (vector
clock) when writing


		precommit - [[precommit hooks|Using Commit Hooks]]


		postcommit - [[postcommit hooks|Using Commit Hooks]]


		r, w, dw, rw - default quorum values for operations on keys in the bucket.
Valid values are:
		"all" - all nodes must respond


		"quorum" - (n_val/2) + 1 nodes must respond. This is the default.


		"one" - equivalent to 1


		Any integer - must be less than or equal to n_val








		backend - when using riak_kv_multi_backend, which named backend to use for
the bucket





Other properties do exist but are not commonly modified.



Property types

Make sure you use the proper types for attributes like n_val
and allow_mult. If you use strings instead of integers and
booleans respectively, you may see some odd errors in your logs, saying
something like
"{badarith,[{riak_kv_util,normalize_rw_value,2},]}".






Response


Normal status codes:



		204 No Content





Typical error codes:



		400 Bad Request - if the submitted JSON is invalid


		415 Unsupported Media Type - if the Content-Type was not set to
application/json in the request





If successful, no content will be returned in the response body.





Example


$ curl -v -XPUT http://127.0.0.1:8098/buckets/test/props \
       -H "Content-Type: application/json" -d '{"props":{"n_val":5}}'
* About to connect() to 127.0.0.1 port 8098 (#0)
*   Trying 127.0.0.1... connected
* Connected to 127.0.0.1 (127.0.0.1) port 8098 (#0)
> PUT /buckets/test/props HTTP/1.1
> User-Agent: curl/7.19.4 (universal-apple-darwin10.0) libcurl/7.19.4
OpenSSL/0.9.8l zlib/1.2.3
> Host: 127.0.0.1:8098
> Accept: */*
> Content-Type: application/json
> Content-Length: 21
>
< HTTP/1.1 204 No Content
< Vary: Accept-Encoding
< Server: MochiWeb/1.1 WebMachine/1.9.0 (participate in the frantic)
< Date: Fri, 30 Sep 2011 15:24:35 GMT
< Content-Type: application/json
< Content-Length: 0
<
* Connection #0 to host 127.0.0.1 left intact
* Closing connection #0







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/theory/concepts/Eventual-Consistency.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Eventual Consistency
project: riak
version: 0.10.0+
document: appendix
toc: true
audience: intermediate
keywords: [appendix, concepts]
moved: {
‘1.4.0-‘: ‘/references/appendices/concepts/Eventual-Consistency’
}




In a distributed and fault-tolerant system like Riak, server and network
failures are expected. Riak is designed to respond to requests even when
[[nodes|Riak Glossary#node]] are offline or the cluster is experiencing
a network partition.


Riak handles this problem by enabling conflicting copies of data stored
in the same location, as specified by [[bucket type|Using Bucket
Types]], bucket, and key, to exist at the same time in the cluster. This
gives rise to the problem of data inconsistency.



Data Inconsistency


Conflicts between replicas of an object are inevitable in
highly-available, [[clustered|Clusters]] systems like Riak because there
is nothing in those systems to guarantee so-called ACID
transactions [http://en.wikipedia.org/wiki/ACID]. Because of this, these
systems need to rely on some form of conflict-resolution mechanism.


One of the things that makes Riak’s eventual consistency model powerful
is that Riak does not dictate how data resolution takes place. While
Riak does ship with a set of defaults regarding how data is
[[replicated|Eventual
Consistency#replication-properties-and-request-tuning]] and how
[[conflicts are resolved|Conflict Resolution]], you can override these
defaults if you want to employ a different strategy.


Among those strategies, you can enable Riak to resolve object conflicts
automatically, whether via internal [[vector clocks]], timestamps, or
special eventually consistent [[data types]], or you can resolve those
conflicts on the application side by employing a use case-specific logic
of your choosing. More information on this can be found in our guide to
[[conflict resolution]].


This variety of options enables you to manage Riak’s eventually
consistent behavior in accordance with your application’s [[data model
or models|Use Cases]].





Replication Properties and Request Tuning


In addition to providing you different means of resolving conflicts,
Riak also enables you to fine-tune replication properties, which
determine things like the number of nodes on which data should be stored
and the number of nodes that are required to respond to read, write, and
other requests.


An in-depth discussion of these behaviors and how they can be
implemented on the application side can be found in our guides to
[[replication properties]] and [[conflict resolution]].


In addition to our official documentation, we also recommend checking
out the Understanding Riak’s Configurable
Behaviors [http://basho.com/understanding-riaks-configurable-behaviors-part-1/]
series from the Basho blog [http://basho.com/blog/].





A Simple Example of Eventual Consistency


Let’s assume for the moment that a sports news application is storing
all of its data in Riak. One thing that the application always needs to
be able to report to users is the identity of the current manager of
Manchester United, which is stored in the key manchester-manager in
the bucket premier-league-managers. This bucket has allow_mult set
to false, which means that Riak will resolve all conflicts by itself.


Now let’s say that a node in this cluster has recently recovered from
failure and has an old copy of the key manchester-manager stored in
it, with the value Alex Ferguson. The problem is that Sir Ferguson
stepped down in 2013 and is no longer the manager. Fortunately, the
other nodes in the cluster hold the value David Moyes, which is
correct.


Shortly after the recovered node comes back online, other cluster
members recognize that it is available. Then, a read request for
manchester-manager arrives from the application. Regardless of which
order the responses arrive to the node that is coordinating this
request, David Moyes will be returned as the value to the client,
because Alex Ferguson is recognized as an older value.


Why is this? How does Riak make this decision? Behind the scenes, after
David Moyes is sent to the client, a [[read repair|Riak
Glossary#read-repair]] mechanism will occur on the cluster to fix the
older value on the node that just came back online. Because Riak tags
all objects with versioning information, it can make these kinds of
decisions on its own, if you wish.



R=1


Let’s say that you keep the above scenario the same, except you tweak
the request and set R to 1, perhaps because you want faster responses to
the client. In this case, it is possible that the client will receive
the outdated value Alex Ferguson because it is only waiting for a
response from one node.


However, the read repair mechanism will kick in and fix the value, so
the next time someone asks for the value of manchester-manager, David Moyes will indeed be the answer.





R=1, sloppy quorum


Let’s take the scenario back in time to the point at which our unlucky
node originally failed. At that point, all 3 nodes had Alex Ferguson
as the value for manchester-manager.


When a node fails, Riak’s sloppy quorum feature kicks in and another
node takes responsibility for serving its requests.


The first time we issue a read request after the failure, if R is set
to 1, we run a significant risk of receiving a not found response from
Riak. The node that has assumed responsibility for that data won’t have
a copy of manchester-manager yet, and it’s much faster to verify a
missing key than to pull a copy of the value from disk, so that node
will likely respond fastest.


If R is left to its default value of 2, there wouldn’t be a problem
because 1 of the nodes that still had a copy of Alex Ferguson would
also respond before the client got its result. In either case, read
repair will step in after the request has been completed and make
certain that the value is propagated to all the nodes that need it.





PR, PW, sloppy quorum


Thus far, we’ve discussed settings that permit sloppy quorums in the
interest of allowing Riak to maintain as high a level of availability as
possible in the presence of node or network failure.


It is possible to configure requests to ignore sloppy quorums in order
to limit the possibility of older data being returned to a client. The
tradeoff, of course, is that there is an increased risk of request
failures if failover nodes are not permitted to serve requests.


In the scenario we’ve been discussing, for example, the possibility of a
node for the manchester-manager key having failed, but to be more
precise, we’ve been talking about a primary node, one that when the
cluster is perfectly healthy would bear responsibility for that key.


When that node failed, using R=2 as we’ve discussed or even R=3 for
a read request would still work properly: a failover node (sloppy quorum
again) would be tasked to take responsibility for that key, and when it
receives a request for it, it would reply that it doesn’t have any such
key, but the two surviving primary nodes still know who the
manchester-manager is.


However, if the PR (primary read) value is specified, only the two
surviving primary nodes are considered valid sources for that data.


So, setting PR to 2 works fine, because there are still 2 such nodes,
but a read request with PR=3 would fail because the 3rd primary node is
offline, and no failover node can take its place as a primary.


The same is true of writes: W=2 or W=3 will work fine with the primary
node offline, as will PW=2 (primary write), but PW=3 will result in an
error.



Errors and Failures

It is important to understand the difference between an error and a
failure.The PW=3 request in this scenario will result in an error,
but the value will still be written to the two surviving primary
nodes.


By specifying PW=3 the client indicated that 3 primary
nodes must respond for the operation to be considered successful, which
it wasn’t, but there’s no way to tell without performing another read
whether the operation truly failed.








Further Reading



		Understanding Riak’s Configurable Behaviors blog series [http://basho.com/understanding-riaks-configurable-behaviors-part-1/]


		Werner Vogels, et. al.: Eventually Consistent - Revisited [http://www.allthingsdistributed.com/2008/12/eventually_consistent.html]









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/building/installing/rhel-centos.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Installing on RHEL and CentOS
project: riak
version: 0.10.0+
document: tutorial
audience: beginner
keywords: [tutorial, installing, rhel, centos, linux]
prev: “[[Installing on Debian and Ubuntu]]“
up:   “[[Installing and Upgrading]]“
next: “[[Installing on Mac OS X]]“
download:
key: rhel
name: “Red Hat or CentOS”
moved: {
‘1.4.0-‘: ‘/tutorials/installation/Installing-on-RHEL-and-CentOS’
}




Riak can be installed on CentOS- or Red-Hat-based systems using a binary
package or by [[compiling Riak from source code|Installing Riak from
Source]]. The following steps have been tested to work with Riak on
CentOS/RHEL 5.10, 6.5, and 7.0.1406.



Note on SELinux

CentOS enables SELinux by default, so you may need to disable SELinux if
you encounter errors.


Installing with rpm


For versions of Riak prior to 2.0, Basho used a self-hosted
rpm [http://www.rpm.org/] repository for CentOS and RHEL packages. For
versions 2.0 and later, Basho has moved those packages to the
packagecloud.io [https://packagecloud.io/] hosting service.
Instructions for installing via shell scripts, manual installation,
Chef, and Puppet can be found in packagecloud’s installation
docs [https://packagecloud.io/basho/riak/install].


Platform-specific pages are linked below:



		el5 [https://packagecloud.io/basho/riak/riak-{{VERSION}}-1.x86_64.rpm?distro=5]


		el6 [https://packagecloud.io/basho/riak/riak-{{VERSION}}-1.el6.x86_64.rpm?distro=6]


		el7 [https://packagecloud.io/basho/riak/riak-{{VERSION}}-1.el7.centos.x86_64.rpm?distro=7]


		Fedora 19 [https://packagecloud.io/basho/riak/riak-{{VERSION}}-1.fc19.x86_64.rpm?distro=19]





Our documentation also includes instructions regarding signing keys and
sources lists, which can be found in the [[Advanced rpm
Installation|Installing on RHEL and CentOS#Advanced-rpm-Installation]]
section immediately below.





Advanced rpm Installation


For the simplest installation process on LTS (Long-Term Support)
releases, use yum. First, you must install the pygpgme package, which
enables yum to handle GPG [https://www.gnupg.org/] signatures:


sudo yum install pygpgme



If you wish to install using a .repo file, packagecloud can generate
one for you on the basis of a name that you specify, e.g. a hostname,
and the desired operating system and distribution. The following example
script would store your hostname in the variable HOSTNAME, send that
information to packagecloud to generate a .repo file, and then store
the return value in a file called basho.repo, which is stored in the
/etc/yum.repos.d directory:


#!/bin/bash

HOSTNAME=`hostname -f`
FILENAME=/etc/yum.repos.d/basho.repo
OS=el
DIST=5
PACKAGE_CLOUD_RIAK_DIR=https://packagecloud.io/install/repositories/basho/riak
curl "${PACKAGE_CLOUD_RIAK_DIR}/config_file.repo?os=${OS}&dist=${DIST}&name=${HOSTNAME}" > $FILENAME



The name that you submit to packagecloud can be anything you like. The
HOSTNAME used above was for example purposes. The resulting file
should contents like the following:


[basho_riak]
name=basho_riak
baseurl=https://packagecloud.io/basho/riak/el/5/$basesearch
repo_gpgcheck=1
gpgcheck=0
enabled=1
gpgkey=https://packagecloud.io/gpg.key
sslverify=1
sslcacert=/etc/pki/tls/certs/ca-bundle.crt



With your basho.repo file population, you can update your rpm sources
list.





Installing From Package


If you wish to install the RHEL/CentOS packages by hand, follow these
instructions.



For Centos 5 / RHEL 5


You can install CentOS 5/RHEL 5 using yum, which we recommend:


sudo yum install http://yum.basho.com/gpg/basho-release-5-1.noarch.rpm
sudo yum install riak



Or you can install the .rpm package manually:


wget http://s3.amazonaws.com/downloads.basho.com/riak/{{V.V}}/{{VERSION}}/rhel/5/riak-{{VERSION}}-1.el5.x86_64.rpm
sudo rpm -Uvh riak-{{VERSION}}-1.el5.x86_64.rpm






For Centos 6 / RHEL 6


You can install using yum, which we recommend:


sudo yum install http://yum.basho.com/gpg/basho-release-6-1.noarch.rpm
sudo yum install riak



Or you can install the .rpm package manually:


wget http://s3.amazonaws.com/downloads.basho.com/riak/{{V.V}}/{{VERSION}}/rhel/6/riak-{{VERSION}}-1.el6.x86_64.rpm
sudo rpm -Uvh riak-{{VERSION}}-1.el6.x86_64.rpm








Installing From Source


Riak requires an [[Erlang|http://www.erlang.org/]] installation.
Instructions can be found in [[Installing Erlang]].


Building from source will require the following packages:



		gcc


		gcc-c++


		glibc-devel


		make


		pam-devel





You can install these with yum:


sudo yum install gcc gcc-c++ glibc-devel make git pam-devel



Now we can download and install Riak:


wget http://s3.amazonaws.com/downloads.basho.com/riak/{{V.V}}/{{VERSION}}/riak-{{VERSION}}.tar.gz
tar zxvf riak-{{VERSION}}.tar.gz
cd riak-{{VERSION}}
make rel



You will now have a fresh build of Riak in the rel/riak directory.





Next Steps?


From here you might want to check out:



		[[Post Installation]] — A guide to checking Riak health after
installation


		[[Five-Minute Install]] — A guide that will show you how to go from
one node to as many as you’d like









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/http/fetch-search-index.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: HTTP Fetch Search Index
project: riak
version: 2.0.0+
document: api
audience: advanced
group_by: “Search-related Operations”
keywords: [http, api, search, schema, yokozuna]




Retrieves information about a Riak Search [[index|Using
Search#Simple-Setup]].



Request


GET /search/index/<index_name>






Normal Response Codes



		200 OK








Typical Error Codes



		404 Object Not Found — No Search index with that name is currently
available


		503 Service Unavailable — The request timed out internally








Response


If the index is found, Riak will output a JSON object describing the
index, including its name, the [[n_val|Replication Properties#A-Primer-on-N-R-and-W]] associated with it, and the [[search
schema]] used by the index. Here is an example:


{
  "name": "my_index",
  "n_val": 3,
  "schema": "_yz_default"
}







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/theory/concepts/crdts.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Data Types
project: riak
version: 2.0.0+
document: appendix
toc: true
audience: intermediate
keywords: [appendix, concepts]




A pure key/value store is completely agnostic toward the data stored
within it. Any key can be associated with values of any conceivable
type, from short strings to large JSON objects to video files. Riak
began as a pure key/value store, but over time it has become more and
more aware of the data stored in it through features like [[secondary
indexes|using secondary indexes]] and [[Search|using search]].


In version 2.0, Riak continued this evolution by introducing a series of
eventually convergent Data Types. Riak Data Types are convergent
replicated data types, also known as CRDTs, inspired above all by the
work of Shapiro, Preguiça, Baquero, and Zawirski
(paper [http://hal.upmc.fr/docs/00/55/55/88/PDF/techreport.pdf]). We
would also recommend this reading
list [http://christophermeiklejohn.com/crdt/2014/07/22/readings-in-crdts.html].



CRDTs vs. Other Riak Data


The central difference between Riak Data Types and typical key/value
data stored in Riak is that Riak Data Types are operations based
from the standpoint of Riak clients. Instead of the usual
CRUD—Create, Read, Update, and Delete—operations
performed on key/value pairs, Data Types enable you to perform
operations, such as removing a register from a map, telling a counter to
increment itself by 5, or enabling a flag that was previously disabled
(more on each of these types below).


It’s important to note, however, that Riak Data Types are operations
based only from the standpoint of connecting clients. Like the CRDTs
on which they are based, the convergence logic is state based behind
the scenes. In other words, Riak Data Types enable applications to use
CRDTs through a simple interface, without being exposed to the complex
state-based logic underneath. More on Data Types and state can be found
in the section on [[implementation|Data
Types#Riak-Data-Types-Under-the-Hood]] below.





Advantages and Disadvantages of Data Types


[[Conflict resolution]] in Riak can be difficult because it involves
reasoning about concurrency, [[eventual consistency]], [[siblings|Vector
Clocks#Siblings]], and other issues that many other databases don’t
require you to take into account.


One of the core purposes behind Data Types is to relieve developers
using Riak of the burden of producing data convergence at the
application level by absorbing a great deal of that complexity into Riak
itself. Riak manages this complexity by building eventual consistency
into the Data Types themselves instead of requiring clients to do so.


You can still build applications with Riak that treat it as a highly
available key/value store, and you will always have this choice. What
Riak Data Types provide is additional flexibility and a broader choice
palette.


The trade-off that Data Types necessarily present is that they don’t
allow you to produce your own convergence logic. If your use case
demands that you be able to create your own deterministic merge
functions, then Riak Data Types might not be a good fit.





Riak’s Five Data Types


There is a vast and ever-growing number of CRDTs. Riak currently
implements five of them: flags, registers, counters,
sets, and maps. Each will be described in turn in the sections
below.



Flags


Flags behave much like Boolean values, except that instead of true or
false flags bear the value enable or disable. Flags cannot be used
on their own, i.e. a flag cannot be stored in a bucket/key by itself.
Instead, flags can only be stored within maps.



Operations


Flags support only two operations: enable and disable. Flags can be
added to or removed from a map, but those operations are performed on
the map and not on the flag directly.





Examples



		Whether a tweet has been retweeted


		Whether a user has signed up for a specific pricing plan










Registers


Registers are essentially named binaries (like strings). Any binary
value can act as the value of a register. Like flags, registers cannot
be used on their own and must be embedded in Riak maps.



Operations


Registers are subject to only operation. They can only have the binaries
stored within them changed. They can be added to and removed from maps,
but those operations take place on the map in which the register is
nested, and not on the register itself.





Examples



		Storing the name Cassius in the register first_name in a map called user14325_info


		Storing the title of a blog post in a map called 2010-03-01_blog_post










Counters


Counters are the one Riak Data Type that existed prior to version 2.0
(introduced in version 1.4.0). Their value can only be a positive or
negative integer or zero. They are useful when a fairly accurate
estimate of a quantity is needed, and not reliable if you require
unique, ordered IDs (such as UUIDs), because uniqueness cannot be
guaranteed.



Operations


Counters are subject to two operations, increment and decrement,
whether they are used on their own or in a map.





Examples



		The number of people following someone on Twitter


		The number of “likes” on a Facebook post


		The number of points scored by a player in a role-playing game










Sets


Sets are collections of unique binary values, such as strings. All of
the values in a set are unique. For example, if you attempt to add the
element shovel to a set that already contains shovel, the operation
will be ignored by Riak. Sets can be used either on their own or
embedded in a map.



Operations


They are subject to four basic operations: add an element, remove an
element, add multiple elements, or remove multiple elements.





Examples



		The UUIDs of a user’s friends in a social network application


		The items in an e-commerce shopping cart










Maps


Maps are the richest of the Riak Data Types because within the
fields of a map you can nest any of the five Data Types, including
maps themselves (you can even embed maps within maps, and maps within
those maps, and so on).



Operations


You can perform two types of operations on maps:



		Operations performed directly on the map itself, which includes
adding fields to and removing fields from the map (e.g. adding a flag
or removing a counter).


		Operations performed on the Data Types nested in the map, e.g.
incrementing a counter in the map or setting a flag to enable.
Those operations behave just like the operations specific to that
Data Type.








Examples


Maps are best suited to complex, multi-faceted data. The following
JSON-inspired pseudocode shows how a tweet might be structured as a map:


Map tweet {
    Counter: numberOfRetweets,
    Register: username,
    Register: tweetContent,
    Flag: favorited?,
    Map: userInfo
}










Riak Data Types Under the Hood


Conflicts between replicas are inevitable in a distributed system like
Riak. If a map is stored in the key my_map, for example, it is always
possible that the value of my_map will be different in nodes A and B.
Without using Data Types, that conflict must be resolved using
timestamps, [[vector clocks]], [[dotted version vectors]], or some other
means. With Data Types, conflicts are resolved by Riak itself, using a
subsystem called riak_dt [https://github.com/basho/riak_dt].



Data Type Convergence


The beauty of Data Types is that Riak “knows” how to resolve value
conflicts by applying Data Type-specific rules. In general, Riak does
this by remembering the history of a value and broadcasting that
history along with the current value in the form of a [[context
object|Using Data Types#Data-Types-and-Context]] that is similar to a
[[vector clock|Vector Clocks]] or [[dotted version vector|Dotted Version
Vectors]]. Riak uses the history of each Data Type to make deterministic
judgments about which value should be deemed correct.



Example


Imagine a set stored in the key fruits. On one [[node|Riak
Glossary#Node]], the set fruits has two elements, apple and
orange, while on another node the set has only one element, apple.
What happens when the two nodes communicate and note the divergence?


In this case Riak would declare the set with two elements the winner.
At that point, the node with the incorrect set would be told: “The set
fruits should have elements apple and orange.”


In general, convergence involves the following stages:



		Check for divergence. If the Data Types have the same value, Riak
does nothing. But if divergence is noted...


		Riak applies Data Type-specific merge rules, like in the fruits
set example above, which will result in a “correct” value.


		After the merge logic is applied and the correct value is determined,
the relevant [[vnodes|Riak Glossary#vnode]] are notified and act to
correct the divergence.










Convergence Rules


Thus far, we have not yet specified which rules actually govern
convergence, with the exception of the set example above. Convergence
essentially means that Data Type conflicts are weighted in a certain
direction. All five of Riak’s Data Types have their own internal
weights that dictate what happens in case of conflict.


Data Type | Convergence rule
:——–|:————
Flags | enable wins over disable
Registers | The most chronologically recent value wins, based on timestamps
Counters | Each actor keeps an independent count for increments and decrements; upon merge, the pairwise maximum of the counts for each actor will win (e.g. if one count for an actor holds 172 and the other holds 173, 173 will win upon merge)
Sets | If an element is concurrently added and removed, the add will win
Maps | If a field is concurrently added or updated and removed, the add/update will win


In a production Riak cluster being hit by lots and lots of concurrent
writes, value conflicts are inevitable, and Riak Data Types are not
perfect, particularly in that they do not guarantee [[strong
consistency]] and in that you cannot specify the rules yourself. But the
rules that dictate the convergence logic behind the five Riak Data Types
were carefully chosen to minimize the potential downsides associated
with value conflicts.








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/building/installing/suse.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Installing on SUSE
project: riak
version: 0.10.0+
document: tutorial
audience: beginner
keywords: [tutorial, installing, suse]
prev: “[[Installing on Solaris]]“
up:   “[[Installing and Upgrading]]“
next: “[[Installing on Windows Azure]]“
moved: {
‘1.4.0-‘: ‘/tutorials/installation/Installing-on-SUSE’
}





Note: 2.0.4 not currently available

Riak version 2.0.4 is not currently available for SUSE due to a known
issue. If you'd like to upgrade Riak, we'd recommend waiting for the
2.0.5 release.

The following steps should get you up and running with Riak on SuSE.


Riak may be installed on the following x86/x86_64 flavors of SuSE:



		SLES11-SP1


		OpenSUSE 11.2


		OpenSUSE 11.3


		OpenSUSE 11.4





The Riak package and all of its dependencies (including the base
Erlang) can be found in an OpenSUSE Build Service
(http://build.opensuse.org) Zypper repository.


The following commands assume that you are running as root.



Add the Riak Zypper Repository


zypper ar http://download.opensuse.org/repositories/server:/database/$distro Riak



Where $distro is one of:



		SLE_11_SP1


		openSUSE_11.2


		openSUSE_11.3


		openSUSE_11.4






Note on GPG keys

The first time you try to use the repository after adding it to your
system, you may be asked to accept the GPG key for the repo.




Install the Riak Package


zypper in riak



This should automatically pull in the riak package’s dependencies,
including Erlang if you do not already have it installed.





Enabling Refresh


You have the option of enabling refresh on the riak repository to
receive updates by running the following command:


zypper mr -r Riak






Next Steps?


From here you might want to check out:



		[[Post-Installation Notes|Post Installation]]: for checking Riak
health after installation


		[[Five-Minute Install]]: a guide that will show you how to go from one
node to bigger than Google!









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/http/ping.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: HTTP Ping
project: riak
version: 0.10.0+
document: api
toc: true
audience: advanced
keywords: [api, http]
group_by: “Server-related Operations”
moved: {
‘1.4.0-‘: ‘/references/apis/http/HTTP-Ping’
}




Checks if the server is alive. This is useful for monitoring tools, load-balancers and automated scripts.



Request


GET /ping






Response


Normal status codes:



		200 OK








Example


$ curl -v http://127.0.0.1:8098/ping
* About to connect() to 127.0.0.1 port 8098 (#0)
*   Trying 127.0.0.1... connected
* Connected to 127.0.0.1 (127.0.0.1) port 8098 (#0)
> GET /ping HTTP/1.1
> User-Agent: curl/7.19.7 (universal-apple-darwin10.0) libcurl/7.19.7 OpenSSL/0.9.8l zlib/1.2.3
> Host: 127.0.0.1:8098
> Accept: */*
>
< HTTP/1.1 200 OK
< Server: MochiWeb/1.1 WebMachine/1.9.0 (participate in the frantic)
< Date: Fri, 30 Sep 2011 15:24:35 GMT
< Content-Type: text/html
< Content-Length: 2
<
* Connection #0 to host 127.0.0.1 left intact
* Closing connection #0
OK







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/theory/concepts/Buckets.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Buckets
project: riak
version: 0.10.0+
document: appendix
audience: intermediate
keywords: [appendix, concepts]
moved: {
‘1.4.0-‘: ‘/references/appendices/concepts/Buckets’
}




Buckets are used to define a virtual keyspace for storing Riak objects.
They enable you to define non-default configurations over that keyspace
concerning [[replication properties]] and [[other
parameters|Buckets#configuration]].


In certain respects, buckets can be compared to tables in relational
databases or folders in filesystems, respectively. From the standpoint
of performance, buckets with default configurations are essentially
“free,” while non-default configurations, defined [[using bucket
types]], will be gossiped around [[the ring|Clusters#the-ring]] using
Riak’s [[cluster metadata]] subsystem.



Configuration


Bucket configurations are defined [[using bucket types]], which enables
you to create and modify sets of configurations and apply them to as
many buckets as you wish. With bucket types, you can configure the
following bucket-level parameters, overriding the default values if you
wish.



allow_mult


Determines whether sibling values can be created. See [[siblings|Causal
Context#Siblings]]. The default can be true or false depending on
the context. See the documentation on [[allow_mult in Riak 2.0|Using
Bucket Types#bucket-types-and-the-allow_mult-setting]] for more
information.





n_val


Specifies the number of copies of each object to be stored in the
cluster. See the documentation on [[replication properties]]. Default:
3.





last_write_wins


Indicates if an object’s timestamp will be used to decide the canonical
write in the case of a conflict. See the documentation on [[vector
clocks]] and on [[conflict resolution]] for more information. Default:
false.





r, pr, w, dw, pw, rw, notfound_ok, basic_quorum


See the documentation on [[replication properties]] for more information
on all of these properties.





precommit


A list of Erlang functions to be executed before writing an object. See
our documentation on [[pre-commit hooks|Using Commit
Hooks#pre-commit-hooks]] for more information. Default: no pre-commit
hooks, i.e. an empty list.





postcommit


A list of Erlang functions to be executed after writing an object. See
our documentation on [[post-commit hooks|Using Commit
Hooks#post-commit-hooks]] for more information. Default: no post-commit
hooks, i.e. an empty list.





old_vclock, young_vclock, small_vclock, big_vclock


These settings enable you to manage [[vector clock pruning|Conflict
Resolution#Vector-Clock-Pruning]].





backend


If you are using the [[Multi]] backend, this property enables you to
determine which of Riak’s available backends—[[Bitcask]], [[LevelDB]],
or [[Memory]]—will be used in buckets of this type. If you are using
LevelDB, Bitcask, or the Memory backend at a cluster-wide level, all
buckets of all types will use the assigned backend.





consistent


If you wish to use Riak’s [[strong consistency]] feature for buckets
bearing a type, this setting must be set to true. The default is
false. More information can be found in our documentation on [[using
strong consistency]].





datatype


If you are using [[Riak Data Types|Using Data Types]], this setting
determines [[which data type|Using Data
Types#setting-up-buckets-to-use-riak-data-types]] will be used in
buckets of this bucket type. Possible values: counter, set, or
map.





dvv_enabled


Whether [[dotted version vectors|Causal Context#Dotted-Version-Vectors]]
will be used instead of traditional [[vector clocks|Causal
Context#Vector-Clocks]] for [[conflict resolution]]. Default: false.





chash_keyfun, linkfun


These settings involve features that have been deprecated. You will not
need to adjust these values.







Fetching Bucket Properties


If you’d like to see how a particular bucket has been configured, you
can do so using our official client libraries or through Riak’s [[HTTP
API]]. The following would fetch the properties for the bucket
animals if that bucket had a default configuration, i.e. the default
bucket type:


Namespace animalsBucket = new Namespace("animals");
FetchBucketProperties fetchProps =
    new FetchBucketProperties.Builder(animalsBucket).build();
FetchBucketProperties.Response response = client.execute(fetchProps);
BucketProperties props = response.getProperties();



bucket = client.bucket('animals')
bucket.properties



$bucketProperties = (new \Basho\Riak\Command\Builder\FetchBucketProperties($riak))
  ->buildBucket('animals')
  ->build()
  ->execute()
  ->getBucket()
  ->getProperties();



bucket = client.bucket('animals')
bucket.get_properties()



{ok, Props} = riakc_pb_socket:get_bucket(Pid, <<"animals">>).



# Assuming that Riak is running on "localhost" and port 8087:

curl http://localhost:8087/types/default/buckets/animals/props



If the bucket animals had a different type that you had created and
activated, e.g. my_custom_type, you could fetch the bucket properties
like so:


Namespace customTypedBucket = new Namespace("my_custom_type", "animals");
FetchBucketProperties fetchProps =
    new FetchBucketProperties.Builder(customTypedBucket).build();
FetchBucketProperties.Response response = client.execute(fetchProps);
BucketProperties props = response.getProperties();



bucket = client.bucket_type('my_custom_type').bucket('animals')
bucket.properties



$bucketProperties = (new \Basho\Riak\Command\Builder\FetchBucketProperties($riak))
  ->buildBucket('animals', 'my_custom_type')
  ->build()
  ->execute()
  ->getBucket()
  ->getProperties();



bucket = client.bucket_type('my_custom_type').bucket('animals')
bucket.get_properties()



{ok, Props} = riakc_pb_socket:get_bucket(Pid, {<<"my_custom_type">>, <<"animals">>}).



curl http://localhost:8087/types/my_custom_type/buckets/animals/props







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/building/installing/smartos.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Installing on SmartOS
project: riak
version: 1.2.0+
document: tutorial
audience: beginner
keywords: [tutorial, installing, smartos]
prev: “[[Installing on FreeBSD]]“
up:   “[[Installing and Upgrading]]“
next: “[[Installing on Solaris]]“
download:
key: smartos
name: “SmartOS”
moved: {
‘1.4.0-‘: ‘/tutorials/installation/Installing-on-SmartOS’
}




The following steps have been tested to work with Riak version 1.2 on SmartOS version joyent_20120614T184600Z. They demonstrate installation of a Riak node on SmartOS as the root user.



Open Files Limit


Before proceeding with installation, you should ensure that the system’s open
files limit is at least 4096. Check the current limits to verify this:


ulimit -a



To temporarily increase this limit for the life of your session, use the following command:


ulimit -n 65536



To increase this value in a persistent manner that will be enforced after restarting the system, add the following to /etc/system:


set rlim_fd_max=65536






Choosing a Version


SmartOS, albeit powerful, can make some easy tasks (like figuring out a “version” of SmartOS) difficult. Defining the correct version is a combination of the Global Zone snapshot version and the pkgsrc version in the guest zones. Here is the way to determine which Riak package to use.


The thing that really matters for Riak is what dataset was used to make the SmartOS VM. These datasets come from joyent and appear like this with the dsadm command:


fdea06b0-3f24-11e2-ac50-0b645575ce9d smartos 2012-12-05 sdc:sdc:base64:1.8.4
f4c23828-7981-11e1-912f-8b6d67c68076 smartos 2012-03-29 sdc:sdc:smartos64:1.6.1



This is where the 1.6 and 1.8 versions come from in the package naming. It isn’t perfect, but if you know what dataset you used to make your SmartOS VM, you will know which package to use.


For Joyent Cloud users who don’t know what dataset was used, in the guest zone type:


cat /opt/local/etc/pkgin/repositories.conf




		If this returns http://pkgsrc.joyent.com/sdc6/2012Q2/x86_64/All or any other 2012Q2 you need to use the 1.8 download.


		If this returns http://pkgsrc.joyent.com/sdc6/2011Q4/x86_64/All or any other 2011 you need to use the 1.6 download.





{{/1.3.0+}}





Download and Install


Download your version of the Riak binary package for SmartOS:


curl -o /tmp/riak-{{VERSION}}-SmartOS-x86_64.tgz http://s3.amazonaws.com/downloads.basho.com/riak/{{V.V}}/{{VERSION}}/smartos/1.8/riak-{{VERSION}}-SmartOS-x86_64.tgz



Next, install the package:


pkg_add /tmp/riak-{{VERSION}}-SmartOS-x86_64.tgz



After installing the package, enable the Riak and Erlang Port Mapper Daemon (epmd) services:


svcadm -v enable -r riak



Finally, after enabling the services, check to see that they are online:


svcs -a | grep -E 'epmd|riak'



Output from the above command should resemble the following:


online    17:17:16 svc:/network/epmd:default
online    17:17:16 svc:/application/riak:default



Finally, and provided that the services are shown to be in an online state, go ahead and ping Riak:


riak ping



Pinging Riak will result in a pong response if the node is up and reachable. If the node is not up and reachable, a Node <nodename> not responding to pings error will result instead.


If all responses indicate that riak is up and running, then you have successfully installed and configured Riak as service on SmartOS.





Next Steps?


Now that Riak is installed, check out the following resources:



		[[Post Installation Notes|Post Installation]]: for checking Riak health after installation


		[[Five Minute Install]]: A  guide that will show you how to go from one
node to bigger than Google!









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/http/fetch-search-schema.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: HTTP Fetch Search Schema
project: riak
version: 2.0.0+
document: api
audience: advanced
group_by: “Search-related Operations”
keywords: [http, api, search, schema, yokozuna]




Retrieves a Riak [[search schema]].



Request


GET /search/schema/<schema_name>






Normal Response Codes



		200 OK








Typical Error Codes



		404 Object Not Found


		503 Service Unavailable — The request timed out internally








Response


If the schema is found, Riak will return the contents of the schema as
XML (all Riak Search schemas are XML).






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/theory/concepts/context.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Causal Context
project: riak
version: 2.0.0+
document: appendix
audience: intermediate
keywords: [appendix, concepts]




Because Riak is an [[eventually consistent|Eventual Consistency]],
[[clustered|Clusters]] system, [[conflicts|Conflict Resolution]] between
object replicas stored on different nodes are inevitable, particularly
in cases when multiple connecting clients update an object at the same
time.



The Problem of Conflicting Values


To illustrate this problem, imagine that you’re building a
CRM [http://en.wikipedia.org/wiki/Customer_relationship_management]
application and storing customer information in Riak. Now imagine that
information about a particular  user is being stored in the [[key|Keys
and Objects]] mariejohnston in the [[bucket|Buckets]] customers.
What happens if Marie has two browser windows open and changes her phone
number to 555-1337 in one window and saves it, and then also changes it
to 555-1212 in another window and saves it?


This means that two different values are written to Riak. So what
happens at that point? There are essentially three possible outcomes:



		The two different values end up being stored in Riak, but Riak is
able to discern that one object is more causally recent than the other
(in this case 555-1212) and chooses that value as the “correct”/most
recent value.





		The two different values end up being stored in Riak, but the two
operations happen at roughly the same time, i.e. two concurrent
updates have been completed, and Riak is unable to determine which
value “wins.” In this scenario, one of two things can happen:


a. Riak creates sibling values, aka siblings, for the object


b. Riak chooses a single value for you on the basis of timestamps








In the case of outcome 1 above, Riak uses causal context metadata to
make that decision. This metadata is attached to every object in Riak.
Causal context comes in two forms in Riak: vector clocks and
dotted version vectors. More information in both can be found in the
sections below.


In the case of outcome 2, the choice between a and b is yours to
to make. If you set the allow_mult parameter to true for a bucket,
[[using bucket types]], all writes to that bucket will create siblings
in the case of concurrent writes (and occasionally under other
scenarios, e.g. healed network partitions).


If, however, allow_mult is set to false, then Riak will not generate
siblings, instead relying on internal mechanisms to decide which value
“wins.” In general, we recommend always setting allow_mult to
true. A more complete discussion can be found in our documentation on
[[conflict resolution|Conflict
Resolution#Client-and-Server-side-Conflict-Resolution]].





Vector Clocks


In versions of Riak prior to 1.4, Riak used vector clocks as the sole
means of tracking the history of object updates. In Riak versions 2.0
and later, we recommend using [[dotted version vectors|Causal
Context#Dotted-Version-Vectors]] instead, for reasons that are explained
in that section.


Like dotted version vectors, vector clocks are a means of tracking
events in distributed systems. Unlike normal clocks, vector clocks have
no sense of chronological time, i.e. they don’t care if something
happened at 6 pm today or back in 1972. They care only about sequences
of events. More specifically, they keep track of who—i.e. which actor
in the system—has modified an object and how many times they’ve done
so.


In a distributed system like Riak, multiple replicas of each object are
active in the cluster all the time. Because it’s inevitable that objects
will have conflicting values due to events like concurrent updates and
healed network partitions, Riak needs a mechanism to keep track of which
replica of an object is more current than another. In versions of Riak
prior to 2.0, vector clocks were the means employed by Riak to do
precisely that.


A number of important aspects of the relationship between object
replicas can be determined using vector clocks:



		Whether one object is a direct descendant of the other


		Whether the objects are direct descendants of a common parent


		Whether the objects are unrelated in recent heritage





Behind the scenes, Riak uses vector clocks as an essential element of
its [[active anti-entropy]] subsystem and of its automatic [[read
repair|Active Anti-Entropy#read-Repair-vs.-active-anti-entropy]]
capabilities.


Vector clocks are non-human-readable metadata attached to all Riak
objects. They look something like this:


a85hYGBgzGDKBVIcR4M2cgczH7HPYEpkzGNlsP/VfYYvCwA=



While vector clocks quite often resolve object conflicts without
trouble, there are times when they can’t, i.e. when it’s unclear which
value of an object is most current. When that happens, Riak, if
configured to do so, will create siblings.





Siblings


It is possible, though not recommendable, to [[configure Riak|Conflict
Resolution]] to ensure that only one copy of an object ever exists in a
specific location. This will ensure that at most one value is returned
when a read is performed on a bucket type/bucket/key location (and no
value if Riak returns not found).


It’s also possible, however, to configure Riak to store multiple objects
in a single key if necessary, i.e. for an object to have different
values on different nodes. Objects stored this way have what are called
sibling values. You can instruct Riak to allow for sibling creation by
setting the the allow_mult bucket property to true for a specific
bucket, preferably [[using bucket types]].


From the standpoint of application development, the difficulty with
siblings is that they by definition conflict with one another. When an
application attempts to read an object that has siblings, multiple
replicas will be stored in the location where the application is
looking. This means that the application will need to develop a
strategy for [[conflict resolution]], i.e. the application will need to
decide which value is more correct depending on the use case.





More Information on Vector Clocks


Additional information on vector clocks:



		[[Conflict Resolution]] in Riak


		[[Vector Clocks on Wikipedia|http://en.wikipedia.org/wiki/Vector_clock]]


		[[Why Vector Clocks are Easy|http://blog.basho.com/2010/01/29/why-vector-clocks-are-easy/]]


		[[Why Vector Clocks are Hard|http://blog.basho.com/2010/04/05/why-vector-clocks-are-hard/]]


		The vector clocks used in Riak are based on the [[work of Leslie Lamport|http://portal.acm.org/citation.cfm?id=359563]].








Dotted Version Vectors


In versions of Riak prior to 2.0, all causality-based conflict
resolution, whether on the client side or in Riak, was achieved using
[[vector clocks|Causal Context#Vector-Clocks]]. In version 2.0,
Riak added the option of using dotted version vectors (DVVs)
instead.


Like vector clocks, dotted version vectors are a mechanism for tracking
object update causality in terms of logical time rather than
chronological time (as with timestamps), enabling Riak to make decisions
about which objects are more current than others in cases of conflict.



DVVs Recommended Over Vector Clocks

If you are using Riak version 2.0 or later, we strongly recommend using
dotted version vectors instead of vector clocks, as DVVs are far better
at limiting the number of siblings produced in a cluster, which can
prevent a wide variety of potential issues.




DVVs Versus Vector Clocks


The role that DVVs play in Riak is directly analogous to that of
[[vector clocks|Causal Context#Vector-Clocks]], as both are used
to resolve object conflicts, whether during background operations like
[[active anti-entropy]] or [[read repair|Riak Glossary#read-repair]], or
when applications engage in client-side [[conflict resolution]]. The
crucial difference between them, however, lies in the way that they
handle concurrent updates.


Vector clocks can detect concurrent updates to the same object but they
can’t identify which value was associated with each update. If an object
stored in the bucket frequent_updates with the key update_me is
updated by five different clients concurrently and tagged with the same
vector clock, then five values should be created as siblings.  However,
depending on the order of delivery of those updates to the different
replicas, sibling values may be duplicated, which can in turn lead to
[[sibling explosion|Causal Context#Sibling-Explosion]] and thus undue
[[latency|Latency Reduction Checklist]].


DVVs, on the other hand, identify each value with the update that
created it. If five clients concurrently update the object above (in the
bucket frequent_updates, with the key update_me), each of these
updates will be marked with a dot (a minimal [[vector clock|vector
clocks]]) that indicates the specific event that introduced it. This
means that duplicate values can always be identified and removed,
reducing the likelihood of [[sibling explosion|Vector
Clocks#sibling-explosion]]. Rather than being potentially unbounded, the
number of sibling values will be proportional to the number of
concurrent updates.


In terms of performance, the difference between vector clocks and DVVs
should be minimal in most cases. Because DVVs de-duplicate updates, they
should generally be smaller than objects that use vector clocks.





Usage


From an application’s perspective, vector clocks and DVVs function in
exactly the same fashion. Object updates using DVVs involve the same
sequence in interacting with Riak:



		fetch an object from Riak,


		fetch the object’s metadata, which will contain an opaque context
object (e.g. a85hYGBgzGDKBVIcWu/1S4Pjin9lMCWy5bEycN1/cYYvCwA=) for
the vector clock or DVV attached to that version of the object, and
finally


		pass that opaque context object back to Riak when you update the
object.





You will not need to modify your application code when switching from
vector clocks to DVVs, even if you choose to switch all Riak objects in
your cluster to DVVs. You should make sure, however, that the right
bucket types and buckets are being targeted by your application after
the dvv_enabled parameter has been changed.


For compatibility’s sake, DVVs contained in Riak objects’ metadata are
still labeled X-Riak-Vclock if you’re using the [[HTTP API]] and
vclock if using the [[Protocol Buffers interface|PBC Fetch Object]].


More on using vector clocks and DVVs on the application side can be
found in our documentation on [[conflict resolution]].



Note on DVVs and bucket types

The choice between vector clocks and DVVs can be made at the bucket
level, [[using bucket types]]. This enables you to employ a mixed
conflict resolution strategy in your Riak cluster, using DVVs in some
buckets and vector clocks in others if you wish. DVVs can be enabled by
setting the dvv_enabled bucket property to
true for one or more bucket types.Vector clocks remain the default if you are not using bucket types.
However, any bucket type that you create and activate will have
dvv_enabled set to true. And so if you wish to
create a bucket type that uses traditional vector clocks, you will need
to explicitly set dvv_enabled to false for
that bucket type.






Sibling Explosion


Sibling explosion occurs when an object rapidly collects siblings that
are not reconciled. This can lead to a variety of problems, including
degraded performance, especially if many objects in a cluster suffer
from siblings explosion. At the extreme, having an enormous object in a
node can cause reads of that object to crash the entire node. Other
issues include [[undue latency|Latency Reduction Checklist]] and
out-of-memory errors.


To prevent sibling explosion, we recommend the following:



		Use [[dotted version vectors|Causal Context#Dotted-Version-Vectors]]
instead of [[vector clocks|Causal Context#Vector-Clocks]] for causal
context.


		Always update mutable objects within a read/modify/write cycle. More
information can be found in the [[Object Updates]] doc.








Resources



		Evaluating Dotted Version Vectors in Riak [http://asc.di.fct.unl.pt/~nmp/pubs/inforum-2011-2.pdf]


		Improving Logical Clocks in Riak with Dotted Version Vectors: A Case Study [http://paginas.fe.up.pt/~prodei/dsie12/papers/paper_19.pdf]


		Dotted Version Vector Sets [https://github.com/ricardobcl/Dotted-Version-Vectors]


		A History of Time in Riak [https://www.youtube.com/watch?v=3SWSw3mKApM]









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/building/installing/with-chef.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Installing Riak with Chef
project: riak
version: 1.2.0+
document: cookbook
toc: true
audience: intermediate
keywords: [operator, installing, chef]
moved: {
‘1.4.0-‘: ‘/cookbooks/Installing-With-Chef’
}




If you manage your infrastructure with Chef [http://www.opscode.com/chef/],
the open source configuration management framework, you’ll be happy to know
that we maintain a cookbook [http://community.opscode.com/cookbooks/riak] to
install Riak with Chef.



Getting Started


The Riak cookbook can be used just by adding recipe[riak] to the runlist for
a node. The default settings will cause Riak to be installed and configured
via Basho maintained package repositories.



Package Installation


There are three options for installation: source, package, and
enterprise_package. package is the default (installs Riak open source),
and is the recommended option for Red Hat and Debian based operating systems.
For source installations of Riak, Erlang/OTP R15B01 and above is recommended.





Source Installation


The source recipe can be used to install Riak from source. The source
installation requires the git, build-essential, and erlang cookbooks.





Enterprise Installation


To install Riak Enterprise, populate
node['riak']['package']['enterprise_key'] with a Basho provided key for the
release.


Riak Enterprise installations managed through the cookbook must be installed
via a package.





Basic Configuration


All the configuration options exist within the node['riak']['config']
namespace. In cases where an Erlang data type is necessary, use the
appropriate methods from the
erlang_template_helper [https://github.com/basho/erlang_template_helper].



Networking


Riak clients communicate with the nodes in the cluster through either the HTTP
or Protocol Buffers interfaces, both of which can be used simultaneously.
Configuration for each interface includes the IP address and TCP port on which
to listen for client connections. The default for the HTTP interface is
localhost:8098 and for Protocol Buffers 0.0.0.0:8087 (meaning client
connections to any address on the server, TCP port 8087, are accepted).


As the default HTTP configuration is inaccessible to other nodes, it must be
changed if you want clients to use the HTTP interface. That said, it is not
recommended to allow clients direct connection with some type of load
balancing solution between Riak and client traffic.


default['riak']['config']['riak_core']['http'] = [[node['ipaddress'].to_erl_string, 8098].to_erl_tuple]
default['riak']['config']['riak_api']['pb'] = [[node['ipaddress'].to_erl_string, 8087].to_erl_tuple]



Intra-cluster handoff occurs over a dedicated port, which defaults to 8099.


default['riak']['config']['riak_core']['handoff_port'] = 8099



Finally, by default, options are included in the configuration to define the
set of ports used for Erlang inter-node communication.


default['riak']['config']['kernel']['inet_dist_listen_min'] = 6000
default['riak']['config']['kernel']['inet_dist_listen_max'] = 7999






Erlang


A number of Erlang parameters may be configured through the cookbook. The node
-name and -setcookie are most important for creating multi-node clusters.


The rest of the parameters are primarily for performance tuning, with kernel
polling and SMP enabled by default. A few examples follow:


default['riak']['args']['-name'] = "riak@#{node['fqdn']}"
default['riak']['args']['-setcookie'] = "riak"
default['riak']['args']['+K'] = true
default['riak']['args']['+A'] = 64
default['riak']['args']['+W'] = "w"
default['riak']['args']['-env']['ERL_MAX_PORTS'] = 4096
default['riak']['args']['-env']['ERL_FULLSWEEP_AFTER'] = 0
default['riak']['args']['-env']['ERL_CRASH_DUMP'] = "/var/log/riak/erl_crash.dump"
default['riak']['args']['-env']['ERL_MAX_ETS_TABLES'] = 8192
default['riak']['args']['-smp'] = "enable"






Storage Backends


Riak requires specification of a storage backend along with various backend
storage options specific to each backend. While Riak supports specification of
different backends for different buckets, the Chef cookbook does not yet allow
such configurations.


The most common backends are [[Bitcask]], [[LevelDB]], and the [[multi
backend|multi]]. The typical configuration options and their defaults are
given below.



Bitcask


Settings for the default Bitcask backend. See the [[Bitcask]] documentation
for more information.


default['riak']['config']['bitcask']['io_mode'] = "erlang"
default['riak']['config']['bitcask']['data_root'] = "/var/lib/riak/bitcask".to_erl_string






LevelDB


Settings for the LevelDB backend. See the [[LevelDB]] documentation for more
information.


default['riak']['config']['eleveldb']['data_root'] = "/var/lib/riak/leveldb".to_erl_string










Lager


Lager [https://github.com/basho/lager] is the logging framework used within
Riak. It can also be used with Erlang/OTP.


error_log = ["/var/log/riak/error.log".to_erl_string,"error",10485760,"$D0".to_erl_string,5].to_erl_tuple
info_log = ["/var/log/riak/console.log".to_erl_string,"info",10485760,"$D0".to_erl_string,5].to_erl_tuple

default['riak']['config']['lager']['handlers']['lager_file_backend'] = [error_log, info_log]
default['riak']['config']['lager']['crash_log'] = "/var/log/riak/crash.log".to_erl_string
default['riak']['config']['lager']['crash_log_msg_size'] = 65536
default['riak']['config']['lager']['crash_log_size'] = 10485760
default['riak']['config']['lager']['crash_log_date'] = "$D0".to_erl_string
default['riak']['config']['lager']['crash_log_count'] = 5
default['riak']['config']['lager']['error_logger_redirect'] = true






Sysmon


Sysmon monitors Riak garbage collection process and logs relevant information
to the status of garbage collection.


default['riak']['config']['riak_sysmon']['process_limit'] = 30
default['riak']['config']['riak_sysmon']['port_limit'] = 2
default['riak']['config']['riak_sysmon']['gc_ms_limit'] = 0
default['riak']['config']['riak_sysmon']['heap_word_limit'] = 40111000
default['riak']['config']['riak_sysmon']['busy_port'] = true
default['riak']['config']['riak_sysmon']['busy_dist_port'] = true






Index Merge


Settings pertaining to Secondary Index and Riak Search indexes.


default['riak']['config']['merge_index']['data_root'] = "/var/lib/riak/merge_index".to_erl_string
default['riak']['config']['merge_index']['buffer_rollover_size'] = 1048576
default['riak']['config']['merge_index']['max_compact_segments'] = 20








Additional Resources


More information related to cluster configuration and building development
environments is available in our documentation.



		[[Five-Minute Install]]









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/http/link-walking.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: HTTP Link Walking
project: riak
version: 0.10.0+
document: api
toc: true
audience: advanced
keywords: [api, http]
group_by: “Query Operations”
moved: {
‘1.4.0-‘: ‘/references/apis/http/HTTP-Link-Walking’
}




Link walking (traversal) finds and returns objects by following links attached
to them, starting from the object specified by the bucket and key portion.  It
is a special case of [[MapReduce|Using MapReduce]], and can be expressed more verbosely as such.
[[Read more about Links|Links]].



Request


GET /buckets/bucket/keys/key/[bucket],[tag],[keep]



Link filters

A link filter within the request URL is made of three parts, separated by
commas:


		Bucket - a bucket name to limit the links to


		Tag - a "riaktag" to limit the links to


		Keep - 0 or 1, whether to return results from this phase




Any of the three parts may be replaced with _ (underscore),
signifying that any value is valid. Multiple phases of links can be followed by
adding additional path segments to the URL, separating the link filters by
slashes. The final phase in the link-walking query implicitly returns its
results.






Response


Normal status codes:



		200 OK





Typical error codes:



		400 Bad Request - if the format of the query in the URL is invalid


		404 Not Found - if the origin object of the walk was missing





Important headers:



		Content-Type - always multipart/mixed, with a boundary specified





Understanding the response body

The response body will always be multipart/mixed, with each
chunk representing a single phase of the link-walking query. Each phase will
also be encoded in multipart/mixed, with each chunk representing a
single object that was found. If no objects were found or "keep" was not set on
the phase, no chunks will be present in that phase.  Objects inside phase
results will include Location headers that can be used to determine
bucket and key. In fact, you can treat each object-chunk similarly to a complete
response from [[fetching the object|HTTP Fetch Object]], without the status
code.






Example


$ curl -v http://127.0.0.1:8098/riak/test/doc3/test,_,1/_,next,1
* About to connect() to 127.0.0.1 port 8098 (#0)
*   Trying 127.0.0.1... connected
* Connected to 127.0.0.1 (127.0.0.1) port 8098 (#0)
> GET /riak/test/doc3/test,_,1/_,next,1 HTTP/1.1
> User-Agent: curl/7.19.4 (universal-apple-darwin10.0) libcurl/7.19.4 OpenSSL/0.9.8l zlib/1.2.3
> Host: 127.0.0.1:8098
> Accept: */*
>
< HTTP/1.1 200 OK
< Server: MochiWeb/1.1 WebMachine/1.9.0 (participate in the frantic)
< Expires: Wed, 10 Mar 2010 20:24:49 GMT
< Date: Fri, 30 Sep 2011 15:24:35 GMT
< Content-Type: multipart/mixed; boundary=JZi8W8pB0Z3nO3odw11GUB4LQCN
< Content-Length: 970
<

--JZi8W8pB0Z3nO3odw11GUB4LQCN
Content-Type: multipart/mixed; boundary=OjZ8Km9J5vbsmxtcn1p48J91cJP

--OjZ8Km9J5vbsmxtcn1p48J91cJP
X-Riak-Vclock: a85hYGDgymDKBVIszMk55zKYEhnzWBlKIniO8kGF2TyvHYIKf0cIszUnMTBzHYVKbIhEUl+VK4spDFTPxhHzFyqhEoVQz7wkSAGLMGuz6FSocFIUijE3pt7HlGBhnqejARXmq0QyZnnxE6jwVJBwFgA=
Location: /riak/test/doc
Content-Type: application/json
Link: </riak/test>; rel="up", </riak/test/doc2>; riaktag="next"
Etag: 3pvmY35coyWPxh8mh4uBQC
Last-Modified: Wed, 10 Mar 2010 20:14:13 GMT

{"riak":"CAP"}
--OjZ8Km9J5vbsmxtcn1p48J91cJP--

--JZi8W8pB0Z3nO3odw11GUB4LQCN
Content-Type: multipart/mixed; boundary=RJKFlAs9PrdBNfd74HANycvbA8C

--RJKFlAs9PrdBNfd74HANycvbA8C
X-Riak-Vclock: a85hYGBgzGDKBVIsbLvm1WYwJTLmsTLcjeE5ypcFAA==
Location: /riak/test/doc2
Content-Type: application/json
Link: </riak/test>; rel="up"
Etag: 6dQBm9oYA1mxRSH0e96l5W
Last-Modified: Wed, 10 Mar 2010 18:11:41 GMT

{"foo":"bar"}
--RJKFlAs9PrdBNfd74HANycvbA8C--

--JZi8W8pB0Z3nO3odw11GUB4LQCN--
* Connection #0 to host 127.0.0.1 left intact
* Closing connection #0







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/theory/concepts/index.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Concepts
project: riak
version: 0.10.0+
document: appendix
toc: true
audience: intermediate
keywords: [appendix, concepts]
moved: {
‘1.4.0-‘: ‘/references/appendices/concepts’
}




This section is a high level overview of concepts, technology choices,
and implementation details that are at work in Riak.



What is Riak


Simply put, Riak is a distributed, scalable, open source key/value
store. We like to say that Riak is the most powerful open-source,
distributed database you’ll ever put into production. Riak scales
predictably and easily and simplifies development by giving users the
ability to quickly prototype, test, and deploy their applications.





Basics and History


Riak is based on technology originally developed by [[Basho
Technologies|http://basho.com]] to run a Salesforce automation business.
There was more interest in the datastore technology than the
applications built on it so Basho decided to build a business around
Riak itself.


Riak is heavily influenced by Dr. Eric Brewer’s [[CAP Theorem|http://en.wikipedia.org/wiki/CAP_theorem]] and [[Amazon’s Dynamo Paper|Dynamo]].
Most of the core team comes from Akamai which informed Riak’s focus on operational ease and fault tolerance.





The Riak APIs


The team that wrote Riak is also responsible for the Erlang REST
framework Webmachine [http://webmachine.basho.com], so it’s not surprising Riak uses [[a REST
API|HTTP API]] for one of the two ways you can access data in Riak.
Storage operations use HTTP PUTs or POSTs and fetches use HTTP GETs.
Storage operations are submitted to a pre-defined URL which defaults to
‘/riak’.


In addition to HTTP, Riak also ships with a fully-featured [[Protocol
Buffers API|PBC-API]]. This is a simple binary protocol based on the
library Google’s open source project of the same name.





Client Libraries


Basho and the Riak community support and develop a wide variety of
client libraries that connect to Riak.


Currently Basho [[supports libraries|Client Libraries]] for Ruby, Java, Erlang, Python, PHP, and C/C++.


The Riak Community writes and supports [[client libraries]] for languages and frameworks like Node.js, Go, Groovy,
Haskell, and much more.





Buckets, Keys, and Values


[[Buckets]] and [[keys|Keys and Objects]] are the only way to organize
data inside of Riak. Data is stored and referenced by bucket/key pairs.
Each key is attached to a unique value that can be any data type.





Clustering


Central to any Riak cluster is a 160-bit integer space which is divided
into equally-sized partitions.


Physical servers, referred to in the cluster as “nodes,” run a certain
number of virtual nodes, or “vnodes”. Each vnode will claim a partition
on the ring. The number of active vnodes is determined by the number of
physical nodes in the cluster at any given time.


As a rule, each node in the cluster is responsible for 1/(total number
of physical nodes) of the ring. You can determine the number of vnodes
on each node by calculating (number of partitions)/(number of nodes).
More simply put, a ring with 32 partitions, composed of four physical
nodes, will have approximately eight vnodes per node. This setup is
represented in the diagram below.


[image: Riak Ring]


Nodes can be added and removed from the cluster dynamically and Riak
will redistribute the data accordingly.


Riak is designed, from the ground up, to run in a distributed
environment. Core operations, such as read/writing data and executing
MapReduce jobs, actually become faster when more Riak nodes are added
to a cluster.



No master node


All nodes in a Riak cluster are equal. Each node is fully capable of
serving any client request. This is possible due to the way Riak uses
consistent hashing to distribute data around the cluster.





Storage implications


Riak communicates bucket information around the cluster using a [[gossip
protocol|Riak-Glossary#Gossiping]]. In general, large numbers of
buckets within a Riak cluster is not a problem. In practice, there are
two potential restrictions on the maximum number of buckets a Riak
cluster can handle.


First, buckets which use a non-standard set of properties will force
Riak to gossip more data around the cluster. The additional data can
slow processing and place an upper limit on performance. Second, some
backends store each bucket as a separate entity. This
can cause a node to run out of resources such as file handles. These
resource restrictions might not impact performance but they can
represent another limit on the maximum number of buckets.







Replication


[[Replication]] is built into the core of Riak’s architecture. Riak
controls how many replicas of a datum are stored via a setting called
the “N value”. This value has a per-node default but can be overridden
on each bucket. Riak objects inherit the N value of their parent bucket.
All nodes in the same cluster should agree on and use the same N value.


For example, here is a depiction of what happens when n_val = 3 (This
is the default setting). When you store a datum in a bucket with an N
value of three, the datum will replicated to three separate partitions
on the Riak Ring.


[image: Riak Data Distribution]


Riak uses a technique called ‘hinted handoff’ to compensate for failed
nodes in a cluster. Neighbors of a failed node will pick up the slack
and perform the work of the failed node allowing the cluster to continue
processing as usual. This can be considered a form of self-healing.





Reading, Writing, and Updating Data


Using the Riak APIs, Riak objects can be fetched directly if the client
knows the bucket and key. This is the fastest way to get data out of
Riak.



R Value


Riak allows the client to supply an “R value” on each direct fetch. The
R value represents the number of Riak nodes which must return results
for a read before the read is considered successful. This allows Riak to
provide read availability even when nodes are down or laggy.





Read Failure Tolerance


Subtracting R from N will tell you the number of down or laggy nodes a
Riak cluster can tolerate before becoming unavailable for reads. For
example, an 8 node cluster with an N of 8 and a R of 1 will be able to
tolerate up to 7 nodes being down before becoming unavailable for reads.





Link Walking


Riak can also return objects based on links stored on the object. Link
walking can be used to return a set of related objects from a single
request.





Vector Clocks


Each update to a Riak object is tracked by a [[vector clock|vector clocks]]. Vector clocks allow
Riak to determine causal ordering and detect conflicts in a distributed
system.





Conflict Resolution


Riak has two ways of resolving update conflicts on Riak objects. Riak
can allow the last update to automatically “win” or Riak can return both
versions of the object to the client. This gives the client the
opportunity to resolve the conflict on its own.





W Value


Riak’s API allows the client to supply a “W value” on each update. The W
value represents the number of Riak nodes which must report success
before an update is considered complete. This allows Riak to provide
write availability even when nodes are down or laggy.





Write Failure Tolerance


Subtracting W from N will tell you the number of down or laggy nodes a
Riak cluster can tolerate before becoming unavailable for writes. For
example, an 8 node cluster with an N of 8 and a W of 2 will be able to
tolerate up to 6 nodes being down before becoming unavailable for
writes.







Local Disk Storage and Pluggable Backends


Riak uses a [[backend API]] to interact with its storage subsystem. The
API allows Riak to support multiple backends which can be selected based
on use-cases. See [[Choosing a backend]] for a full list of what we
currently support. The two most heavily-used backend are Bitcask and
LevelDB.


As of the 0.12 release, [[Bitcask]] is the default backend for Riak.
Bitcask is a simple yet powerful local key/value store that serves as
Riak’s low latency, high throughput storage back end.



More on Bitcask

		[[Hello, Bitcask (from the Basho Blog)|http://basho.com/hello-bitcask/]]


		[[An Architectural Overview of Bitcask (PDF)|http://basho.com/assets/bitcask-intro.pdf]]






[[LevelDB]] is an open source library release by Google. It has
different production properties than Bitcask and is required if you’re
planning to use Riak’s [[Using Secondary Indexes]] functionality.





MapReduce


[[MapReduce|Using MapReduce]] in Riak allows you to process your data in real time in
parallel utilizing the hardware resources of your entire cluster.
MapReduce jobs are described in JSON using a set of nested hashes
describing the inputs, phases, and timeout for a job. A job can consist
of an arbitrary number of Map and Reduce phases. For this reason,
MapReduce in Riak can be thought of as a real time “mini-Hadoop”. A job
is submitted via HTTP and the results are returned in JSON-encoded form.
(A Protocol Buffers interface is also supported.)





Secondary Indexes


Version 1.0 of Riak added support for [[Using Secondary Indexes]]. This
feature allows a developer to tag a Riak value with one or more
field/value pairs. The object is indexed under these field/value pairs,
and the application can later query the index to retrieve a list of
matching keys.


Indexes are set on an object-by-object basis, there is no schema. The
indexes are defined at the time the object is written. To change the
indexes for an object, simply write the object with a different set of
indexes.


Indexing is real time and atomic; the results show up in queries
immediately after the write operation completes, and all indexing occurs
on the partition where the object lives, so the object and its indexes
stay in sync.


Indexes can be stored and queried via the HTTP interface or the Protocol
Buffers interface. Additionally, index results can feed directly into a
MapReduce operation, allowing further filtering and processing of index
query results.





Riak Search


[[Using Search]] is a distributed, easily-scalable, failure-tolerant,
realtime, full-text search engine built around Riak Core and tightly
integrated with Riak KV.


Riak Search allows you to find and retrieve your Riak objects using the
objects’ values. When a Riak KV bucket has been enabled for Search
integration (by installing the Search pre-commit hook), any objects
stored in that bucket are also indexed seamlessly in Riak Search.





Commit Hooks


[[Commit Hooks|Using Commit Hooks]] are invoked before or after a value is persisted and
can greatly enhance the functionality of any application. Commit hooks
can:



		allow a write to occur with an unmodified object


		modify the object


		Fail the update and prevent any modifications





Post-commit hooks are notified after the fact and should not modify the
riak_object. Updating riak_objects in post-commit hooks can cause
nasty feedback loops which will wedge the hook into an infinite cycle
unless the hook functions are carefully written to detect and
short-circuit such cycles.


[[Pre- and post-commit hooks|Using Commit Hooks]] are defined on a per-bucket basis and are
stored in the target bucket’s properties. They are run once per
successful response to the client.





Links and Link Walking


[[Links]] are metadata that establish one-way relationships between
objects in Riak. They can be used to loosely model graph like
relationships between objects in Riak.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/building/installing/solaris.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Installing on Solaris
project: riak
version: 1.2.0+
document: tutorial
audience: beginner
keywords: [tutorial, installing, solaris]
prev: “[[Installing on SmartOS]]“
up:   “[[Installing and Upgrading]]“
next: “[[Installing on SUSE]]“
download:
key: solaris
name: “Solaris”
moved: {
‘1.4.0-‘: ‘/tutorials/installation/Installing-on-Solaris’
}




The following steps have been tested to work with Riak version 1.3.1 on Solaris 10 i386. They demonstrate installation of a Riak node on Solaris as the root user.


Before installing Riak on Solaris, be sure that you've installed sudo as Riak's scripts require it for proper operation.

Open Files Limit


Before proceeding with installation, you should ensure that the system’s open files limit is at least 4096 by verifying the current value of nofiles(descriptors). Check the current value with the ulimit command:


ulimit -a



To temporarily increase this limit for the life of your session, use the following command:


ulimit -n 65536



To increase this value in a persistent manner that will be enforced after restarting the system, add the following to the /etc/system file:


set rlim_fd_max=65536
set rlim_fd_cur=65536



Note that you must restart to have the above settings take effect.





Download and Install


Download your version of the Riak binary package for Solaris 10:


curl -o /tmp/BASHOriak-{{VERSION}}-Solaris10-i386.pkg.gz http://s3.amazonaws.com/downloads.basho.com/riak/{{V.V}}/{{VERSION}}/solaris/10/BASHOriak-{{VERSION}}-Solaris10-x86_64.pkg.gz



Next, install the package:


gunzip /tmp/BASHOriak-{{VERSION}}-Solaris10-i386.pkg.gz
pkgadd /tmp/BASHOriak-{{VERSION}}-Solaris10-i386.pkg



After installing the package, be sure to include /opt/riak/bin in the
appropriate user’s PATH. After doing so, you can then start Riak:


riak start



Finally, go ahead and ping Riak to ensure it is running:


riak ping



Pinging Riak will result in a pong response if the node is up and reachable. If the node is not up and reachable, a Node <nodename> not responding to pings error will result instead.


If all responses indicate that riak is up and running, then you have successfully installed Riak on Solaris 10.





Next Steps?


Now that Riak is installed, check out the following resources:



		[[Post Installation Notes|Post Installation]]: for checking Riak health after installation


		[[Five Minute Install]]: A  guide that will show you how to go from one
node to bigger than Google!









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/http/get-bucket-props.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: HTTP Get Bucket Properties
project: riak
version: 0.10.0+
document: api
toc: true
audience: advanced
keywords: [api, http]
group_by: “Bucket-related Operations”
moved: {
‘1.4.0-‘: ‘/references/apis/http/HTTP-Get-Bucket-Properties’
}




Reads the bucket properties.



Request


GET /buckets/bucket/props



Optional query parameters (only valid for the old format):



		props - whether to return the bucket properties (true is the default)


		keys - whether to return the keys stored in the bucket. (false is the
default). See also [[HTTP List Keys]].








Response


Normal status codes:



		200 OK





Important headers:



		Content-Type - application/json





The JSON object in the response will contain up to two entries, "props" and
"keys", which are present or missing, according to the optional query
parameters.  The default is for only "props" to be present.


See [[HTTP Set Bucket Properties]] for more information about the available
bucket properties.





Example


$ curl -v http://127.0.0.1:8098/buckets/test/props
* About to connect() to 127.0.0.1 port 8098 (#0)
*   Trying 127.0.0.1... connected
* Connected to 127.0.0.1 (127.0.0.1) port 8098 (#0)
> GET /buckets/test/props HTTP/1.1
> User-Agent: curl/7.19.7 (universal-apple-darwin10.0) libcurl/7.19.7
OpenSSL/0.9.8l zlib/1.2.3
> Host: 127.0.0.1:8098
> Accept: */*
>
< HTTP/1.1 200 OK
< Vary: Accept-Encoding
< Server: MochiWeb/1.1 WebMachine/1.9.0 (participate in the frantic)
< Date: Fri, 30 Sep 2011 15:24:35 GMT
< Content-Type: application/json
< Content-Length: 368
<
* Connection #0 to host 127.0.0.1 left intact
* Closing connection #0
{"props":{"name":"test","n_val":3,"allow_mult":false,"last_write_wins":false,"
precommit":[],"postcommit":[],"chash_keyfun":{"mod":"riak_core_util","fun":"
chash_std_keyfun"},"linkfun":{"mod":"riak_kv_wm_link_walker","fun":"
mapreduce_linkfun"},"old_vclock":86400,"young_vclock":20,"big_vclock":50,"
small_vclock":10,"r":"quorum","w":"quorum","dw":"quorum","rw":"quorum"}}







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/building/installing/mac-osx.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Installing on Mac OS X
project: riak
version: 0.10.0+
document: tutorial
audience: beginner
keywords: [tutorial, installing, osx]
prev: “[[Installing on RHEL and CentOS]]“
up:   “[[Installing and Upgrading]]“
next: “[[Installing on FreeBSD]]“
download:
key: osx
name: “Mac OS X”
moved: {
‘1.4.0-‘: ‘/tutorials/installation/Installing-on-Mac-OS-X’
}




The following steps are known to work with Mac OS X 10.8, 10.9
(Mavericks), and Yosemite. You can install from source or download a
precompiled tarball.



Install Types



		[[Precompiled Tarballs|Installing on Mac OS X#From-Precompiled-Tarballs]]


		[[Homebrew|Installing on Mac OS X#Homebrew]]


		[[Source|Installing on Mac OS X#From-Source]]






ulimit on OS X

OS X gives you a very small limit on open file handles, so even with a
backend that uses very few file handles, it's possible to run out. See
[[Open Files Limit]] for more information about changing the limit.




From Precompiled Tarballs


To run Riak from our precompiled tarball, run these commands for the
appropriate platform:



64-bit


curl -O http://s3.amazonaws.com/downloads.basho.com/riak/{{V.V}}/{{VERSION}}/osx/10.8/riak-{{VERSION}}-OSX-x86_64.tar.gz
tar xzvf riak-{{VERSION}}-osx-x86_64.tar.gz



After the release is untarred, you will be able to cd into the riak
directory and execute bin/riak start to start the Riak node.







Homebrew



Warning: Homebrew not always up to date

Homebrew's Riak recipe is community supported, and thus is not always up
to date with the latest Riak package. Please ensure that the current
recipe is using the latest supported code (and don't be afraid to update
it if it's not).

Installing Riak 2.0 with Homebrew [http://brew.sh/] is easy:


brew install --devel riak



By default, this will place a {{VERSION}} folder in
/usr/local/Cellar/riak.


Be aware that you will most likely see the following message after
running brew install:


Error: The `brew link` step did not complete successfully
The formula built, but is not symlinked into /usr/local

You can try again using:
  brew link riak



We do not recommend using brew link with Riak. Instead, we recommend
either copying that directory to a desired location on your machine,
aliasing the executables in the /bin directory, or interacting with
the Riak installation directory via environment variables.


Note: Homebrew will install Erlang if you don’t have it already.





From Source


You must have Xcode tools installed from Apple’s Developer
website [http://developer.apple.com/].



Note on Clang

Riak will not compile with Clang. Please make sure that your default
C/C++ compiler is [GCC](https://gcc.gnu.org/).

Riak requires Erlang [http://www.erlang.org/]
{{#2.0.0-}}R15B01{{/2.0.0-}}{{#2.0.0+}}R16B02+{{/2.0.0+}}.


If you do not have Erlang already installed, see [[Installing Erlang]].
Don’t worry, it’s easy!


Next, download and unpack the source distribution.


curl -O http://s3.amazonaws.com/downloads.basho.com/riak/{{V.V}}/{{VERSION}}/riak-{{VERSION}}.tar.gz
tar zxvf riak-{{VERSION}}.tar.gz
cd riak-{{VERSION}}
make rel



If you receive errors when building about “incompatible architecture,”
please verify that you built Erlang with the same architecture as your
system (Snow Leopard and higher: 64bit{{#1.4.0-}}, everything else:
32bit{{/1.4.0-}}).





Next Steps?


From here, you might want to check out:



		[[Post Installation]] — Information on checking Riak health after
installation


		[[Five-Minute Install]] — A guide that will show you how to go from
one node to as many as you’d like









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/references/http/secondary-indexes.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: HTTP Secondary Indexes
project: riak
version: 1.0.0+
document: api
toc: true
audience: advanced
keywords: [api, http]
group_by: “Query-related Operations”
moved: {
‘1.4.0-‘: ‘/references/apis/http/HTTP-Secondary-Indexes’
}




[[Secondary Indexes|Using Secondary Indexes]] allows an application to tag a Riak object with one or more field/value pairs. The object is indexed under these field/value pairs, and the application can later query the index to retrieve a list of matching keys.



Request



Exact Match


GET /buckets/mybucket/index/myindex_bin/value






Range Query


GET /buckets/mybucket/index/myindex_bin/start/end



{{#1.4.0+}}



Range query with terms


To see the index values matched by the range, use return_terms=true.


GET /buckets/mybucket/index/myindex_bin/start/end?return_terms=true



{{/1.4.0+}}


{{#1.4.0+}}







Pagination


Add the parameter max_results for pagination. This will limit the results and provide for the next request a continuation value.


GET /buckets/mybucket/index/myindex_bin/start/end?return_terms=true&max_results=500
GET /buckets/mybucket/index/myindex_bin/start/end?return_terms=true&max_results=500&continuation=g2gCbQAAAAdyaXBqYWtlbQAAABIzNDkyMjA2ODcwNTcxMjk0NzM=



{{/1.4.0+}}


{{#1.4.0+}}





Streaming


GET /buckets/mybucket/index/myindex_bin/start/end?stream=true



{{/1.4.0+}}







Response


Normal status codes:



		200 OK





Typical error codes:



		400 Bad Request - if the index name or index value is invalid.


		500 Internal Server Error - if there was an error in processing a map or reduce function, or if indexing is not supported by the system.


		503 Service Unavailable - if the job timed out before it could complete








Example


$ curl -v http://localhost:8098/buckets/mybucket/index/field1_bin/val1
* About to connect() to localhost port 8098 (#0)
*   Trying 127.0.0.1... connected
* Connected to localhost (127.0.0.1) port 8098 (#0)
> GET /buckets/mybucket/index/field1_bin/val1 HTTP/1.1
> User-Agent: curl/7.19.7 (universal-apple-darwin10.0) libcurl/7.19.7 OpenSSL/0.9.8r zlib/1.2.3
> Host: localhost:8098
> Accept: */*
>
< HTTP/1.1 200 OK
< Vary: Accept-Encoding
< Server: MochiWeb/1.1 WebMachine/1.9.0 (participate in the frantic)
< Date: Fri, 30 Sep 2011 15:24:35 GMT
< Content-Type: application/json
< Content-Length: 19
<
* Connection #0 to host localhost left intact
* Closing connection #0
{"keys":["mykey1"]}%







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/theory/concepts/Links.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Links
project: riak
version: 0.10.0+
document: appendix
toc: true
audience: intermediate
keywords: [appendix, concepts]
moved: {
‘1.4.0-‘: ‘/references/appendices/concepts/Links’
}




Links are metadata that establish one-way relationships between objects
in Riak. They can be used to loosely model graph like relationships
between objects in Riak.



The Link Header


The way to read and modify links via the [[HTTP API]] is the HTTP Link
header. This header emulates the purpose of 

&lt;


link&gt;


 tags in HTML,
that is, establishing relationships to other HTTP resources. The format
that Riak uses is like so:


Link: </riak/bucket/key>; riaktag="tag"



Inside the angle-brackets (

&lt;


,&gt;


) is a relative URL to another object in
Riak. The “tag” portion in double-quotes is any string identifier that
has a meaning relevant to your application.


Objects can have multiple links by separating them with commas. For
example, if an object was a participant in a doubly-linked list of
objects, it might look like this:


Link: </riak/list/1>; riaktag="previous", </riak/list/3>; riaktag="next"



There is no artificial limit to the number of links an object can
have. But, as adding links to an object does increase that object’s
size, the same guidelines that apply to your data should also apply to
your links: strike a balance between size and usability.



Links in the Erlang API


Links in the Erlang API are stored as tuples in the object metadata of
this form:


{{<<"bucket">>,<<"key">>},<<"tag">>}



To access the links, use “riak_object:get_metadata/1” to retrieve the
metadata “dict”, and then retrieve the <<"Links">> key from that dict.
Example:


1> {ok, Object} = Client:get(<<"list">>,<<"2">>,1).
2> Meta = riak_object:get_metadata(Object).
3> Links = dict:fetch(<<"Links">>, Meta).
[{{<<"list">>,<<"1">>},<<"previous">>},{{<<"list">>,<<"3">>},<<"next">>}]



To store links back in the object, update the dict, update the object
metadata, and put the object:


4> NewMeta = dict:store(<<"Links">>, [{{<<"list">>,<<"0">>},<<"first">>}|Links], Meta).
5> NewObject = riak_object:update_metadata(Object, NewMeta).
6> Client:put(NewObject,2).






Link-walking


Link-walking (traversal) is a special case of
[[MapReduce|Advanced MapReduce]] querying, and can be accessed
through the [[HTTP Link Walking]]. Link-walks start at a single input
object and follow links on that object to find other objects that match
the submitted specifications. More than one traversal may be specified
in a single request, with any number of the intermediate results
returned. The final traversal in a link-walking request always returns
results.



		[[Link-walking by
Example|http://basho.com/link-walking-by-example/]]
on the Basho Blog









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/building/installing/jvm.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Installing the JVM
project: riak
version: 2.0.0+
document: tutorial
audience: beginner
keywords: [tutorial, installing, jvm, java, search, solr]




If you are using [[Riak Search 2.0|Using Search]], codename Yokozuna,
you will need to install Java 1.6 or later to run Apache
Solr [https://lucene.apache.org/solr/], the search platform that powers
Riak Search.


We recommend using Oracle’s JDK
7u25 [http://www.oracle.com/technetwork/java/javase/7u25-relnotes-1955741.html].
Installation packages can be found on the Java SE 7 Downloads
page [http://www.oracle.com/technetwork/java/javase/downloads/java-archive-downloads-javase7-521261.html#jdk-7u25-oth-JPR]
and instructions on the documentation
page [http://www.oracle.com/technetwork/java/javase/documentation/index.html].



Installing Solr on OS X


If you’re using Riak Search on Mac OS X, you may see the following
error:


java.net.MalformedURLException: Local host name unknown: <YOUR_HOST_NAME>



If you encounter this error, we recommend manually setting the hostname
for localhost using
scutil [https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man8/scutil.8.html].


scutil --set HostName "localhost"







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/cookbooks/fog.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Fog on Riak CS
project: riakcs
version: 1.3.0+
document: cookbook
toc: true
audience: beginner
keywords: [developer]




Fog is a general cloud services library written in Ruby. It is built to
support as many cloud providers as possible, ranging from most AWS
services to Rackspace, Linode, Joyent, and beyond, and this includes an
extension for Riak CS.


You can install it via RubyGems [http://rubygems.org/]:


gem install fog



Or using Bundler [http://gembundler.com/]:


gem "fog", "~> 1.10.1"




User Management


The first thing that needs to be done when using Fog is creating a new
user. Before you can do that, however, you must create connections to
your Riak CS server to handle communication to different services.



Setup


First, create a new instance of the provisioning object (capitalized
constants are to be set by you).


client = Fog::RiakCS::Provisioning.new(
  :riakcs_access_key_id     => RIAK_CS_ADMIN_KEY,
  :riakcs_secret_access_key => RIAK_CS_ADMIN_SECRET,
  :host                     => RIAK_CS_HOST,
  :port                     => RIAK_CS_PORT
)






Create User


The following command creates a user, given an email or name. This will
either return a response object or raise an error if the operation
fails. The response body will contain a JSON document containing the
user’s information, while the key_id is required for further
operations on the user.


response = client.create_user(email, name)






List Users


You can list the users in the current Riak CS cluster, optionally
filtering by the user’s status. The response body is an array of hashes
representing each matching user.


users = client.list_users(:status => 'enabled')






Get User


With the user’s key_id (riakcs_access_key_id), get_user either
returns a JSON document describing the user or raises and error if the
user doesn’t exist.


user = client.get_user(key_id)
user.body
# {"key_secret"=>"XXX", "display_name"=>"dizzy", "email"=>"dizzy@basho.com", "status"=>"enabled", "name"=>"Eric Redmond", "key_id"=>"YYY", "id"=>"ZZZ"}






Manage User


You can enable or disable users’ access with the following commands.


client.enable_user(key_id)
client.disable_user(key_id)



You can also revoke users’ current credentials and grant new
credentials. The regrant_secret function returns a JSON document with
the users’ refreshed credentials.


client.regrant_secret(key_id)








Usage Retrieval


Fetches information about Riak CS requests.



Setup


First, create a new instance of the Usage object.


usage = Fog::RiakCS::Usage.new(
  :riakcs_access_key_id     => RIAK_CS_ADMIN_KEY,
  :riakcs_secret_access_key => RIAK_CS_ADMIN_SECRET,
  :host                     => RIAK_CS_HOST,
  :port                     => RIAK_CS_PORT
)



The example below is targeted at riakcs.net [https://www.riakcs.net]:


usage = Fog::RiakCS::Usage.new(
  :riakcs_access_key_id     => 'XXXPRQ_MVWUC7QZ5OBHF',
  :riakcs_secret_access_key => 'Hhti-b9YFBjYkFgFFq5PbrOs2pFgBIhu3LF6Aw==',
  :host                     => 'data.riakcs.net',
  :port                     => 8080
)



Note: You may use regular (non-admin) credentials for usage
retrieval if you are accessing your own usage.





Get usage


The get_usage method returns usage information for the
requested_key_id. You can choose which type of usage you want via the
:types attribute: :access or :storage (defaults to both). You may
also specify a :start_time and an :end_time (this defaults to the
previous 24-hour window). You’ll receive a response object, whose body
is a nested set of hashes containing usage data broken down by type,
and further by node.


response = client.get_usage(requested_key_id,
                 :types      => [:access, :storage],
                 :start_time => start_time,
                 :end_time   => end_time)



If user access is denied, it will return a Excon::Errors::Forbidden
error.








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/cookbooks/Riak-CS-Release-Notes.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Riak CS Release Notes
project: riakcs
version: 1.2.0+
document: cookbook
index: true
audience: intermediate
keywords: [developer]





Riak CS 2.0.0


For a complete set of release notes, upgrade instructions, and changed
configuration settings, please see the
Full Riak CS 2.0.0 Release Notes [https://github.com/basho/riak_cs/blob/develop/RELEASE-NOTES.md]



General Information



		This release updates Riak CS to work with Riak 2.0.5.


		We have simplified the configuration system.


		All official patches for older versions of Riak and Riak CS have been included
in these releases. There is no need to apply any patches released for Riak CS
1.4.x or 1.5.x to the Riak CS 2.0.x series. Patches released for Riak CS 1.4.x
or 1.5.x cannot be directly applied to Riak CS 2.0.x because the version of
Erlang/OTP shipped with Riak CS has been updated in version 2.0.0.


		Please review the complete Release Notes before upgrading.








Known Issues & Limitations



		None.








Changes and Additions



		Changed the name of gc_max_workers to gc.max_workers, and lowered the
default value from 5 to 2 (#1110) to reduce the workload on the cs cluster.


		Partial support of GET Location API (#1057)


		Add very preliminary AWS v4 header authentication - without query
string authentication, object chunking and payload checksum (#1064).
There is still a lot of work to reliably use v4 authentication.


		Put Enterprise deps into dependency graph (#1065)


		Introduce Cuttlefish (#1020, #1068, #1076, #1086, #1090)
(Stanchion #88, #90, #91)


		Yessir Riak client to measure performance (#1072, #1083)


		Inspector improvement with usage change (#1084)


		Check signed date in S3 authentication (#1067)


		Update cluster_info and various dependent libraries (#1087, #1088)
(Stanchion #85, #87, #93)


		Storage calculation optimization (#1089) With Riak >= 2.1 this works
with use_2i_for_storage_calc flag might relieve disk read of
storage calculation.








Bugfixes



		Fix wrong webmachine log handler name (#1075)


		Fix lager crash (#1038)


		Fix hardcoded crashdump path (#1052)


		Suppress unnecessary warnings (#1053)


		Multibag simpler state transition (Multibag #21)


		GC block deletion failure after transition to multibag environment
(Multibag #19)


		Connection closing caused errors for objects stored before the
transition, after transition from single bag to multibag
configuration (Multibag #18).








Deprecation Notices



		Multi-Datacenter Replication using v2 replication support has been deprecated.


		Old list objects which required fold_objects_for_list_keys as false have
been deprecated and will be removed in the next major version.


		Non-paginated GC in cases where gc_paginated_indexes is false has been
deprecated and will be removed in the next major version.








General Notes on Upgrading to Riak CS 2.0.0


Upgrading a Riak CS system involves upgrading the underlying Riak, Riak CS and
Stanchion installations. The upgrade process can be non-trivial depending on
your existing system configurations and the combination of sub-system versions.
This document contains general instructions and notices on upgrading the whole
system to Riak CS 2.0.0.



New Configuration System


Riak 2.0.0 introduced a new configuration system (riak.conf), and as of Riak
CS 2.0.0, Riak CS now supports the new configuration style. Both Riak and Riak
CS still support the older style configurations through app.config and
vm.args.


Basho recommends moving to the new unified configuration system, using the
files riak.conf, riak-cs.conf and stanchion.conf.





Note on Legacy app.config Usage


If you choose to use the legacy app.config files for Riak CS and/or
Stanchion, some parameters have changed names and must be updated.


In particular, for the Riak CS app.config:



		cs_ip and cs_port have been combined into listener.


		riak_ip and riak_pb_port have been combined into riak_host.


		stanchion_ip and stanchion_port have been combined into stanchion_host.


		admin_ip and admin_port have been combined into admin_listener.


		webmachine_log_handler has become webmachine_access_log_handler.


		{max_open_files, 50} has been deprecated and should be replaced with
{total_leveldb_mem_percent, 30}.





For the Stanchion app.config:



		stanchion_ip and stanchion_port have been combined into listener.


		riak_ip and riak_port have been combined into riak_host.





Each of the above pairs follows a similar form. Where the old form used a
separate IP and Port parameter, the new form combines those as {new_option, { "IP", Port}}. For example, if your legacy app.config configuration was
previously:


{riak_cs, [
    {cs_ip, "127.0.0.1"},
    {cs_port, 8080 },
    . . .
]},



It should now read:


{riak_cs, [
    {listener, {"127.0.0.1", 8080}},
    . . .
]},



and so on.





Note: Upgrading from Riak CS 1.5.3 or Older


Some key objects changed names [https://github.com/basho/riak_cs/blob/release/1.5/RELEASE-NOTES.md#notes-on-upgrading] after the
upgrade. Applications may need to change their behaviour due to this bugfix.





Note: Upgrading from Riak CS 1.5.0 or Older


Bucket number limitation per user [https://github.com/basho/riak_cs/blob/release/1.5/RELEASE-NOTES.md#notes-on-upgrading-1] have
been introduced in 1.5.1. Users who have more than 100 buckets cannot create any
bucket after the upgrade unless the limit is extended in the system
configuration.





Note: Upgrading From Riak CS 1.4.x


An operational procedure to clean up incomplete multipart under deleted
buckets [https://github.com/basho/riak_cs/blob/release/1.5/RELEASE-NOTES.md#incomplete-multipart-uploads] is needed. Otherwise new
buckets with names that used to exist can’t be created. The operation will fail
with 409 Conflict.


Leeway seconds and disk space should also be carefully watched during the
upgrade, because timestamp management of garbage collection was changed in the
1.5.0 release. Consult the “Leeway seconds and disk
space [https://github.com/basho/riak_cs/blob/release/1.5/RELEASE-NOTES.md#leeway-seconds-and-disk-space] section of 1.5 release notes
for a more detailed description.





Note: Upgrading From Riak CS 1.3.x or Older


Basho supports upgrading from the two previous major versions to the latest
release. Thus, this document will only cover upgrading from Riak CS versions
1.4.x and 1.5.x.


To upgrade to Riak CS 2.0.0 from versions prior to Riak CS 1.4.0, operators will
need to first upgrade their system to Riak CS version 1.4.5 or 1.5.4. Upgrading
to Riak CS 1.5.4 is recommended. The underlying Riak installation must also be
upgraded to the Riak 1.4.x series, preferably version 1.4.12.







General Upgrade Instructions


For a complete set of release notes, upgrade instructions, and changed
configuration settings, please see the
Full Riak CS 2.0.0 Release Notes [https://github.com/basho/riak_cs/blob/develop/RELEASE-NOTES.md]



All Scenarios


We recommend updating Stanchion before all other subsystems. Be careful not to
have multiple live Stanchion nodes accessible from Riak CS nodes at the same
time.


Repeat these steps on each node running Stanchion:



		Stop Stanchion


		Back up all Stanchion configuration files


		Uninstall the current Stanchion package


		Install the new Stanchion 2.0.0 package


		Migrate the Stanchion configuration (See below)


		Start Stanchion








Scenario: If Riak CS and Riak are both running on the same host.


Repeat these steps on every host:



		Stop Riak CS


		Stop Riak


		Back up all Riak and Riak CS configuration files and remove all patches


		Uninstall the current Riak CS package


		Uninstall the current Riak Riak packages


		Install the new Riak package


		Install the new Riak CS 2.0.0 package


		Migrate the Riak configuration (See below)


		Migrate the Riak CS configuration (See below)


		Start Riak


		Start Riak CS








Scenario: If Riak CS and Riak are running on separate hosts.


When Riak CS is not installed on the same host as Riak, Riak CS can be upgraded
at any time while the corresponding remote Riak node is alive.


Repeat these steps on every host:



		Stop Riak CS


		Back up all configuration files and remove all patches


		Uninstall the current Riak CS package


		Install the new Riak CS 2.0.0 package


		Migrate the Riak CS configuration (See below)


		Start Riak CS





For a complete set of release notes, upgrade instructions, and changed
configuration settings, please see the
Full Riak CS 2.0.0 Release Notes [https://github.com/basho/riak_cs/blob/develop/RELEASE-NOTES.md]









Riak CS 1.5.4



Fixes



		Disable backpressure sleep
riak_cs/#1041 [https://github.com/basho/riak_cs/pull/1041]
		Problem: When backpressure sleep is triggered due to the
presence of many siblings, this can lead to even more siblings.


		Solution: This change prevents unnecessary siblings growth in
cases where (a) backpressure is triggered under high upload
concurrency and (b) uploads are interleaved during backpressure
sleep. This issue does not affect multipart uploads.








		Fix an incorrect path rewrite in the S3 API caused by unnecessary URL
decoding riak_cs/#1040 [https://github.com/basho/riak_cs/pull/1040]
		Problem: Due to the incorrect handling of URL
encoding/decoding, object keys including
%[0-9a-fA-F][0-9a-fA-F] (as a regular expression) or + had
been mistakenly decoded. As a consequence, the former case was
decoded to some other binary, while in the latter case + was
replaced with a space. In both cases, there was a possibility of
an implicit data overwrite. For the latter case, an overwrite
occurs for an object including + in its key, e.g. foo+bar,
by a different object with a name that is largely similar but
replaced with space, e.g. foo bar, and vice versa.


		Solution: Fix the incorrect handling of URL encoding/decoding.
This fix also addresses
riak_cs/#910 [https://github.com/basho/riak_cs/pull/910] and
riak_cs/#977 [https://github.com/basho/riak_cs/pull/977].














Notes on Upgrading


After upgrading to Riak CS 1.5.4, objects including
%[0-9a-fA-F][0-9a-fA-F] (as a regular expression) or + in their key,
e.g.foo+bar, become invisible and can be seen as objects with a
different name. For the former case, objects will be referred to with
the unnecessarily decoded key; in the latter case, those objects will
be referred to with keys in which + is replaced with a space, e.g.
foo bar, by default.


The table below provides examples for URLs including
%[0-9a-fA-F][0-9a-fA-F] and how they will work before and after the
upgrade.


| Before upgrade | After upgrade
:–|:—————|:————-
written as | a%2Fkey | -
read as | a%2Fkey or a/key | a/key
listed as | a/key | a/key


Examples for unique objects including + or an empty space through
upgrade:


| Before upgrade | After upgrade
:–|:—————|:————-
written as | a+key | -
read as | a+key or a key | a key
listed as | a key | a key


Examples for unique objects with an empty space in the URL:


| Before upgrade | After upgrade
:–|:—————|:————-
written as | a key | -
read as | a+key or a key | a key
listed as | a key | a key


This fix also changes the path format in access logs from the
single-URL-encoded style to the doubly-encoded URL style. Below is an
example of the old style:


127.0.0.1 - - [07/Jan/2015:08:27:07 +0000] "PUT /buckets/test/objects/path1%2Fpath2%2Fte%2Bst.txt HTTP/1.1" 200 0 "" """



And here is the analogous URL in the new style:


127.0.0.1 - - [07/Jan/2015:08:27:07 +0000] "PUT /buckets/test/objects/path1%2Fpath2%2Fte%252Bst.txt HTTP/1.1" 200 0 "" ""



Note that the object path has changed from path1%2Fpath2%2Fte%2Bst.txt
to path1%2Fpath2%2Fte%252Bst.txt between the two examples above.


If the old behavior is preferred, e.g. because applications using Riak
CS have been written to use the older style, you can retain that
behavior on upgrade by modifying your Riak CS configuration. Change the
rewrite_module setting as follows:


{riak_cs, [
           %% Other settings
           {rewrite_module, riak_cs_s3_rewrite_legacy},
           %% Other settings
]}



Note: The old behavior is technically incorrect and implicitly
overwrites data in the ways described above. Retain the old behavior
with caution.







Riak CS 1.5.3



Changes



		Add read_before_last_manifest_write option to help avoid sibling
explosion for use cases involving high churn and concurrency on a
fixed set of keys. When sibling explosion occurs, the objects stored in
Riak can become very large and severely impair the functioning of the
system. The trade-off in enabling this option is a latency penalty of
doing an extra read before the final write of an object’s manifest to
Riak. However, for use cases matching the description, the minor
latency penalty is preferable to consequences of sibling explosion.
riak_cs/#1011 [https://github.com/basho/riak_cs/pull/1011]


		Add configurable timeouts for all Riak CS interactions with Riak to
provide more flexibility in operational situations.
riak_cs/#1021 [https://github.com/basho/riak_cs/pull/1021]








Fixes



		Fix storage calculation
riak_cs/#996 [https://github.com/basho/riak_cs/pull/996]
		Problem: Data for deleted buckets would be included in the
calculation results


		Solution: Storage calculations no longer include deleted buckets














Known Issues


None





Download


Please see the Riak CS Downloads
Page [http://docs.basho.com/riakcs/latest/riakcs-downloads/].





Feedback


We would love to hear from you. You can reach us in any of the following
venues:



		Basho mailing
list [http://lists.basho.com/mailman/listinfo/riak-users_lists.basho.com]


		The official Basho docs [https://github.com/basho/basho_docs]


		Riak CS on GitHub [https://github.com/basho/riak_cs]


		Via email at info@basho.com










Riak CS 1.5.2



Changes



		Improve logging around failures with Riak
riak_cs/#987 [http://docs.basho.com/riak/latest/dev/using/libraries/]


		Add amendment log output when storing access stats into Riak failed
riak_cs/#988 [https://github.com/basho/riak_cs/pull/988]. This change
prevents losing access stats logs in cases of temporary connection
failure between Riak and Riak CS. Access logs are stored in
console.log at the warning level.


		Add script to repair invalid garbage collection manifests
riak_cs/#983 [https://github.com/basho/riak_cs/pull/983]. There is a
known issue where an active manifest would be stored in the GC bucket.
This script changes invalid state to valid state.








Fixes



		Fix Protocol Buffers connection pool (pbc_pool_master) leak
riak_cs/#986 [https://github.com/basho/riak_cs/pull/986].
		Problem: Requests for non-existent buckets without an
authorization header and requests for listing users make connections
leak from the pool, causing the pool to eventually go empty. This bug
was introduced in release 1.5.0.


		Solution: Fix the leak by properly releasing connections.














Known Issues


None





Download


Please see the Riak CS Downloads
Page [http://docs.basho.com/riakcs/latest/riakcs-downloads]





Feedback


We would love to hear from you. You can reach us in any of the following
venues:



		Basho mailing
list [http://lists.basho.com/mailman/listinfo/riak-users_lists.basho.com]


		The official Basho docs [https://github.com/basho/basho_docs]


		Riak CS on GitHub [https://github.com/basho/riak_cs]


		Via email at info@basho.com










Riak CS 1.5.1



Additions



		Bucket restrictions — Similar to S3, you can now limit the number of buckets created per user to prevent users from creating an unusually large number of buckets. More details are included here [http://docs.basho.com/riakcs/latest/cookbooks/configuration/Configuring-Riak-CS/].








Changes



		Add sleep interval after updating manifests to suppress sibling explosion riak_cs/#959 [https://github.com/basho/riak_cs/pull/959]. In order to suppress sibling explosion, a sleep interval is added after updating manifests. The duration of the sleep interval depends on the number of siblings. The problem is documented in more detail here [https://github.com/basho/riak_cs/pull/959].


		Update riak-cs-debug to include information about bags in a multibag environment riak_cs/#930 [https://github.com/basho/riak_cs/issues/882]. Bag listing and weight information are now included in the output of the riak-cs-debug command in order to help in investigating issues in a multibag environment.


		More efficient bucket resolution riak_cs/#951 [https://github.com/basho/riak_cs/pull/951]. Previously, sibling resolution logic was inefficient in cases where users had many buckets (> 1000). For the sake of optimization, resolution is now skipped entirely when no siblings are present (i.e. when there is a single value).


		Similar to S3, add a limitation on the part number in a multipart upload riak_cs/#957 [https://github.com/basho/riak_cs/pull/957]. Part numbers can now range from 1 to 10,000 (inclusive).








Fixes



		GC may stall due to riak_cs_delete_fsm deadlock riak_cs/#949 [https://github.com/basho/riak_cs/pull/949]
		Problem — Garbage collection can stall when a riak_cs_delete_fsm worker process encounters a deadlock condition.


		Solution — One of the requirements in an internal data structure was violated. This fix satisfies the requirement so that deadlock does not happen.








		Fix wrong log directory for gathering logs on riak-cs-debug riak_cs/#953 [https://github.com/basho/riak_cs/pull/953]
		Problem — Directory structure of log files gathered by riak-cs-debug was different from riak-debug.


		Solution — The directory structure is now the same as that of riak-debug.








		Avoid DST-aware translation from local time to GMT riak_cs/#954 [https://github.com/basho/riak_cs/pull/954]
		Problem — Transformation from local time to GMT is slow, especially when performed by multiple threads. One such transformation was in the path of the GET Object API call.


		Solution — Eliminate the transformation.








		Use new UUID for seed of canonical ID instead of secret riak_cs/#956 [https://github.com/basho/riak_cs/pull/956]
		Problem — MD5-hashed value of secret access key was used in order to generate a canonical ID, which is public information. Although MD5 reverse is not realistic, it is unnecessary and avoidable to use a secret access key for canonical ID generation.


		Solution — Use newly generated UUID for canonical ID.








		Set timeout as infinity to replace the default of 5000ms riak_cs/#963 [https://github.com/basho/riak_cs/pull/963]
		Problem — In Riak CS 1.5.0, middleman process wrappers for Protocol Buffers sockets were introduced and call timeout to them was incorrectly set to a default of 5000 milliseconds.


		Solution — Change the call timeout to infinity and actual timeout is controlled by Protocol Buffers processes.








		Skip invalid state manifests in GC bucket riak_cs/#964 [https://github.com/basho/riak_cs/pull/964]
		Problem — If there were active state manifests in the GC bucket the GC process crashed.


		Solution — Skip active state manifests and make the GC process collect valid manifests.














Known Issues


None





Platforms Tested



		Ubuntu GNU / Linux 12.04








Installation and Upgrade Notes



Per-user bucket creation restrictions


Beginning with Riak CS 1.5.1, you can limit the number of buckets that can be created per user. The default maximum number is 100. While this limitation prohibits the creation of new buckets by users, users that exceed the limit can still perform other operations, including bucket deletion. To change the default limit, add the following line to the riak_cs section of app.config:


{riak_cs, [
    %% ...
    {max_buckets_per_user, 5000},
    %% ...
]}



To avoid having a limit, set max_buckets_per_user_user to unlimited.







Download


Please see the Riak CS Downloads Page [http://docs.basho.com/riakcs/latest/riakcs-downloads/].





Feedback


We would love to hear from you. You can reach us at any of the following links:



		http://lists.basho.com/mailman/listinfo/riak-users_lists.basho.com


		https://github.com/basho/basho_docs


		https://github.com/basho/riak_cs





Or via email at info@basho.com.







Riak CS 1.5.0



Additions



		Added Multibag Technical Preview to Riak CS. More info is available here [http://docs.basho.com/riakcs/latest/cookbooks/multibag/]


		A new command riak-cs-debug including cluster-info riak_cs/#769 [https://github.com/basho/riak_cs/pull/769], riak_cs/#832 [https://github.com/basho/riak_cs/pull/832]


		Tie up all existing commands into a new command riak-cs-admin riak_cs/#839 [https://github.com/basho/riak_cs/pull/839]


		Add a command riak-cs-admin stanchion to switch Stanchion IP and port manually riak_cs/#657 [https://github.com/basho/riak_cs/pull/657]


		Performance of garbage collection has been improved via Concurrent GC riak_cs/#830 [https://github.com/basho/riak_cs/pull/830]


		Iterator refresh riak_cs/#805 [https://github.com/basho/riak_cs/pull/805]


		fold_objects_for_list_keys made default in Riak CS riak_cs/#737 [https://github.com/basho/riak_cs/pull/737], riak_cs/#785 [https://github.com/basho/riak_cs/pull/785]


		Add support for Cache-Control header riak_cs/#821 [https://github.com/basho/riak_cs/pull/821]


		Allow objects to be reaped sooner than leeway interval. riak_cs/#470 [https://github.com/basho/riak_cs/pull/470]


		PUT Copy on both objects and upload parts riak_cs/#548 [https://github.com/basho/riak_cs/pull/548]


		Update to lager 2.0.3


		Compiles with R16B0x (Releases still by R15B01)


		Change default value of gc_paginated_index to true riak_cs/#881 [https://github.com/basho/riak_cs/issues/881]


		Add new API: Delete Multiple Objects riak_cs/#728 [https://github.com/basho/riak_cs/pull/728]


		Add warning logs for manifests, siblings, bytes and history riak_cs/#915 [https://github.com/basho/riak_cs/pull/915]








Bugs Fixed



		Align ERL_MAX_PORTS with Riak default: 64000 riak_cs/#636 [https://github.com/basho/riak_cs/pull/636]


		Allow Riak CS admin resources to be used with OpenStack API riak_cs/#666 [https://github.com/basho/riak_cs/pull/666]


		Fix path substitution code to fix Solaris source builds riak_cs/#733 [https://github.com/basho/riak_cs/pull/733]


		sanity_check(true,false) logs invalid error on riakc_pb_socket error riak_cs/#683 [https://github.com/basho/riak_cs/pull/683]


		Riak-CS-GC timestamp for scheduler is in the year 0043, not 2013. riak_cs/#713 [https://github.com/basho/riak_cs/pull/713] fixed by riak_cs/#676 [https://github.com/basho/riak_cs/pull/676]


		Excessive calls to OTP code_server process #669 fixed by riak_cs/#675 [https://github.com/basho/riak_cs/pull/675]


		Return HTTP 400 if content-md5 does not match riak_cs/#596 [https://github.com/basho/riak_cs/pull/596]


		/riak-cs/stats and admin_auth_enabled=false don’t work together correctly. riak_cs/#719 [https://github.com/basho/riak_cs/pull/719]


		Storage calculation doesn’t handle tombstones, nor handle undefined manifest.props riak_cs/#849 [https://github.com/basho/riak_cs/pull/849]


		MP initiated objects remains after delete/create buckets #475 fixed by riak_cs/#857 [https://github.com/basho/riak_cs/pull/857] and stanchion/#78 [https://github.com/basho/stanchion/pull/78]


		handling empty query string on list multipart upload riak_cs/#843 [https://github.com/basho/riak_cs/pull/843]


		Setting ACLs via headers at PUT Object creation riak_cs/#631 [https://github.com/basho/riak_cs/pull/631]


		Improve handling of poolboy timeouts during ping requests riak_cs/#763 [https://github.com/basho/riak_cs/pull/763]


		Remove unnecessary log message on anonymous access riak_cs/#876 [https://github.com/basho/riak_cs/issues/876]


		Fix inconsistent ETag on objects uploaded by multipart riak_cs/#855 [https://github.com/basho/riak_cs/issues/855]


		Fix policy version validation in PUT Bucket Policy riak_cs/#911 [https://github.com/basho/riak_cs/issues/911]


		Fix return code of several commands, to return 0 for success riak_cs/#908 [https://github.com/basho/riak_cs/issues/908]


		Fix {error, disconnected} repainted with notfound riak_cs/#929 [https://github.com/basho/riak_cs/issues/929]








Notes on Upgrading



Incomplete multipart uploads


riak_cs/#475 [https://github.com/basho/riak_cs/issues/475] was a
security issue where a newly created bucket may include unaborted or
incomplete multipart uploads which was created in previous epoch of
the bucket with same name. This was fixed by:



		on creating buckets; checking if live multipart exists and if
exists, return 500 failure to client.


		on deleting buckets; trying to clean up all live multipart remains,
and checking if live multipart remains (in stanchion). if exists,
return 409 failure to client.





Note that a few operations are needed after upgrading from 1.4.x (or
former) to 1.5.0.



		run riak-cs-admin cleanup-orphan-multipart to cleanup all
buckets. It would be safer to specify timestamp with ISO 8601 format
like 2014-07-30T11:09:30.000Z as an argument. For example, in
which time all CS nodes upgrade has finished. Then the cleaner does
not clean up multipart uploads newer than that timestamp. Some
corner cases can be prevented where multipart uploads conflicting
with bucket deletion and this cleanup.


		there might be a time period until above cleanup finished, where no
client can create bucket if unfinished multipart upload remains
under deleted bucket. You can find [critical] log if such bucket
creation is attempted.








Leeway seconds and disk space


riak_cs/#470 [https://github.com/basho/riak_cs/pull/470] changed the
behaviour of object deletion and garbage collection. The timestamps in
garbage collection bucket were changed from the future time when the
object is to be deleted, to the current time when the object is
deleted, Garbage collector was also changed to collect objects until
‘now - leeway seconds’, from collecting objects until ‘now’ previously.


Before (-1.4.x):


           t1                         t2
-----------+--------------------------+------------------->
           DELETE object:             GC triggered:
           marked as                  collects objects
           "t1+leeway"                marked as "t2"



After (1.5.0-):


           t1                         t2
-----------+--------------------------+------------------->
           DELETE object:             GC triggered:
           marked as "t1"             collects objects
           in GC bucket               marked as "t2 - leeway"



This leads that there exists a period where no objects are collected
right after upgrade to 1.5.0, say, t0, until t0 + leeway . And
objects deleted just before t0 won’t be collected until t0 + 2*leeway .


Also, all CS nodes which run GC should be upgraded first. CS nodes
which do not run GC should be upgraded later, to let leeway second
system work properly. Or stop GC while upgrading whole cluster, by
running riak-cs-admin gc set-interval infinity .


Multi data center cluster should be upgraded more carefully, as to
make sure GC is not running while upgrading.





Riak CS Multibag


Multibag, the ability to store object manifests and blocks in separate
clusters or groups of clusters, has been added as an Enterprise feature,
but it is in early preview status. proxy_get has not yet been
implemented for this preview feature, so multibag is intended for a
single DC only at this time. More information on Multibag is available
[[here|Riak CS Multibag Support]].







Known Issues and Limitations



		If a client sends another request in the same connection while
waiting for copy finish, the copy also will be aborted.  This is a
side effect of client disconnect detection in case of object copy.
See #932 [https://github.com/basho/riak_cs/pull/932] for further
information.


		Copying objects in OOS interface is not implemented.


		Multibag is added as Enterprise feature, but it is in early preview
status. proxy_get setup among clusters multibag on is not
implemented yet.










Riak CS 1.4.5



Bugs Fixed



		Fix several ‘data hiding’ bugs with the v2 list objects FSM riak_cs/788 [https://github.com/basho/riak_cs/issues/788] .


		Don’t treat HEAD requests toward BytesOut in access statistics riak_cs/791 [https://github.com/basho/riak_cs/issues/791] .


		Handle whitespace in POST/PUT XML documents riak_cs/795 [https://github.com/basho/riak_cs/issues/795] .


		Handle unicode user-names and XML riak_cs/807 [https://github.com/basho/riak_cs/issues/807] .


		Fix missing XML fields on storage usage riak_cs/808 [https://github.com/basho/riak_cs/issues/808] .


		Adjust fold-objects timeout riak_cs/811 [https://github.com/basho/riak_cs/issues/811] .


		Prune deleted buckets from user record riak_cs/812 [https://github.com/basho/riak_cs/issues/812] .


		Fix bad bucketname in storage usage riak_cs/800 [https://github.com/basho/riak_cs/issues/800] .





Riak CS 1.4.4 introduced
a bug (#800) [https://github.com/basho/riak_cs/issues/800] where
storage calculations made while running that version would have the
bucket-name replaced by the string “struct”. This version fixes the
bug, but can’t go back and retroactively fix the old storage
calculations. Aggregations on an entire user-account should still be
accurate, but you won’t be able to break-down storage by bucket, as
they will all share the name “struct”.





Additions



		Optimize the list objects v2 FSM for prefix requests riak_cs/804 [https://github.com/basho/riak_cs/issues/804] .










Riak CS 1.4.4


Riak CS 1.4.4 Release Notes [https://github.com/basho/riak_cs/blob/1.4.4/RELEASE-NOTES.md]



Bugs Fixed



		Create basho-patches directory riak_cs/775 [https://github.com/basho/riak_cs/issues/775] .


		sum_bucket timeout crashes all storage calculation is fixed by riak_cs/759 [https://github.com/basho/riak_cs/issues/759] .


		Failure to throttle access archiver is fixed by riak_cs/758 [https://github.com/basho/riak_cs/issues/758] .


		Access archiver crash is fixed by riak_cs/747 [https://github.com/basho/riak_cs/issues/747] .










Riak CS 1.4.3


Riak CS 1.4.3 Release Notes [https://github.com/basho/riak_cs/blob/1.4.3/RELEASE-NOTES.org]



Bugs Fixed



		Fix bug that reverted manifests in the scheduled_delete state to the pending_delete or active state.


		Don’t count already deleted manifests as overwritten


		Don’t delete current object version on overwrite with incorrect md5








Additions



		Improve performance of manifest pruning


		Optionally use paginated 2i for the GC daemon. This is to help prevent timeouts when collecting data that can be garbage collected.


		Improve handling of Riak disconnects on block fetches


		Update to Lager 2.0.1


		Optionally prune manifests based on count, in addition to time


		Allow multiple access archiver processes to run concurrently










Riak CS 1.4.2



Bugs Fixed



		Fix issue with Enterprise build on Debian Linux distributions.


		Fix source tarball build.


		Fix access statistics bug that caused all accesses to be treated as errors.


		Make logging in bucket listing map phase function lager version agnostic to avoid issues when using versions of Riak older than 1.4.


		Handle undefined props field in manifests to fix issue accessing objects written with a version of Riak CS older than 1.3.0.








Additions



		Add option to delay initial GC sweep on a node using the initial_gc_delay configuration option.


		Append random suffix to GC bucket keys to avoid hot keys and improve performance during periods of frequent deletion.


		Add default_proxy_cluster_id option to provide a way to specify a default cluster id to be used when the cluster id is undefined. This is to facilitate migration from the OSS version to the Enterprise version.










Riak CS 1.4.1



Bugs Fixed



		Fix list objects crash when more than the first 1001 keys are in the pending delete state.


		Fix crash in garbage collection daemon.


		Fix packaging bug by updating node_package dependency.










Riak CS 1.4.0



Additions



		Add preliminary support for the Swift API and Keystone authentication.


		Improve performance of object listing when using Riak 1.4.0 or greater.


		Add ability to edit user account name and email address.


		Add support for v3 multi-data-center replication.


		Add configurable Riak connection timeouts.


		Add syslog support via Lager.


		Only contact one vnode for immutable block requests.








Bugs Fixed



		Remove unnecessary keys in GC bucket.


		Fix query-string authentication for multi-part uploads.


		Fix Storage Class for multi-part uploaded objects.


		Fix etags for multi-part uploads.


		Support reformat indexes in the Riak CS multi-backend.


		Fix unbounded memory-growth on GET requests with a slow connection.


		Reduce access-archiver memory use.


		Fix 500 on object ACL HEAD request.


		Fix semantics for concurrent upload and delete of the same key with a   multipart upload.


		Verify content-md5 header if supplied.


		Handle transient Riak connection failures.










Riak CS 1.3.1



Bugs Fixed



		Fix bug in handling of active object manifests in the case of overwrite or delete that could lead to old object versions being resurrected.


		Fix improper capitalization of user metadata header names.


		Fix issue where the S3 rewrite module omits any query parameters that are not S3 subresources. Also correct handling of query parameters so that parameter values are not URL decoded twice. This primarily affects pre-signed URLs because the access key and request signature are included as query parameters.


		Fix for issue with init script stop.










Riak CS 1.3.0



Additions



		Support for multipart file uploads. Parts must be in the range of 5MB-5GB.


		Support for bucket policies using a restricted set of principals and conditions.


		Support for returning bytes ranges of a file using the Range header.


		Administrative commands may be segregated onto a separate interface.


		Authentication for administrative commands may be disabled.


		Performance and stability improvements for listing the contents of buckets.


		Support for the prefix, delimiter, and marker options when listing the contents of a bucket.


		Support for using Webmachine’s access logging features in conjunction with the Riak CS internal access logging mechanism.


		Moved all administrative resources under /riak-cs.


		Riak CS now supports packaging for FreeBSD, SmartOS, and Solaris.








Bugs Fixed



		Fix handling of cases where buckets have siblings. Previously this resulted in 500 errors returned to the client.


		Reduce likelihood of sibling creation when creating a bucket.


		Return a 404 instead of a 403 when accessing a deleted object.


		Unquote URLs to accommodate clients that URL encode / characters in URLs.


		Deny anonymous service-level requests to avoid unnecessary error messages trying to list the buckets owned by an undefined user.










Riak CS 1.2.2



Additions



		Full support for MDC replication








Bugs Fixed



		Fix problem where objects with utf-8 unicode key can be neither listed nor fetched.


		Speed up bucket_empty check and fix process leak. This bug was originally found when a user was having trouble with s3cmd rb :s3//foo --recursive. The operation first tries to delete the (potentially large) bucket, which triggers our bucket empty check. If the bucket has more than 32k items, we run out of processes unless +P is set higher (because of the leak).










Riak CS 1.2.1



Additions



		Add reduce phase for listing bucket contents to provide backpressure when executing the MapReduce job.


		Use prereduce during storage calculations.


		Return 403 instead of 404 when a user attempts to list contents of nonexistent bucket.








Bugs Fixed



		Return 403 instead of 404 when a user attempts to list contents of nonexistent bucket.


		Do not do bucket list for HEAD or ?versioning or ?location request.










Riak CS 1.2.0



Additions



		Add preliminary support for MDC replication


		Quickcheck test to exercise the erlcloud library against Riak CS


		Basic support for riak_test integration








Bugs Fixed



		Do not expose stack traces to users on 500 errors


		Fix issue with sibling creation on user record updates


		Fix crash in terminate state when fsm state is not fully populated


		Script fixes and updates in response to node_package updates










Riak CS 1.1.0



Additions



		Update user creation to accept a JSON or XML document for user creation instead of URL encoded text string.


		Configuration option to allow anonymous users to create accounts. In the default mode, only the administrator is allowed to create accounts.


		Ping resource for health checks.


		Support for user-specified metadata headers.


		User accounts may be disabled by the administrator.


		A new key_secret can be issued for a user by the administrator.


		Administrator can now list all system users and optionally filter by enabled or disabled account status.


		Garbage collection for deleted and overwritten objects.


		Separate connection pool for object listings with a default of 5 connections.


		Improved performance for listing all objects in a bucket.


		Statistics collection and querying.


		DTrace probing.








Bugs Fixed



		Check for timeout when checking out a connection from poolboy.


		PUT object now returns 200 instead of 204.


		Fixes for Dialyzer errors and warnings.


		Return readable error message with 500 errors instead of large webmachine backtraces.










Riak CS 1.0.2



Additions



		Support query parameter authentication as specified in [http://docs.amazonwebservices.com/AmazonS3/latest/dev/RESTAuthentication.html](Signing and Authenticating REST Requests).










Riak CS 1.0.1



Bugs Fixed



		Default content-type is not passed into function to handle PUT request body


		Requests hang when a node in the Riak cluster is unavailable


		Correct inappropriate use of riak_cs_utils:get_user by riak_moss_acl_utils:get_owner_data










Riak CS 1.0.0



Additions



		Subsystem for calculating user access and storage usage


		Fixed-size connection pool of Riak connections


		Use a single Riak connection per request to avoid deadlock conditions


		Object ACLs


		Management for multiple versions of a file manifest


		Configurable block size and max content length


		Support specifying non-default ACL at bucket creation time








Bugs Fixed



		Fix PUTs for zero-byte files


		Fix fsm initialization race conditions


		Canonicalize the entire path if there is no host header, but there are tokens


		Fix process and socket leaks in get fsm










Riak CS 0.1.2



Bugs Fixed



		Return 403 instead of 503 for invalid anonymous or signed requests.


		Properly clean up processes and connections on object requests.










Riak CS 0.1.1



Bugs Fixed



		HEAD requests always result in a 403 Forbidden.


		s3cmd info on a bucket object results in an error due to missing ACL document.


		Incorrect atom specified in riak_moss_wm_utils:parse_auth_header.


		Bad match condition used in riak_moss_acl:has_permission/2.










Riak CS 0.1.0



Additions



		Bucket-level access control lists


		User records have been modified so that an system-wide unique email address is required to create a user.


		User creation requests are serialized through stanchion to be certain the email address is unique.


		Bucket creation and deletion requests are serialized through stanchion to ensure bucket names are unique in the system.


		The stanchion serialization service is now required to be installed and running for the system to be fully operational.


		The concept of an administrative user has been added to the system. The credentials of the administrative user must be added to the app.config files for moss and stanchion.


		User credentials are now created using a url-safe base64 encoding module.








Bugs Fixed



		s3cmd info fails due to missing last-modified key in return document.


		s3cmd get of 0 byte file fails.


		Bucket creation fails with status code 415 using the AWS Java SDK.








Known Issues



		Object-level access control lists have not yet been implemented.










Riak CS 0.0.3



Additions



		Support for the s3cmd subcommands sync, du, and rb


		Return valid size and checksum for each object when listing bucket objects.


		Changes so that a bucket may be deleted if it is empty.


		Changes so a subdirectory path can be specified when storing or retrieving files.


		Make buckets private by default


		Support the prefix query parameter


		Enhance process dependencies for improved failure handling








Bugs Fixed



		URL decode keys on put so they are represented correctly. This eliminates confusion when objects with spaces in their names are listed and when attempting to access them.


		Properly handle zero-byte files


		Reap all processes during file puts








Known Issues



		Buckets are marked as /private/ by default, but globally unique bucket names are not enforced. This means that two users may create the same bucket and this could result in unauthorized access and unintentional overwriting of files. This will be addressed in a future release by ensuring that bucket names are unique across the system.











          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/cookbooks/Access-Control-Lists.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Access Control Lists
project: riakcs
version: 1.2.0+
document: tutorial
toc: true
index: true
audience: beginner
keywords: [installing]




Access Control Lists (ACLs) are a means of granting and denying access
to buckets and objects. Each bucket and object in a Riak CS cluster will
have an ACL associated with it. When a bucket or object is created, a
default ACL will be created alongside it that grants full control to the
creating party and denies access to all other parties.


Riak CS ACLs are modeled after S3 ACLs. For more information, see the
Amazon Access Control List
Overview [http://docs.amazonwebservices.com/AmazonS3/latest/dev/ACLOverview.html]
documentation.



ACL Limit

An ACL can have up to 100 grants.


Representations


XML is the only supported external format for ACLs. In the future, other
formats such as JSON [http://www.json.org] may be supported.


Example XML representation of an ACL:


<xml version="1.0" encoding="UTF-8">
<AccessControlPolicy xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
  <Owner>
    <ID>abcd123</ID>
    <DisplayName>joebob</DisplayName>
  </Owner>
  <AccessControlList>
    <Grant>
      <Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="Canonical User">
        <ID>abcd123</ID>
        <DisplayName>joebob</DisplayName>
      </Grantee>
      <Permission>FULL_CONTROL</Permission>
    </Grant>
  </AccessControlList>
</AccessControlPolicy>






Permissions


Riak CS permissions are split into two types: bucket permissions and
object permissions.



Bucket Permissions



		READ — Grantee may list the objects in the bucket


		READ_ACP — Grantee may read the bucket ACL


		WRITE — Grantee may create, overwrite, and delete any object in
the bucket


		WRITE_ACP — Grantee may write the ACL for the applicable bucket


		FULL_CONTROL — Grantee has READ, WRITE, READ_ACP, and
WRITE_ACP permissions on the bucket








Object Permissions



		READ — Grantee may read the object data and its metadata


		READ_ACP — Grantee may read the object ACL. Note: The object
owner may read the object ACL even if not explicitly granted
READ_ACP permission.


		WRITE_ACP — Grantee may write the ACL for the applicable object.
Note: The object owner may write the object ACL even if not
explicitly granted WRITE_ACP permission.


		FULL_CONTROL — Grantee has READ, READ_ACP, and WRITE_ACP
permissions on the object.










Buckets


Bucket names must be [[globally
unique|Stanchion#Globally-Unique-Entities]]. To avoid conflicts, all
bucket creation requests are made to an application called
[[Stanchion|Configuring Stanchion]]. This means that all requests for
modification of a bucket ACL should be serialized through Stanchion.
While this may cause undesirable serialization of these requests, we
believe it is appropriate based on the following statement from this
documentation on bucket
restrictions [http://docs.amazonwebservices.com/AmazonS3/latest/dev/BucketRestrictions.html]
from Amazon regarding restrictions on bucket operations:



Because bucket operations work against a centralized, global
resource space, it is not appropriate to make bucket create or delete
calls on the high availability code path of your
application.



This statement only directly references create or delete calls, but we
have taken a more broad interpretation to include requests that modify
the ACL.





Objects


The object ACL is stored with each object as a metadata field. If no ACL
information is present in the object creation request, a default ACL is
created granting the creator both ownership and full access control and
denying access to all other parties.


For information on specifying an ACL when making a PUT request, see
[[RiakCS PUT Object ACL]].






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

_static/plus.png





_static/ajax-loader.gif





_static/comment.png





_static/down.png





_static/comment-close.png





_static/up.png





source/languages/en/riak/dev/taste-of-riak/nodejs.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Taste of Riak: NodeJS”
project: riak
version: 1.4.0+
document: guide
toc: true
audience: beginner
keywords: [developers, client, javascript, nodejs]




If you haven’t set up a Riak Node and started it, please visit the
[[Prerequisites|Taste of Riak: Prerequisites]] first.


To try this flavor of Riak, a working installation of Node.js 0.12 or later is
required.


Code for these examples is available here [https://github.com/basho/riak-nodejs-client-examples/blob/master/dev/taste-of-riak/introduction.js]. To run, follow
these directions:


git clone git://github.com/basho/riak-nodejs-client-examples
cd riak-nodejs-client-examples
npm install
node ./app.js




Client Setup


Install the Riak Node.js Client [https://github.com/basho/riak-nodejs-client/wiki/Installation] through NPM [https://www.npmjs.com/package/basho-riak-client].





Connecting to Riak


Connecting to Riak with the Riak Node.js Client requires creating a new client object.


var Riak = require('basho-riak-client');
var client = new Riak.Client([
    'riak-test:10017',
    'riak-test:10027',
    'riak-test:10037',
    'riak-test:10047'
]);



This creates a new Riak.Client object which handles all the details of
tracking active nodes and also provides load balancing. The Riak.Client object
is used to send commands to Riak. When your application is completely done with
Riak communications, the following method can be used to gracefully shut the
client down and exit Node.js:


function client_shutdown() {
    client.shutdown(function (state) {
        if (state === Riak.Cluster.State.SHUTDOWN) {
            process.exit();
        }
    });
}



Let’s make sure the cluster is online with a Ping request:


var assert = require('assert');

client.ping(function (err, rslt) {
    if (err) {
        throw new Error(err);
    } else {
        // On success, ping returns true
        assert(rslt === true);
    }
});



This is some simple code to test that a node in a Riak cluster is online - we
send a simple ping message. Even if the cluster isn’t present, the Riak Node.js
Client will return a response message. In the callback it is important to check
that your activity was successful by checking the err variable.





Saving Objects to Riak


Pinging a Riak cluster sounds like a lot of fun, but eventually someone is going
to want us to do productive work. Let’s create some data to save in Riak.


The Riak Node.js Client makes use of a RiakObject class to encapsulate Riak
key/value objects. At the most basic, a RiakObject is responsible for
identifying your object and for translating it into a format that can be easily
saved to Riak.


var async = require('async');

var people = [
    {
        emailAddress: "bashoman@basho.com",
        firstName: "Basho",
        lastName: "Man"
    },
    {
        emailAddress: "johndoe@gmail.com",
        firstName: "John",
        lastName: "Doe"
    }
];

var storeFuncs = [];
people.forEach(function (person) {
    // Create functions to execute in parallel to store people
    storeFuncs.push(function (async_cb) {
        client.storeValue({
                bucket: 'contributors',
                key: person.emailAddress,
                value: person
            },
            function(err, rslt) {
                async_cb(err, rslt);
            }
        );
    });
});

async.parallel(storeFuncs, function (err, rslts) {
    if (err) {
        throw new Error(err);
    }
});



In this sample, we create a collection of Person objects and then save each
Person to Riak. Once again, we check the response from Riak.





Reading from Riak


Let’s find a person!


var logger = require('winston');

client.fetchValue({ bucket: 'contributors', key: 'bashoman@basho.com', convertToJs: true },
    function (err, rslt) {
        if (err) {
            throw new Error(err);
        } else {
            var riakObj = rslt.values.shift();
            var bashoman = riakObj.value;
            logger.info("I found %s in 'contributors'", bashoman.emailAddress);
        }
    }
);



We use client.fetchValue to retrieve an object from Riak. This returns an
array of RiakObject objects which helpfully encapsulates the communication
with Riak.


After verifying that we’ve been able to communicate with Riak and that we have
a successful result, we use the value property to get the object, which has
already been converted to a javascript object due to the use of convertToJs: true in the options.





Modifying Existing Data


Let’s say that Basho Man has decided to be known as Riak Man:


bashoman.FirstName = "Riak";
riakObj.setValue(bashoman);

client.storeValue({ value: riakObj }, function (err, rslt) {
    if (err) {
        throw new Error(err);
    }
});



Updating an object involves modifying a RiakObject then using
client.storeValue to save the existing object.





Deleting Data


client.deleteValue({ bucket: 'contributors', key: 'johndoe@gmail.com' }, function (err, rslt) {
    if (err) {
        throw new Error(err);
    }
});



Just like other operations, we check the results that have come back from Riak
to make sure the object was successfully deleted. Of course, if you don’t care
about that, you can just ignore the result.


The Riak Node.js Client has a lot of additional functionality that makes it easy
to build rich, complex applications with Riak. Check out the
documentation [https://github.com/basho/riak-dotnet-client/wiki] to learn more about working with the Riak Node.js
Client and Riak.





Next Steps


More complex use cases can be composed from these initial create, read, update,
and delete (CRUD) operations. [[In the next chapter|Taste of Riak: Querying]],
we will look at how to store and query more complicated and interconnected data,
such as documents.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

_static/up-pressed.png





source/languages/en/riak/dev/taste-of-riak/querying-java.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Taste of Riak: Querying with Java”
project: riak
version: 1.3.1+
document: tutorials
toc: true
audience: beginner
keywords: [developers, client, 2i, search, java]





Java Version Setup


For the Java version, please download the source from GitHub by either
cloning [https://github.com/basho/taste-of-riak] the source code
repository or downloading the current zip of the master
branch [https://github.com/basho/taste-of-riak/archive/master.zip].
The code for this chapter is in /java/Ch02-Schemas-and-Indexes. You
may import this code into your favorite editor, or just run it from the
command line using the commands in BuildAndRun.sh if you are running
on a *nix OS.





A Quick Note on Querying and Schemas


Schemas? Yes, we said that correctly: S-C-H-E-M-A-S. It’s not a dirty
word. Even in a key/value store, you will still have a logical database
schema of how all the data relates to other data. This can be as simple
as using the same key across multiple buckets for different types of
data to having fields in your data that are related by name. These
querying methods will introduce you to some ways of laying out your data
in Riak, along with how to query it back.





Denormalization


If you’re coming from a relational database, the easiest way to get your
application’s feet wet with NoSQL is to denormalize your data into
related chunks. For example, with a customer database, you might have
separate tables for customers, addresses, preferences, etc. In Riak,
you can denormalize all that associated data into a single object and
store it into a Customer bucket. You can keep pulling in associated
data until you hit one of the big denormalization walls:



		Size Limits (objects greater than 1MB)


		Shared/Referential Data (data that the object doesn’t “own”)


		Differences in Access Patterns (objects that get read/written once vs.
often)





At one of these points we will have to split the model.





Same Keys, Different Buckets


The simplest way to split up data would be to use the same identity key
across different buckets. A good example of this would be a Customer
object, an Order object, and an OrderSummaries object that keeps
rolled up info about orders such as total, etc. You can find the source
for these POJO’s in Customer.java, Order.java and
OrderSummaries.java.  Let’s put some data into Riak so we can play
with it.


// From SipOfRiak.java

private static Customer createCustomer() {
    Customer customer = new Customer();
    customer.CustomerId = 1;
    customer.Name = "John Smith";
    customer.Address = "123 Main Street";
    customer.City = "Columbus";
    customer.State = "Ohio";
    customer.Zip = "43210";
    customer.Phone = "+1-614-555-5555";
    customer.CreatedDate = "2013-10-01 14:30:26";
    return customer;
}

private static ArrayList<Order> createOrders() {
    ArrayList<Order> orders = new ArrayList<Order>();

    Order order1 = new Order();
    order1.OrderId = 1;
    order1.CustomerId = 1;
    order1.SalespersonId = 9000;
    order1.Items.add(
            new Item("TCV37GIT4NJ",
                    "USB 3.0 Coffee Warmer",
                    15.99));
    order1.Items.add(
            new Item("PEG10BBF2PP",
                    "eTablet Pro; 24GB; Grey",
                    399.99));
    order1.Total = 415.98;
    order1.OrderDate = "2013-10-01 14:42:26";
    orders.add(order1);

    Order order2 = new Order();
    order2.OrderId = 2;
    order2.CustomerId = 1;
    order2.SalespersonId = 9001;
    order2.Items.add(
            new Item("OAX19XWN0QP",
                    "GoSlo Digital Camera",
                    359.99));
    order2.Total = 359.99;
    order2.OrderDate = "2013-10-15 16:43:16";
    orders.add(order2);

    Order order3 = new Order();
    order3.OrderId = 3;
    order3.CustomerId = 1;
    order3.SalespersonId = 9000;
    order3.Items.add(
            new Item("WYK12EPU5EZ",
                    "Call of Battle = Goats - Gamesphere 4",
                    69.99));
    order3.Items.add(
            new Item("TJB84HAA8OA",
                    "Bricko Building Blocks",
                    4.99));
    order3.Total = 74.98;
    order3.OrderDate = "2013-11-03 17:45:28";
    orders.add(order3);
    return orders;
}

private static OrderSummary createOrderSummary(ArrayList<Order> orders) {
    OrderSummary orderSummary = new OrderSummary();
    orderSummary.CustomerId = 1;
    for(Order order: orders)
    {
        orderSummary.Summaries.add(new OrderSummaryItem(order));
    }
    return orderSummary;
}

public static void main(String[] args) throws RiakException {

    System.out.println("Creating Data");
    Customer customer = createCustomer();
    ArrayList<Order> orders = createOrders();
    OrderSummary orderSummary = createOrderSummary(orders);

    System.out.println("Starting Client");
    IRiakClient client = RiakFactory.pbcClient("127.0.0.1", 10017);


    System.out.println("Creating Buckets");
    Bucket customersBucket = client.fetchBucket("Customers").lazyLoadBucketProperties().execute();
    Bucket ordersBucket = client.fetchBucket("Orders").lazyLoadBucketProperties().execute();
    Bucket orderSummariesBucket = client.fetchBucket("OrderSummaries").lazyLoadBucketProperties().execute();

    System.out.println("Storing Data");
    customersBucket.store(String.valueOf(customer.CustomerId), customer).execute();
    for (Order order : orders) {
        ordersBucket.store(String.valueOf(order.OrderId), order).execute();
    }
    orderSummariesBucket.store(String.valueOf(orderSummary.CustomerId), orderSummary).execute();



While individual Customer and Order objects don’t change much (or
shouldn’t change), the OrderSummaries object will likely change often.
It will do double duty by acting as an index for all a customer’s
orders, and also holding some relevant data such as the order total,
etc. If we showed this information in our application often, it’s only
one extra request to get all the info.


      System.out.println("Fetching related data by shared key");
    String key = "1";
    String fetchedCust = customersBucket.fetch(key).execute().getValueAsString();
    String fetchedOrdSum = orderSummariesBucket.fetch(key).execute().getValueAsString();
    System.out.format("Customer     1: %s\n", fetchedCust);
    System.out.format("OrderSummary 1: %s\n", fetchedOrdSum);



Which returns our amalgamated objects:


Fetching related data by shared key
Customer     1: {"CustomerId":1,"Name":"John Smith","Address":"123 Main Street","City":"Columbus","State":"Ohio","Zip":"43210","Phone":"+1-614-555-5555","CreatedDate":"2013-10-01 14:30:26"}
OrderSummary 1: {"CustomerId":1,"Summaries":[{"OrderId":1,"Total":415.98,"OrderDate":"2013-10-01 14:42:26"},{"OrderId":2,"Total":359.99,"OrderDate":"2013-10-15 16:43:16"},{"OrderId":3,"Total":74.98,"OrderDate":"2013-11-03 17:45:28"}]}



While this pattern is very easy and extremely fast with respect to
queries and complexity, it’s up to the application to know about these
intrinsic relationships.





Secondary Indexes


If you’re coming from an SQL world, Secondary Indexes (2i) are a lot
like SQL indexes. They are a way to quickly look up objects based on a
secondary key, without scanning through the whole dataset. This makes it
very easy to find groups of related data by values, or even ranges of
values. To properly show this off, we will now add some more data to our
application, and add some secondary index entries at the same time.


      System.out.println("Adding Index Data");
    IRiakObject riakObj = ordersBucket.fetch("1").execute();
    riakObj.addIndex("SalespersonId", 9000);
    riakObj.addIndex("OrderDate", "2013-10-01");
    ordersBucket.store(riakObj).execute();

    IRiakObject riakObj2 = ordersBucket.fetch("2").execute();
    riakObj2.addIndex("SalespersonId", 9001);
    riakObj2.addIndex("OrderDate", "2013-10-15");
    ordersBucket.store(riakObj2).execute();

    IRiakObject riakObj3 = ordersBucket.fetch("3").execute();
    riakObj3.addIndex("SalespersonId", 9000);
    riakObj3.addIndex("OrderDate", "2013-11-03");
    ordersBucket.store(riakObj3).execute();



As you may have noticed, ordinary key/value data is opaque to 2i, so we
have to add entries to the indexes at the application level. Now let’s
find all of Jane Appleseed’s processed orders, we’ll look up the orders
by searching the SalespersonId integer index for Jane’s id of 9000.


    // Query for orders where the SalespersonId index is set to 9000
    List<String> janesOrders = ordersBucket.fetchIndex(IntIndex.named("SalespersonId"))
                                           .withValue(9000).execute();

    System.out.format("Jane's Orders: %s\n", StringUtil.Join(", ", janesOrders));



Which returns:


Jane's Orders: 1, 3



Jane processed orders 1 and 3. We used an “integer” index to reference
Jane’s ID, next let’s use a “binary” index. Now, let’s say that the VP
of Sales wants to know how many orders came in during October 2013. In
this case, we can exploit 2i’s range queries. Let’s search the
OrderDate binary index for entries between 2013-10-01 and
2013-10-31.


      // Query for orders where the OrderDate index is between 2013-10-01 and 2013-10-31
    List<String> octoberOrders = ordersBucket.fetchIndex(BinIndex.named("OrderDate"))
                                             .from("2013-10-01").to("2013-10-31").execute();

    System.out.format("October's Orders: %s\n", StringUtil.Join(", ", octoberOrders));



Which returns:


October's Orders: 1, 2



Boom! Easy-peasy. We used 2i’s range feature to search for a range of
values, and demonstrated binary indexes.


So to recap:



		You can use Secondary Indexes to quickly look up an object based on a
secondary id other than the object’s key.


		Indexes can have either Integer or Binary(String) keys


		You can search for specific values, or a range of values


		Riak will return a list of keys that match the index query









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

_static/down-pressed.png





source/languages/en/riak/dev/taste-of-riak/object-modeling-nodejs.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Taste of Riak: Object Modeling with NodeJS”
project: riak
version: 1.4.8+
document: tutorials
toc: true
audience: beginner
keywords: [developers, client, 2i, search, javascript, modeling, nodejs]




To get started, let’s create the models that we’ll be using.



		Msg [https://github.com/basho/taste-of-riak/blob/master/nodejs/Ch03-Msgy-Schema/models/msg.js]


		Timeline [https://github.com/basho/taste-of-riak/blob/master/nodejs/Ch03-Msgy-Schema/models/timeline.js]


		User [https://github.com/basho/taste-of-riak/blob/master/nodejs/Ch03-Msgy-Schema/models/user.js]





To use these classes to store data, we will first have to create a user.
Then, when a user creates a message, we will append that message to one
or more timelines. If it’s a private message, we’ll append it to the
Recipient’s Inbox timeline and the User’s own Sent timeline. If it’s
a group message, we’ll append it to the Group’s timeline, as well as to
the User’s Sent timeline.



Buckets and Keys Revisited


Now that we’ve worked out how we will differentiate data in the system,
let’s figure out our bucket and key names.


The bucket names are straightforward. We can use Users, Msgs, and
Timelines. The key names, however, are a little more tricky. In past
examples we’ve used sequential integers, but this presents a problem: we
would need a secondary service to hand out these IDs. This service could
easily be a future bottleneck in the system, so let’s use a natural key.
Natural keys are a great fit for key/value systems because both humans
and computers can easily construct them when needed, and most of the
time they can be made unique enough for a KV store.


| Bucket | Key Pattern | Example Key
|:——-|:————|:———–
| Users | <user_name> | joeuser
| Msgs | <username>_<datetime> | joeuser_2014-03-06T02:05:13.556Z
| Timelines | <username>_<type>_<date> | joeuser_SENT_2014-03-06
 marketing_group_INBOX_2014-03-06 |


For the Users bucket, we can be certain that we will want each
username to be unique, so let’s use the userName as the key.


Example: userName as key [https://github.com/basho/taste-of-riak/blob/master/nodejs/Ch03-Msgy-Schema/models/user.js#L19-L20]


For the Msgs bucket, let’s use a combination of the username and the
posting datetime in an ISO 8601
Long [http://en.wikipedia.org/wiki/ISO_8601] format. This combination
gives us the pattern <username>_<datetime>, which produces keys like
joeuser_2014-03-05T23:20:28Z.


Example: Msg key [https://github.com/basho/taste-of-riak/blob/master/nodejs/Ch03-Msgy-Schema/models/msg.js#L25-L27]


Now for Timelines, we need to differentiate between Inbox and Sent
timelines, so we can simply add that type into the key name. We will
also want to partition each collection object into some time period,
that way the object doesn’t grow too large (see note below).


For Timelines, let’s use the pattern <username>_<type>_<date> for
users, and <groupname>_Inbox_<date> for groups, which will look like
joeuser_SENT_2014-03-06 or marketing_group_INBOX_2014-03-05,
respectively.


Note

Riak performs best with objects under 1-2MB. Objects larger than that
can hurt performance, especially many siblings are being created. We
will cover siblings, sibling resolution, and sibling explosions in the
next chapter.




Keeping our story straight with repositories


Now that we’ve figured out our object model, let’s write some
repositories to help create and work with these objects in Riak:



		Base Repository class [https://github.com/basho/taste-of-riak/blob/master/nodejs/Ch03-Msgy-Schema/repositories/repository.js]


		UserRepository class [https://github.com/basho/taste-of-riak/blob/master/nodejs/Ch03-Msgy-Schema/repositories/user-repository.js]


		MsgRepository class [https://github.com/basho/taste-of-riak/blob/master/nodejs/Ch03-Msgy-Schema/repositories/msg-repository.js]


		TimelineRepository class [https://github.com/basho/taste-of-riak/blob/master/nodejs/Ch03-Msgy-Schema/repositories/timeline-repository.js]


		TimelineManager class that manages Msg and Timeline objects [https://github.com/basho/taste-of-riak/blob/master/nodejs/Ch03-Msgy-Schema/timeline-manager.js]





Finally, let’s test them:


Example: Putting it all together [https://github.com/basho/taste-of-riak/blob/master/nodejs/Ch03-Msgy-Schema/app.js]


As you can see, the repository pattern helps us with a few things:



		It helps us to see if an object exists before creating a new one


		It keeps our buckets and key names consistent


		It provides us with a consistent interface to work with.





While this set of repositories solves many of our problems, it is very
minimal and doesn’t cover all the edge cases. For instance, what happens
if two different people try to create a user with the same username?


We can also easily “compute” key names now, but how do we quickly look
up the last 10 messages a user sent? Many of these answers will be
application dependent. If your application shows the last 10 messages in
reverse order, for example, you may want to store that set of data in
another collection object to make lookup faster. There are drawbacks to
every solution, but we recommend seeking out the key/value-based
solution first, as it will likely be the quickest.


So to recap, in this chapter we learned:



		How to choose bucket names


		How to choose natural keys based on how we want to partition our data









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/taste-of-riak/ruby.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Taste of Riak: Ruby”
project: riak
version: 1.4.0+
document: guide
toc: true
audience: beginner
keywords: [developers, client, ruby]




If you haven’t set up a Riak Node and started it, please visit the
[[Prerequisites|Taste of Riak: Prerequisites]] first. To try this flavor
of Riak, a working installation of Ruby is required.



Client Setup


First, install the Riak Ruby client via RubyGems.


gem install riak-client



Start IRB, the Ruby REPL, and let’s get set up. Enter the following into
IRB:


require 'riak'



If you are using a single local Riak node, use the following to create a
new client instance, assuming that the node is running on localhost
port 8087:


client = Riak::Client.new(:protocol => "pbc", :pb_port => 8087)

# Since the Ruby Riak client uses the Protocol Buffers API by default,
# you can also just enter this:
client = Riak::Client.new(:pb_port => 8087)



If you set up a local Riak cluster using the [[five-minute install]]
method, use this code snippet instead:


client = Riak::Client.new(:protocol => "pbc", :pb_port => 10017)

# For the reasons explain in the snippet above, this will also work:
client = Riak::Client.new(:pb_port => 10017)



We are now ready to start interacting with Riak.





Creating Objects In Riak


First, let’s create a few objects and a bucket to keep them in.


my_bucket = client.bucket("test")

val1 = 1
obj1 = my_bucket.new('one')
obj1.data = val1
obj1.store()



In this first example we have stored the integer 1 with the lookup key
of one. Next, let’s store a simple string value of two with a
matching key.


val2 = "two"
obj2 = my_bucket.new('two')
obj2.data = val2
obj2.store()



That was easy. Finally, let’s store a bit of JSON. You will probably
recognize the pattern by now.


val3 = { myValue: 3 }
obj3 = my_bucket.new('three')
obj3.data = val3
obj3.store()






Reading Objects From Riak


Now that we have a few objects stored, let’s retrieve them and make sure
they contain the values we expect.


fetched1 = my_bucket.get('one')
fetched2 = my_bucket.get('two')
fetched3 = my_bucket.get('three')

fetched1.data == val1
fetched2.data == val2
fetched3.data.to_json == val3.to_json



That was easy. we simply request the objects by key. in the last
example, we converted to JSON so we can compare a string key to a symbol
key.





Updating Objects In Riak


While some data may be static, other forms of data may need to be
updated. This is also easy to accomplish. Let’s update the value of
myValue in the 3rd example to 42.


fetched3.data["myValue"] = 42
fetched3.store()






Deleting Objects From Riak


As a last step, we’ll demonstrate how to delete data. You’ll see that
the delete message can be called either against the bucket or the
object.


my_bucket.delete('one')
obj2.delete()
obj3.delete()






Working With Complex Objects


Since the world is a little more complicated than simple integers and
bits of strings, let’s see how we can work with more complex objects.
Take, for example, this Ruby hash that encapsulates some knowledge about
a book.


book = {
    :isbn => '1111979723',
    :title => 'Moby Dick',
    :author => 'Herman Melville',
    :body => 'Call me Ishmael. Some years ago...',
    :copies_owned => 3
}



All right, so we have some information about our Moby Dick collection
that we want to save. Storing this to Riak should look familiar by now.


books_bucket = client.bucket('books')
new_book = books_bucket.new(book[:isbn])
new_book.data = book
new_book.store()



Some of you may be thinking, “But how does the Ruby Riak client
encode/decode my object?” If we fetch our book back and print the raw
data, we shall know:


fetched_book = books_bucket.get(book[:isbn])
puts fetched_book.raw_data



Raw Data:


{"isbn":"1111979723","title":"Moby Dick","author":"Herman Melville",
"body":"Call me Ishmael. Some years ago...","copies_owned":3}



JSON! The Ruby Riak client will serialize objects to JSON when it comes
across structured data like hashes.  For more advanced control over
serialization you can use a library called
Ripple [https://github.com/basho/ripple], which is a rich Ruby modeling
layer over the basic riak client. Ripple falls outside the scope of
this document but we shall visit it later.


Now, let’s clean up our mess:


new_book.delete()






Next Steps


More complex use cases can be composed from these initial create, read,
update, and delete (CRUD) operations. [[In the next chapter|Taste of
Riak: Querying]] we look at how to store and query more complicated and
interconnected data.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/taste-of-riak/querying-ruby.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Taste of Riak: Querying with Ruby”
project: riak
version: 1.3.1+
document: tutorials
toc: true
audience: beginner
keywords: [developers, client, 2i, search, ruby]




####A Quick Note on Querying and Schemas
Schemas? Yes we said that correctly, S-C-H-E-M-A-S. It’s not a dirty word.Even with a Key/Value store, you will still have a logical database schema of how all the data relates to one another. This can be as simple as using the same key across multiple buckets for different types of data, to having fields in your data that are related by name.  These querying methods will introduce you to some ways of laying out your data in Riak, along with how to query it back.


###Denormalization


If you’re coming from a relational database, the easiest way to get your application’s feet wet with NoSQL is to denormalize your data into related chunks.  For example with a customer database, you might have separate tables for Customers, Addresses, Preferences, etc.  In Riak, you can denormalize all that associated data into a single object and store it into a Customer bucket.  You can keep pulling in associated data until you hit one of the big denormalization walls:



		Size Limits (objects greater than 1MB)


		Shared/Referential Data (data that the object doesn’t “own”)


		Differences in Access Patterns (objects that get read/written once vs. often)





At one of these points we will have to split the model.


###Same Keys - Different Buckets


The simplest way to split up data would be to use the same identity key across different buckets. A good example of this would be a Customer object, an Order object, and an OrderSummaries object that keeps rolled up info about orders such as Total, etc. Let’s put some data into Riak so we can play with it.


# Encoding: utf-8

require 'riak'
require 'pp'

# Starting Client
client = Riak::Client.new protocol: 'pbc', pb_port: 10017

# Creating Data
customer = {
    customer_id: 1,
    name: 'John Smith',
    address: '123 Main Street',
    city: 'Columbus',
    state: 'Ohio',
    zip: '43210',
    phone: '+1-614-555-5555',
    created_date: Time.parse('2013-10-1 14:30:26')
}

orders = [
  {
      order_id: 1,
      customer_id: 1,
      salesperson_id: 9000,
      items: [
          {
            item_id: 'TCV37GIT4NJ',
            title: 'USB 3.0 Coffee Warmer',
            price: 15.99
          },
          {
            item_id: 'PEG10BBF2PP',
            title: 'eTablet Pro, 24GB, Grey',
            price: 399.99
          }
      ],
      total: 415.98,
      order_date: Time.parse('2013-10-1 14:42:26')
  },
  {
      order_id: 2,
      customer_id: 1,
      salesperson_id: 9001,
      items: [
          {
            item_id: 'OAX19XWN0QP',
            title: 'GoSlo Digital Camera',
            price: 359.99
          }
      ],
      total: 359.99,
      order_date: Time.parse('2013-10-15 16:43:16')
  },
  {
      order_id: 3,
      customer_id: 1,
      salesperson_id: 9000,
      items: [
          {
            item_id: 'WYK12EPU5EZ',
            title: 'Call of Battle: Goats - Gamesphere 4',
            price: 69.99
          },
          {
            item_id: 'TJB84HAA8OA',
            title: 'Bricko Building Blocks',
            price: 4.99
          }
      ],
      total: 74.98,
      order_date: Time.parse('2013-11-3 17:45:28')
  }]

order_summary = {
    customer_id: 1,
    summaries: [
        {
            order_id: 1,
            total: 415.98,
            order_date: Time.parse('2013-10-1 14:42:26')
        },
        {
            order_id: 2,
            total: 359.99,
            order_date: Time.parse('2013-10-15 16:43:16')
        },
        {
            order_id: 3,
            total: 74.98,
            order_date: Time.parse('2013-11-3 17:45:28')
        }
    ]
}

# Creating Buckets and Storing Data
customer_bucket = client.bucket('Customers')
cr = customer_bucket.new(customer[:customer_id].to_s)
cr.data = customer
cr.store

order_bucket = client.bucket('Orders')
orders.each do |order|
  order_riak = order_bucket.new(order[:order_id].to_s)
  order_riak.data = order
  order_riak.store
end

order_summary_bucket = client.bucket('OrderSummaries')
os = order_summary_bucket.new(order_summary[:customer_id].to_s)
os.data = order_summary
os.store



While individual Customer and Order objects don’t change much (or shouldn’t change), the Order Summaries object will likely change often.  It will do double duty by acting as an index for all a customer’s orders, and also holding some relevant data such as the order total, etc.  If we showed this information in our application often, it’s only one extra request to get all the info.


shared_key = '1'
customer = customer_bucket.get(shared_key).data
customer[:order_summary] = order_summary_bucket.get(shared_key).data
puts "Combined Customer and Order Summary: "
pp customer



Which returns our amalgamated objects:


#Combined Customer and Order Summary:
{"customer_id"=>1,
 "name"=>"John Smith",
 "address"=>"123 Main Street",
 "city"=>"Columbus",
 "state"=>"Ohio",
 "zip"=>"43210",
 "phone"=>"+1-614-555-5555",
 "created_date"=>"2013-10-01 14:30:26 -0400",
 :order_summary=>
  {"customer_id"=>1,
   "summaries"=>
    [{"order_id"=>1,
      "total"=>415.98,
      "order_date"=>"2013-10-01 14:42:26 -0400"},
     {"order_id"=>2,
      "total"=>359.99,
      "order_date"=>"2013-10-15 16:43:16 -0400"},
     {"order_id"=>3,
      "total"=>74.98,
      "order_date"=>"2013-11-03 17:45:28 -0500"}]}}



While this pattern is very easy and extremely fast with respect to queries and complexity, it’s up to the application to know about these intrinsic relationships.


###Secondary Indexes


If you’re coming from a SQL world, Secondary Indexes (2i) are a lot like SQL indexes.  They are a way to quickly lookup objects based on a secondary key, without scanning through the whole dataset.  This makes it very easy to find groups of related data by values, or even ranges of values.  To properly show this off, we will now add some more data to our application, and add some secondary index entries at the same time.


(1..3).each do |i|
  order = order_bucket.get(i.to_s)
  # Initialize our secondary indices
  order.indexes['salesperson_id_int'] = []
  order.indexes['order_date_bin'] = []

  order.indexes['salesperson_id_int'] <<  order.data['salesperson_id']
  order.indexes['order_date_bin'] << Time.parse(order.data['order_date'])
                                         .strftime('%Y%m%d')
  order.store
end



As you may have noticed, ordinary Key/Value data is opaque to 2i, so we have to add entries to the indexes at the application level.
Now let’s find all of Jane Appleseed’s processed orders, we’ll lookup the orders by searching the saleperson_id_int index for Jane’s id of 9000.


puts "#Jane's Orders: "
pp order_bucket.get_index('salesperson_id_int', 9000)



Which returns:


#Jane's Orders:
["1", "3"]



Jane processed orders 1 and 3.  We used an “integer” index to reference Jane’s id, next let’s use a “binary” index.
Now, let’s say that the VP of Sales wants to know how many orders came in during October 2013.  In this case, we can exploit 2i’s range queries.  Let’s search the order_date_bin index for entries between 20131001 and 20131031.


puts "#October's Orders: "
pp order_bucket.get_index('order_date_bin', '20131001'..'20131031')



Which returns:


#October's Orders:
["1", "2"]



Boom, easy-peasy.  We used 2i’s range feature to search for a range of values, and demonstrated binary indexes.


So to recap:



		You can use Secondary Indexes to quickly lookup an object based on a secondary id other than the object’s key.


		Indexes can have either Integer or Binary(String) keys


		You can search for specific values, or a range of values


		Riak will return a list of keys that match the index query







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/taste-of-riak/csharp.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Taste of Riak: CSharp”
project: riak
version: 1.4.0+
document: guide
toc: true
audience: beginner
keywords: [developers, client, csharp]




If you haven’t set up a Riak Node and started it, please visit the [[Prerequisites|Taste of Riak: Prerequisites]] first.


To try this flavor of Riak, a working installation of the .NET Framework or Mono is required.



Client Setup


Install the Riak .NET Client [https://github.com/basho/riak-dotnet-client/wiki/Installation] through NuGet [http://nuget.org/packages/RiakClient] or the Visual Studio NuGet package manager.



Configuring for a remote cluster

By default, the Riak .NET Client will add a section to your `app.config` file for a four node local cluster. If you are using a remote cluster, open up `app.config` and change the `hostAddress` values to point to nodes in your remote cluster.




Connecting to Riak


Connecting to Riak with the Riak .NET Client requires creating a cluster object and then creating a new client object.


using System;
using RiakClient;

namespace TasteOfRiak
{
    class Program
    {
        static void Main(string[] args)
        {
            // don't worry, we'll use this string later
            const string contributors = "contributors";
            IRiakEndpoint cluster = RiakCluster.FromConfig("riakConfig");
            IRiakClient client = cluster.CreateClient();
        }
    }
}



This creates a new RiakCluster which is used to create a new RiakClient. A RiakCluster object handles all the details of tracking active nodes and also provides load balancing. The RiakClient is used to send commands to Riak. Note: the IRiakEndpoint object implements IDisposable and should be correctly disposed when you’re done communicating with Riak.


Let’s make sure the cluster is online. Add this to your Main method:


var pingResult = client.Ping();

if (pingResult.IsSuccess)
{
    Console.WriteLine("pong");
}
else
{
    Console.WriteLine("Are you sure Riak is running?");
    Console.WriteLine("{0}: {1}", pingResult.ResultCode, pingResult.ErrorMessage);
}



This is some simple code to test that a node in a Riak cluster is online - we send a simple ping message. Even if the cluster isn’t present, the Riak .NET Client will return a response message. It’s important to check that your activity was successful by using the IsSuccess property and then checking any errors and result codes.





Saving Objects to Riak


Pinging a Riak cluster sounds like a lot of fun, but eventually someone is going to want us to do productive work. Let’s create a class to represent some data and save some objects into Riak.


The Riak .NET Client makes use of a RiakObject class to encapsulate Riak key/value objects. At the most basic, a RiakObject is responsible for identifying your object and for translating it into a format that can be easily saved to Riak.


Add the RiakClient.Models namespace to your using directive. Your usings should look like this:


using System;
using System.Collections.Generic;
using RiakClient;
using RiakClient.Models;



Add the Person class to the TasteOfRiak namespace:


public class Person
{
    public string EmailAddress { get; set; }
    public string FirstName { get; set; }
    public string LastName { get; set; }
}



Now let’s create some people!


var people = new[]
{
    new Person {
        EmailAddress = "bashoman@basho.com",
        FirstName = "Basho",
        LastName = "Man"
    },
    new Person {
        EmailAddress = "johndoe@gmail.com",
        FirstName = "John",
        LastName = "Doe"
    }
};

foreach (var person in people)
{
    var o = new RiakObject(contributors, person.EmailAddress, person);
    var putResult = client.Put(o);

    if (putResult.IsSuccess)
    {
        Console.WriteLine("Successfully saved {1} to bucket {0}", o.Key, o.Bucket);
    }
    else
    {
        Console.WriteLine("Are you *really* sure Riak is running?");
        Console.WriteLine("{0}: {1}", putResult.ResultCode, putResult.ErrorMessage);
    }
}



In this sample, we create a collection of Person objects and then save each Person to Riak.


Before saving, we need to create a RiakObject that encapsulates the bucket, key, and object to be saved. Once we’ve created a RiakObject from our Person object, we can save it to Riak using Client.Put().


Once again, we check the response from Riak. If things are successful, you’ll see a helpful message letting you know that your object has been saved to Riak. If things didn’t go as planned, there will be an error message displaying the result code and a helpful error message.





Reading from Riak


Let’s find a person!


var result = client.Get(contributors, "bashoman@basho.com");
if (result.IsSuccess)
{
    bashoman = result.Value.GetObject<Person>();
    Console.WriteLine("I found {0} in {1}", bashoman.EmailAddress, contributors);
}
else
{
    Console.WriteLine("Something went wrong!");
    Console.WriteLine("{0}: {1}", result.ResultCode, result.ErrorMessage);
}



We use RiakClient.Get to retrieve an object from Riak. This returns a RiakResult<RiakObject> which, like other RiakResults, helpfully encapsulates the communication with Riak.


After verifying that we’ve been able to communicate with Riak and that we have a successful result, we use GetObject<T> to deserialize our object.





Modifying Existing Data


Let’s say that Basho Man has decided to be known as Riak Man:


bashoman.FirstName = "Riak";

var o = new RiakObject(contributors, bashoman.EmailAddress, bashoman);
var updateResult = client.Put(o);
if (updateResult.IsSuccess)
{
    Console.WriteLine("Successfully updated {0} in {1}", bashoman.EmailAddress, contributors);
}
else
{
    Console.WriteLine("Something went wrong!");
    Console.WriteLine("{0}: {1}", updateResult.ResultCode, updateResult.ErrorMessage);
}



Updating an object involves creating a new RiakObject then using RiakClient.Put to save the existing object.





Deleting Data


var deleteResult = client.Delete(contributors, "johndoe@gmail.com");
if (deleteResult.IsSuccess)
{
    Console.WriteLine("Successfully got rid of John Doe");
}
else
{
    Console.WriteLine("Something went wrong!");
    Console.WriteLine("{0}: {1}", deleteResult.ResultCode, deleteResult.ErrorMessage);
}



Just like other operations, we check the results that have come back from Riak to make sure the object was successfully deleted. Of course, if you don’t care about that, you can just ignore the result.


The Riak .NET Client has a lot of additional functionality that makes it easy to build rich, complex applications with Riak. Check out the documentation [https://github.com/basho/riak-dotnet-client/wiki] to learn more about working with the Riak .NET Client and Riak.





Next Steps


More complex use cases can be composed from these initial create, read, update, and delete (CRUD) operations. [[In the next chapter|Taste of Riak: Querying]], we will look at how to store and query more complicated and interconnected data, such as documents.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/taste-of-riak/object-modeling-java.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Taste of Riak: Object Modeling with Java”
project: riak
version: 1.4.8+
document: tutorials
toc: true
audience: beginner
keywords: [developers, client, 2i, search, java, modeling]




To get started, let’s create the models that we’ll be using.


package com.basho.msgy.Models;

import java.text.DateFormat;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.TimeZone;

public class Msg {
    public String Sender;
    public String Recipient;
    public String Created;
    public String Text;

    public static Msg createNew(String sender, String recipient, String text) {
        Msg msg = new Msg();
        msg.Sender = sender;
        msg.Recipient = recipient;
        msg.Text = text;
        msg.Created = GetCurrentISO8601Timestamp();
        return msg;
    }

    private static String GetCurrentISO8601Timestamp() {
        TimeZone tz = TimeZone.getTimeZone("UTC");
        // Java Dates don't have microsecond resolution :(
        // Pad out to microseconds to match other examples.
        DateFormat df = new SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss.SSS'000'");
        df.setTimeZone(tz);
        return df.format(new Date());
    }
}

// ----------------------------------------------------------------------------

import java.util.ArrayList;

public class Timeline {

    public enum TimelineType
    {
        Inbox,
        Sent;

        @Override
        public String toString() {
            if(this == Inbox)
                return "Inbox";
            else
                return "Sent";
        }
    }

    public Timeline() {
        Msgs = new ArrayList<String>();
    }

    public String Owner;
    public String Type;
    public ArrayList<String> Msgs;
}

// ----------------------------------------------------------------------------

package com.basho.msgy.Models;

import com.basho.riak.client.convert.RiakKey;

public class User {
    @RiakKey
    public String UserName;

    @RiakBucketName
    final String bucketName = "msgs";

    public String FullName;
    public String Email;

    public User() {}

    public User(String userName, String fullName, String email) {
        this.UserName = userName;
        this.FullName = fullName;
        this.Email = email;
    }
}



To use these classes to store data, we will first have to create a user.
Then, when a user creates a message, we will append that message to one
or more timelines. If it’s a private message, we’ll append it to the
Recipient’s Inbox timeline and the User’s own Sent timeline. If it’s
a group message, we’ll append it to the Group’s timeline, as well as to
the User’s Sent timeline.



Buckets and Keys Revisited


Now that we’ve worked out how we will differentiate data in the system,
let’s figure out our bucket and key names.


The bucket names are straightforward. We can use Users, Msgs, and
Timelines. The key names, however, are a little more tricky. In past
examples we’ve used sequential integers, but this presents a problem: we
would need a secondary service to hand out these IDs. This service could
easily be a future bottleneck in the system, so let’s use a natural key.
Natural keys are a great fit for key/value systems because both humans
and computers can easily construct them when needed, and most of the
time they can be made unique enough for a KV store.


| Bucket | Key Pattern | Example Key
|:——-|:————|:———–
| Users | <user_name> | joeuser
| Msgs | <username>_<datetime> | joeuser_2014-03-06T02:05:13.223556Z
| Timelines | <username>_<type>_<date> | joeuser_Sent_2014-03-06Z
 marketing_group_Inbox_2014-03-06Z |


For the Users bucket, we can be certain that we will want each
username to be unique, so let’s use the username as the key.  With the
Java client, we can use the @RiakKey annotation to tell the client
that we want to use the UserName member as the key. It will
automatically use that value in the future, instead of having to pass the
key in as another parameter when storing a value.


For the Msgs bucket, let’s use a combination of the username and the
posting datetime in an ISO 8601
Long [http://en.wikipedia.org/wiki/ISO_8601] format. This combination
gives us the pattern <username>_<datetime>, which produces keys like
joeuser_2014-03-05T23:20:28Z.


Now for Timelines, we need to differentiate between Inbox and Sent
timelines, so we can simply add that type into the key name. We will
also want to partition each collection object into some time period,
that way the object doesn’t grow too large (see note below).


For Timelines, let’s use the pattern <username>_<type>_<date> for
users, and <groupname>_Inbox_<date> for groups, which will look like
joeuser_Sent_2014-03-06Z or marketing_group_Inbox_2014-03-05Z,
respectively.


Note

Riak performs best with objects under 1-2MB. Objects larger than that
can hurt performance, especially many siblings are being created. We
will cover siblings, sibling resolution, and sibling explosions in the
next chapter.




Keeping our story straight with repositories


Now that we’ve figured out our object model, let’s write some
repositories to help create and work with these objects in Riak:


package com.basho.msgy.Repositories;

import com.basho.msgy.Models.Msg;
import com.basho.riak.client.IRiakClient;
import com.basho.riak.client.RiakRetryFailedException;
import com.basho.riak.client.bucket.Bucket;

public class MsgRepository {

    static final String BUCKET_NAME = "Msgs";
    protected RiakClient client;

    public MsgRepository(RiakClient client) {
        this.client = client;
    }

    public Msg get(String msgKey) throws Exception {
        Location key = new Location(new Namespace(BUCKET_NAME), msgKey);
        FetchValue fetch = new FetchValue.Builder(key).build();
        FetchValue.Response response = client.execute(fetch);
        return response.getValue(Msg.class);
    }

    public String save(Msg msg) throws Exception {
        StoreValue store = new StoreValue.Builder(msg).build();
        client.execute(store);
        return generateKey(msg);
    }

    private String generateKey(Msg msg) {
        return msg.Sender + "_" + msg.Created;
    }
}

// ----------------------------------------------------------------------------

package com.basho.msgy.Repositories;

import com.basho.msgy.Models.Msg;
import com.basho.msgy.Models.Timeline;
import com.basho.riak.client.IRiakClient;
import com.basho.riak.client.RiakRetryFailedException;
import com.basho.riak.client.bucket.Bucket;

import java.text.DateFormat;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.TimeZone;

public class TimelineRepository {

    static final String BUCKET_NAME = "Timelines";
    protected RiakClient client;
    protected MsgRepository msgRepo;

    public TimelineRepository(RiakClient client) {
        this.client = client;
        this.msgRepo = new MsgRepository(this.client);
    }

    public void postMsg(Msg msg) throws Exception {
        String msgKey = msgRepo.save(msg);

        // Post to recipient's Inbox timeline
        addToTimeline(msg, Timeline.TimelineType.Inbox, msgKey);

        // Post to sender's Sent timeline
        addToTimeline(msg, Timeline.TimelineType.Sent, msgKey);
    }


    private void addToTimeline(Msg msg, Timeline.TimelineType type, String msgKey) throws Exception {
        String timelineKey = generateKeyFromMsg(msg, type);

        Location loc = new Location(new Namespace(BUCKET_NAME), timelineKey);
        FetchValue fetch = new FetchValue.Builder(loc).build();
        Timeline timeline = client.execute(fetch).getValue(Timeline.class);

        if (timeline != null) {
            timeline = addToExistingTimeline(timeline,msgKey);
        } else {
            timeline = createNewTimeline(msg, type, msgKey);
        }

        StoreValue store = new StoreValue.Builder(timeline).build();
        client.execute(store);
    }

    public Timeline createNewTimeline(Msg msg, Timeline.TimelineType type, String msgKey) {
        String owner = getOwner(msg, type);

        Timeline newTimeline = new Timeline();
        newTimeline.Owner = owner;
        newTimeline.Type = type.toString();
        newTimeline.Msgs.add(msgKey);

        return newTimeline;
    }

    public Timeline addToExistingTimeline(Timeline timeline, String msgKey) {
        timeline.Msgs.add(msgKey);
        return timeline;
    }

    public Timeline getTimeline(String ownerUsername, Timeline.TimelineType type, Date date) throws RiakRetryFailedException {
        String timelineKey = generateKey(ownerUsername, type, date);
        Bucket bucket = client.fetchBucket(BUCKET_NAME).execute();
        return bucket.fetch(timelineKey, Timeline.class).execute();
    }

    private String generateKeyFromMsg(Msg msg, Timeline.TimelineType type) {
        String owner = getOwner(msg, type);
        String dateString = msg.Created.substring(0, 10);
        return generateKey(owner, type, dateString);
    }

    private String getOwner(Msg msg, Timeline.TimelineType type) {
        if(type == Timeline.TimelineType.Inbox)
            return msg.Recipient;
        else
            return msg.Sender;
    }

    private String generateKey(String ownerUsername, Timeline.TimelineType type, Date date) {
        String dateString = getIso8601DateStringFromDate(date);
        return generateKey(ownerUsername, type, dateString);
    }

    private String generateKey(String ownerUsername, Timeline.TimelineType type, String dateString) {
        return ownerUsername + "_" + type.toString() + "_" + dateString;
    }

    private String getIso8601DateStringFromDate(Date date) {
        TimeZone tz = TimeZone.getTimeZone("UTC");
        DateFormat df = new SimpleDateFormat("yyyy-MM-dd");
        df.setTimeZone(tz);
        return df.format(date);
    }


}

// ----------------------------------------------------------------------------

package com.basho.msgy.Repositories;

import com.basho.msgy.Models.User;
import com.basho.riak.client.IRiakClient;
import com.basho.riak.client.RiakRetryFailedException;
import com.basho.riak.client.bucket.Bucket;

public class UserRepository {
    static final String BUCKET_NAME = "Users";
    protected IRiakClient client;

    public UserRepository(IRiakClient client) {
        this.client = client;
    }

    public void save(User user) throws RiakRetryFailedException {
        Bucket bucket = client.fetchBucket(BUCKET_NAME).execute();
        bucket.store(user).execute();
    }

    public User get(String UserName) throws RiakRetryFailedException {
        Bucket bucket = client.fetchBucket(BUCKET_NAME).execute();
        return bucket.fetch(UserName, User.class).execute();
    }
}




Finally, let’s test them:


package com.basho.msgy;

import com.basho.msgy.Models.Msg;
import com.basho.msgy.Models.Timeline;
import com.basho.msgy.Models.User;
import com.basho.msgy.Repositories.MsgRepository;
import com.basho.msgy.Repositories.TimelineRepository;
import com.basho.msgy.Repositories.UserRepository;
import com.basho.riak.client.IRiakClient;
import com.basho.riak.client.RiakException;
import com.basho.riak.client.RiakFactory;

import java.util.Date;

public class MsgyMain {

    public static void main(String[] args) throws RiakException {
        // Setup our repositories
        IRiakClient client = RiakFactory.pbcClient("127.0.0.1", 10017);

        UserRepository userRepo = new UserRepository(client);
        MsgRepository msgRepo = new MsgRepository(client);
        TimelineRepository timelineRepo = new TimelineRepository(client);

        // Create and save users
        User marleen = new User("marleenmgr",
                "Marleen Manager",
                "marleen.manager@basho.com");

        User joe = new User("joeuser",
                "Joe User",
                "joe.user@basho.com");

        userRepo.save(marleen);
        userRepo.save(joe);

        // Create new Msg, post to timelines
        Msg msg = Msg.createNew(marleen.UserName,
                joe.UserName,
                "Welcome to the company!");

        timelineRepo.postMsg(msg);


        // Get Joe's inbox for today, get first message
        Timeline joesInboxToday = timelineRepo.getTimeline(joe.UserName,
                                                           Timeline.TimelineType.Inbox,
                                                           new Date());

        Msg joesFirstMsg = msgRepo.get(joesInboxToday.Msgs.get(0));

        System.out.println("From: " + joesFirstMsg.Sender);
        System.out.println("Msg : " + joesFirstMsg.Text);
        System.out.println("");

        client.shutdown();
    }
}



As you can see, the repository pattern helps us with a few things:



		It helps us to see if an object exists before creating a new one


		It keeps our buckets and key names consistent


		It provides us with a consistent interface to work with.





While this set of repositories solves many of our problems, it is very
minimal and doesn’t cover all the edge cases. For instance, what happens
if two different people try to create a user with the same username?


We can also easily “compute” key names now, but how do we quickly look
up the last 10 messages a user sent? Many of these answers will be
application dependent. If your application shows the last 10 messages in
reverse order, for example, you may want to store that set of data in
another collection object to make lookup faster. There are drawbacks to
every solution, but we recommend seeking out the key/value-based
solution first, as it will likely be the quickest.


So to recap, in this chapter we learned:



		How to choose bucket names


		How to choose natural keys based on how we want to partition our data









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/taste-of-riak/php.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Taste of Riak: PHP”
project: riak
version: 2.0.1+
document: guide
toc: true
audience: beginner
keywords: [developers, client, php]




If you haven’t set up a Riak Node and started it, please visit the [[Prerequisites|Taste of Riak: Prerequisites]] first.


To try this flavor of Riak, a working installation of PHP is required, and Composer [https://getcomposer.org/] is required to be installed to fetch the client library package.


###Client Setup
Download and unzip, or clone the Taste of Riak Sample Code Repository from GitHub (zip [https://github.com/basho/taste-of-riak/archive/master.zip], github repository [https://github.com/basho/taste-of-riak]).


From the taste-of-riak directory, use composer to install the Riak PHP 2.0 Client`.


php path/to/your/composer.phar install

#If you did a global install of composer, run this instead:
composer install



If you set up a local Riak cluster using the [[five minute install]] method, change line 11 from ->onPort(8098) to ->onPort(10018).


Next, run php Ch01-CRUD/taste-of-riak.php to run this chapter’s example code. It should output:


Reading Objects From Riak...
Updating Objects In Riak...
Deleting Objects From Riak...
Working With Complex Objects...
Serialized Object:
{"title":"Moby Dick","author":"Herman Melville","body":"Call me Ishmael. Some years ago...","isbn":"1111979723","copiesOwned":3}



Yay, success!


Since we didn’t use PHP’s REPL environment, let’s walk through the code
to see what it actually did at each step.



Setting up the PHP Client and connections


include_once 'vendor/autoload.php';

use Basho\Riak;
use Basho\Riak\Node;
use Basho\Riak\Command;

$node = (new Node\Builder)
        ->atHost('127.0.0.1')
        ->onPort(8098)
        ->build();

$riak = new Riak([$node]);



This code will load the library, declare the necessary use statements for our code, and then initialize and configure a Node Builder [http://basho.github.io/riak-php-client/class-Basho.Riak.Node.Builder.html].
Once we call build() on the builder, it will return to us a Node [http://basho.github.io/riak-php-client/class-Basho.Riak.Node.html] object, which we use when building our Riak commands.


We are now ready to start interacting with Riak.


###Creating Objects In Riak
First, let’s create a few objects and a bucket to keep them in.


$bucket = new Riak\Bucket('testBucket');

$val1 = 1;
$location1 = new Riak\Location('one', $bucket);

$storeCommand1 = (new Command\Builder\StoreObject($riak))
                    ->buildObject($val1)
                    ->atLocation($location1)
                    ->build();
$storeCommand1->execute();



In this first example we have stored the integer 1 with the lookup key of ‘one’.  Next let’s store a simple string value of “two” with a matching key.


$val2 = 'two';
$location2 = new Riak\Location('two', $bucket);

$storeCommand2 = (new Command\Builder\StoreObject($riak))
                    ->buildObject($val2)
                    ->atLocation($location2)
                    ->build();
$storeCommand2->execute();



That was easy.  Finally, let’s store an associative array.  You will probably recognize the pattern by now.


$val3 = ['myValue' => 3];
$location3 = new Riak\Location('three', $bucket);

$storeCommand3 = (new Command\Builder\StoreObject($riak))
                    ->buildJsonObject($val3)
                    ->atLocation($location3)
                    ->build();
$storeCommand3->execute();



###Reading Objects From Riak
Now that we have a few objects stored, let’s retrieve them and make sure they contain the values we expect.


$response1 = (new Command\Builder\FetchObject($riak))
                ->atLocation($location1)
                ->build()
                ->execute();

$response2 = (new Command\Builder\FetchObject($riak))
                ->atLocation($location2)
                ->build()
                ->execute();

$response3 = (new Command\Builder\FetchObject($riak))
                ->atLocation($location3)
                ->withDecodeAsAssociative()
                ->build()
                ->execute();

assert($val1 == $response1->getObject()->getData());
assert($val2 == $response2->getObject()->getData());
assert($val3 == $response3->getObject()->getData());



That was easy.  We create a Fetch Command [http://basho.github.io/riak-php-client/class-Basho.Riak.Command.Object.Fetch.html] from a FetchObject Builder [http://basho.github.io/riak-php-client/class-Basho.Riak.Command.Builder.FetchObject.html].
For our object that is an associative array, we also add withDecodeAsAssociative() [http://basho.github.io/riak-php-client/class-Basho.Riak.Command.Builder.FetchObject.html#_withDecodeAsAssociative] to the builder so it returns the object as an associative array instead of an stdClass object.


In either case, we’ll get a Response [http://basho.github.io/riak-php-client/class-Basho.Riak.Command.Object.Response.html] object back, which holds information about the operation, and the result data.


###Updating Objects In Riak
While some data may be static, other forms of data may need to be updated.  This is also easy to accomplish.  Let’s update the value of myValue in the 3rd example to 42.


object3 = $response3->getObject();
$data3 = $object3->getData();

$data3['myValue'] = 42;
$object3 = $object3->setData(json_encode($data3));

$updateCommand = (new Command\Builder\StoreObject($riak))
    ->withObject($object3)
    ->atLocation($location3)
    ->build();

$updateCommand->execute();



First we get the Riak Object [http://basho.github.io/riak-php-client/class-Basho.Riak.Object.html] from the Response [http://basho.github.io/riak-php-client/class-Basho.Riak.Command.Object.Response.html], then we get the stored data with getData() [http://basho.github.io/riak-php-client/class-Basho.Riak.Object.html#_getData]. We update the data to our liking, then use setData() [http://basho.github.io/riak-php-client/class-Basho.Riak.Object.html#_setData] to set the new data back to the Riak Object.
To store it we use the same pattern as before, but this time we use the withObject() [http://basho.github.io/riak-php-client/class-Basho.Riak.Command.Builder.ObjectTrait.html#_withObject] method to tell it to store our updated Riak Object.


###Deleting Objects From Riak
As a last step, we’ll demonstrate how to delete data.  We just build a Delete Command [http://basho.github.io/riak-php-client/class-Basho.Riak.Command.Object.Delete.html] from a DeleteObject Builder [http://basho.github.io/riak-php-client/class-Basho.Riak.Command.Builder.DeleteObject.html], and execute it.


(new Command\Builder\DeleteObject($riak))->atLocation($location1)->build()->execute();
(new Command\Builder\DeleteObject($riak))->atLocation($location2)->build()->execute();
(new Command\Builder\DeleteObject($riak))->atLocation($location3)->build()->execute();



###Working With Complex Objects
Since the world is a little more complicated than simple integers and bits of strings, let’s see how we can work with more complex objects.  Take for example, this plain old PHP object(POPO) that encapsulates some knowledge about a book.


class Book
{
    var $title;
    var $author;
    var $body;
    var $isbn;
    var $copiesOwned;
}

$book = new Book();
$book->isbn = '1111979723';
$book->title = 'Moby Dick';
$book->author = 'Herman Melville';
$book->body = 'Call me Ishmael. Some years ago...';
$book->copiesOwned = 3;



Ok, so we have some information about our Moby Dick collection that we want to save.  Storing this to Riak should look familiar by now:


$bookLocation = new Riak\Location($book->isbn, new Riak\Bucket('books'));

$storeCommand1 = (new Command\Builder\StoreObject($riak))
    ->buildJsonObject($book)
    ->atLocation($bookLocation)
    ->build();

$storeCommand1->execute();



Some of you may be thinking “But how does the Riak client encode/decode my object”?  If we fetch the binary version of our book back and print it as a string, we shall know:


$fetchBookResponse = (new Command\Builder\FetchObject($riak))
                        ->atLocation($bookLocation)
                        ->build()
                        ->execute();

print('Serialized Object:' . PHP_EOL);
print($fetchBookResponse->getBody() . PHP_EOL);



Serialized Object:
{"title":"Moby Dick","author":"Herman Melville","body":"Call me Ishmael. Some years ago...","isbn":"1111979723","copiesOwned":3}



JSON!  The library encodes PHP objects as JSON strings when you use the buildJsonObject() [http://basho.github.io/riak-php-client/class-Basho.Riak.Command.Builder.ObjectTrait.html#_buildJsonObject] method on the StoreObject builder.


Now that we’ve ruined the magic of object encoding, let’s clean up our mess:


(new Command\Builder\DeleteObject($riak))
    ->atLocation($bookLocation)
    ->build()
    ->execute();



###Next Steps
More complex use cases can be composed from these initial create, read, update, and delete (CRUD) operations. [[In the next chapter|Taste of Riak: Querying]] we will look at how to store and query more complicated and interconnected data, such as documents.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/taste-of-riak/querying-php.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Taste of Riak: Querying with PHP”
project: riak
version: 1.3.1+
document: tutorials
toc: true
audience: beginner
keywords: [developers, client, 2i, search, php]




####A Quick Note on Querying and Schemas
Schemas? Yes we said that correctly, S-C-H-E-M-A-S. It’s not a dirty word.Even with a Key/Value store, you will still have a logical database schema of how all the data relates to one another. This can be as simple as using the same key across multiple buckets for different types of data, to having fields in your data that are related by name.  These querying methods will introduce you to some ways of laying out your data in Riak, along with how to query it back.


###Denormalization


If you’re coming from a relational database, the easiest way to get your application’s feet wet with NoSQL is to denormalize your data into related chunks.  For example with a customer database, you might have separate tables for Customers, Addresses, Preferences, etc.  In Riak, you can denormalize all that associated data into a single object and store it into a Customer bucket.  You can keep pulling in associated data until you hit one of the big denormalization walls:



		Size Limits (objects greater than 1MB)


		Shared/Referential Data (data that the object doesn’t “own”)


		Differences in Access Patterns (objects that get read/written once vs. often)





At one of these points we will have to split the model.


###Same Keys - Different Buckets


The simplest way to split up data would be to use the same identity key across different buckets. A good example of this would be a Customer object, an Order object, and an OrderSummaries object that keeps rolled up info about orders such as Total, etc. Let’s put some data into Riak so we can play with it.


<?php

include_once 'vendor/autoload.php';

use Basho\Riak;
use Basho\Riak\Location;
use Basho\Riak\Node;
use Basho\Riak\Command;

$node = (new Node\Builder)
    ->atHost('127.0.0.1')
    ->onPort(8098)
    ->build();

$riak = new Riak([$node]);

// Class definitions for our models

class Customer
{
    var $customerId;
    var $name;
    var $address;
    var $city;
    var $state;
    var $zip;
    var $phone;
    var $createdDate;
}

class Order
{
    public function __construct()
    {
        $this->items = array();
    }
    var $orderId;
    var $customerId;
    var $salespersonId;
    var $items;
    var $total;
    var $orderDate;
}

class Item
{
    public function __construct($itemId, $title, $price)
    {
        $this->itemId = $itemId;
        $this->title = $title;
        $this->price = $price;
    }
    var $itemId;
    var $title;
    var $price;
}

class OrderSummary
{
    public function __construct() 
    {
        $this->summaries = array();
    }
    var $customerId;
    var $summaries;
}

class OrderSummaryItem
{
    public function __construct(Order $order) 
    {
        $this->orderId = $order->orderId;
        $this->total = $order->total;
        $this->orderDate = $order->orderDate;
    }
    var $orderId;
    var $total;
    var $orderDate;
}


// Creating Data
$customer = new Customer();
$customer->customerId = 1;
$customer->name = 'John Smith';
$customer->address = '123 Main Street';
$customer->city = 'Columbus';
$customer->state = 'Ohio';
$customer->zip = '43210';
$customer->phone = '+1-614-555-5555';
$customer->createdDate = '2013-10-01 14:30:26';


$orders = [];

$order1 = new Order();
$order1->orderId = 1;
$order1->customerId = 1;
$order1->salespersonId = 9000;
$order1->items = [
    new Item(
        'TCV37GIT4NJ',
        'USB 3.0 Coffee Warmer',
        15.99
    ),
    new Item(
        'PEG10BBF2PP', 
        'eTablet Pro; 24GB; Grey', 
        399.99
    )
];
$order1->total = 415.98;
$order1->orderDate = '2013-10-01 14:42:26';
$orders[] = $order1;

$order2 = new Order();
$order2->orderId = 2;
$order2->customerId = 1;
$order2->salespersonId = 9001;
$order2->items = [
    new Item(
        'OAX19XWN0QP',
        'GoSlo Digital Camera',
        359.99
    )
];
$order2->total = 359.99;
$order2->orderDate = '2013-10-15 16:43:16';
$orders[] = $order2;

$order3 = new Order();
$order3->orderId = 3;
$order3->customerId = 1;
$order3->salespersonId = 9000;
$order3->items = [
    new Item(
        'WYK12EPU5EZ',
        'Call of Battle = Goats - Gamesphere 4',
        69.99
    ),
    new Item(
        'TJB84HAA8OA',
        'Bricko Building Blocks',
        4.99
    )
];
$order3->total = 74.98;
$order3->orderDate = '2013-11-03 17:45:28';
$orders[] = $order3;


$orderSummary = new OrderSummary();
$orderSummary->customerId = 1;
foreach ($orders as $order) {
    $orderSummary->summaries[] = new OrderSummaryItem($order);
}
unset($order);



// Starting Client
$node = (new Node\Builder)
    ->atHost('127.0.0.1')
    ->onPort(8098)
    ->build();

$riak = new Riak([$node]);

// Creating Buckets
$customersBucket = new Riak\Bucket('Customers');
$ordersBucket = new Riak\Bucket('Orders');
$orderSummariesBucket = new Riak\Bucket('OrderSummaries');

// Storing Data
$storeCustomer = (new Command\Builder\StoreObject($riak))
    ->buildJsonObject($customer)
    ->atLocation(new Location($customer->customerId, $customersBucket))
    ->build();
$storeCustomer->execute();

foreach ($orders as $order) {
    $storeOrder = (new Command\Builder\StoreObject($riak))
        ->buildJsonObject($order)
        ->atLocation(new Location($order->orderId, $ordersBucket))
        ->build();
    $storeOrder->execute();
}
unset($order);

$storeSummary = (new Command\Builder\StoreObject($riak))
    ->buildJsonObject($orderSummary)
    ->atLocation(new Location($orderSummary->customerId, $orderSummariesBucket))
    ->build();
$storeSummary->execute();



While individual Customer and Order objects don’t change much (or shouldn’t change), the Order Summaries object will likely change often.  It will do double duty by acting as an index for all a customer’s orders, and also holding some relevant data such as the order total, etc.  If we showed this information in our application often, it’s only one extra request to get all the info.


// Fetching related data by shared key
$fetched_customer = (new Command\Builder\FetchObject($riak))
                    ->atLocation(new Location('1', $customersBucket))
                    ->build()->execute()->getObject()->getData();

$fetched_customer->orderSummary =
    (new Command\Builder\FetchObject($riak))
    ->atLocation(new Location('1', $orderSummariesBucket))
    ->build()->execute()->getObject()->getData();

print("Customer with OrderSummary data: \n");
print_r($fetched_customer);



Which returns our amalgamated objects:


Customer with OrderSummary data:
stdClass Object
(
    [customerId] => 1
    [name] => John Smith
    [address] => 123 Main Street
    [city] => Columbus
    [state] => Ohio
    [zip] => 43210
    [phone] => +1-614-555-5555
    [createdDate] => 2013-10-01 14:30:26
    [orderSummary] => stdClass Object
        (
            [customerId] => 1
            [summaries] => Array
                (
                    [0] => stdClass Object
                        (
                            [orderId] => 1
                            [total] => 415.98
                            [orderDate] => 2013-10-01 14:42:26
                        )

                    [1] => stdClass Object
                        (
                            [orderId] => 2
                            [total] => 359.99
                            [orderDate] => 2013-10-15 16:43:16
                        )

                    [2] => stdClass Object
                        (
                            [orderId] => 3
                            [total] => 74.98
                            [orderDate] => 2013-11-03 17:45:28
                        )
                )
        )
)



While this pattern is very easy and extremely fast with respect to queries and complexity, it’s up to the application to know about these intrinsic relationships.


###Secondary Indexes


If you’re coming from a SQL world, Secondary Indexes (2i) are a lot like SQL indexes.  They are a way to quickly lookup objects based on a secondary key, without scanning through the whole dataset.  This makes it very easy to find groups of related data by values, or even ranges of values.  To properly show this off, we will now add some more data to our application, and add some secondary index entries at the same time.


// Adding Index Data
$keys = array(1,2,3);
foreach ($keys as $key) {
    $orderLocation = new Location($key, $ordersBucket);
    $orderObject = (new Command\Builder\FetchObject($riak))
                    ->atLocation($orderLocation)
                    ->build()->execute()->getObject();

    $order = $orderObject->getData();

    $orderObject->addValueToIndex('SalespersonId_int', $order->salespersonId);
    $orderObject->addValueToIndex('OrderDate_bin', $order->orderDate);

    $storeOrder = (new Command\Builder\StoreObject($riak))
                    ->withObject($orderObject)
                    ->atLocation($orderLocation)
                    ->build();
    $storeOrder->execute();
}
unset($key);




As you may have noticed, ordinary Key/Value data is opaque to 2i, so we have to add entries to the indexes at the application level.
Now let’s find all of Jane Appleseed’s processed orders, we’ll lookup the orders by searching the saleperson_id_int index for Jane’s id of 9000.


// Query for orders where the SalespersonId int index is set to 9000
$fetchIndex = (new Command\Builder\QueryIndex($riak))
                ->inBucket($ordersBucket)
                ->withIndexName('SalespersonId_int')
                ->withScalarValue(9000)->build();
$janes_orders = $fetchIndex->execute()->getResults();

print("\n\nJane's Orders: \n");
print_r($janes_orders);



Which returns:


Jane's Orders:
Array
(
    [0] => 3
    [1] => 1
)




Jane processed orders 1 and 3.  We used an “integer” index to reference Jane’s id, next let’s use a “binary” index.
Now, let’s say that the VP of Sales wants to know how many orders came in during October 2013.  In this case, we can exploit 2i’s range queries.  Let’s search the order_date_bin index for entries between 20131001 and 20131031.


// Query for orders where the OrderDate bin index is 
// between 2013-10-01 and 2013-10-31
$fetchOctoberOrders = (new Command\Builder\QueryIndex($riak))
                        ->inBucket($ordersBucket)
                        ->withIndexName('OrderDate_bin')
                        ->withRangeValue('2013-10-01','2013-10-31')
                        ->withReturnTerms(true)
                        ->build();

$octobers_orders = $fetchOctoberOrders->execute()->getResults();

print("\n\nOctober's Orders: \n");
print_r($octobers_orders);
?>



Which returns:


October's Orders:
Array
(
    [0] => Array
        (
            [2013-10-01 14:42:26] => 1
        )

    [1] => Array
        (
            [2013-10-15 16:43:16] => 2
        )
)



Boom, easy-peasy.  We used 2i’s range feature to search for a range of values, and demonstrated binary indexes.  With the October’s Orders query we also used the ->withReturnTerms(true) option, which as you can see will return the values of the matching 2i terms.


So to recap:



		You can use Secondary Indexes to quickly lookup an object based on a secondary id other than the object’s key.


		Indexes can have either Integer or Binary(String) keys


		You can search for specific values, or a range of values


		Riak will return a list of keys (and terms if needed) that match the index query







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/taste-of-riak/object-modeling-csharp.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Taste of Riak: Object Modeling with CSharp”
project: riak
version: 1.4.8+
document: tutorials
toc: true
audience: beginner
keywords: [developers, client, 2i, search, csharp, modeling]




To get started, refer to this source code [https://github.com/basho/taste-of-riak/tree/master/csharp/Ch03-Msgy-Schema/Models] for the models that we’ll
be using.


To use these classes to store data, we will first have to create a user.
Then, when a user creates a message, we will append that message to one
or more timelines. If it’s a private message, we’ll append it to the
Recipient’s Inbox timeline and the User’s own Sent timeline. If it’s
a group message, we’ll append it to the Group’s timeline, as well as to
the User’s Sent timeline.



Buckets and Keys Revisited


Now that we’ve worked out how we will differentiate data in the system,
let’s figure out our bucket and key names.


The bucket names are straightforward. We can use Users, Msgs, and
Timelines. The key names, however, are a little more tricky. In past
examples we’ve used sequential integers, but this presents a problem: we
would need a secondary service to hand out these IDs. This service could
easily be a future bottleneck in the system, so let’s use a natural key.
Natural keys are a great fit for key/value systems because both humans
and computers can easily construct them when needed, and most of the
time they can be made unique enough for a KV store.


| Bucket | Key Pattern | Example Key
|:——-|:————|:———–
| Users | <user_name> | joeuser
| Msgs | <username>_<datetime> | joeuser_2014-03-06T02:05:13
| Timelines | <username>_<type>_<date> | joeuser_Sent_2014-03-06
 marketing_group_Inbox_2014-03-06 |


For the Users bucket, we can be certain that we will want each
username to be unique, so let’s use the username as the key.


For the Msgs bucket, let’s use a combination of the username and the
posting UTC datetime in an ISO 8601 [http://en.wikipedia.org/wiki/ISO_8601]
format. This combination gives us the pattern <username>_<datetime>,
which produces keys like joeuser_2014-03-05T23:20:28.


Now for Timelines, we need to differentiate between Inbox and Sent
timelines, so we can simply add that type into the key name. We will
also want to partition each collection object into some time period,
that way the object doesn’t grow too large (see note below).


For Timelines, let’s use the pattern <username>_<type>_<date> for
users, and <groupname>_Inbox_<date> for groups, which will look like
joeuser_Sent_2014-03-06 or marketing_group_Inbox_2014-03-05,
respectively.


Note

Riak performs best with objects under 1-2MB. Objects larger than that
can hurt performance, especially when many siblings are being created. We
will cover siblings, sibling resolution, and sibling explosions in the
next chapter.




Keeping our story straight with repositories


Now that we’ve figured out our object model, please refer to
this source code [https://github.com/basho/taste-of-riak/tree/master/csharp/Ch03-Msgy-Schema/Repositories] for the repositories that we’ll be using.


This console application [https://github.com/basho/taste-of-riak/blob/master/csharp/Ch03-Msgy-Schema/Program.cs] exercises the code that we’ve written.


The repository pattern and TimelineManager help with a few things:



		It helps us to see if an object exists before creating a new one


		It keeps our buckets and key names consistent


		It provides us with a consistent interface to work with.





While this set of repositories solves many of our problems, it is very
minimal and doesn’t cover all the edge cases. For instance, what happens
if two different people try to create a user with the same username?


We can also easily “compute” key names now, but how do we quickly look
up the last 10 messages a user sent? Many of these answers will be
application dependent. If your application shows the last 10 messages in
reverse order, for example, you may want to store that set of data in
another collection object to make lookup faster. There are drawbacks to
every solution, but we recommend seeking out the key/value-based
solution first, as it will likely be the quickest.


So to recap, in this chapter we learned:



		How to choose bucket names


		How to choose natural keys based on how we want to partition our data









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/taste-of-riak/object-modeling-python.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Taste of Riak: Object Modeling with Python”
project: riak
version: 1.4.8+
document: tutorials
toc: true
audience: beginner
keywords: [developers, client, 2i, search, python, modeling]




To get started, let’s create the data structures that we’ll be using.


from datetime import datetime
import string
import riak


marleen = {'user_name': 'marleenmgr',
           'full_name': 'Marleen Manager',
           'email': 'marleen.manager@basho.com'}

joe = {'user_name': 'joeuser',
       'full_name': 'Joe User',
       'email': 'joe.user@basho.com'}

msg = {'sender': marleen['user_name'],
       'recipient': joe['user_name'],
       'created': datetime.utcnow().isoformat(),
       'text': 'Welcome to the company!'}



As you can see, we first create a user, and then we can use that user to
create a message. To send this message we can append it to one or more
Timelines. If it’s a private message, we’ll append it to the
Recipient’s Inbox timeline and the User’s own Sent timeline. If it’s
a group message, we’ll append it to the Group’s timeline, as well as to
the User’s Sent timeline.



Buckets and Keys Revisited


Now that we’ve worked out how we will differentiate data in the system,
let’s figure out our bucket and key names.


The bucket names are straightforward. We can use Users, Msgs, and
Timelines. The key names, however, are a little more tricky. In past
examples we’ve used sequential integers, but this presents a problem: we
would need a secondary service to hand out these IDs. This service could
easily be a future bottleneck in the system, so let’s use a natural key.
Natural keys are a great fit for key/value systems because both humans
and computers can easily construct them when needed, and most of the
time they can be made unique enough for a KV store.


Bucket | Key Pattern | Example Key
:——|:————|:———–
Users | <user_name> | joeuser
Msgs | <username>_<datetime> | joeuser_2014-03-06T02:05:13.223556Z
Timelines | <username>_<type>_<date> | joeuser_Sent_2014-03-06
 marketing_group_Inbox_2014-03-06 |


For the Users bucket, we can be certain that we will want each
username to be unique, so let’s use the username as the key.  For the
Msgs bucket, let’s use a combination of the username and the posting
datetime in an ISO 8601 Long [http://en.wikipedia.org/wiki/ISO_8601]
format. This combination gives us the pattern <username>_<datetime>,
which produces keys like joeuser_2014-03-05T23:20:28.


Now for Timelines, we need to differentiate between Inbox and Sent
timelines, so we can simply add that type into the key name. We will
also want to partition each collection object into some time period,
that way the object doesn’t grow too large (see note below).


For Timelines, let’s use the pattern <username>_<type>_<date> for
users, and <groupname>_Inbox_<date> for groups, which will look like
joeuser_Sent_2014-03-06 or marketing_group_Inbox_2014-03-05,
respectively.



Note

Riak performs best with objects under 1-2MB. Objects larger than that
can hurt performance, especially many siblings are being created. We
will cover siblings, sibling resolution, and sibling explosions in the
next chapter.




Keeping our story straight with repositories


Now that we’ve figured out our object model, let’s write some
repositories to help create and work with these objects in Riak:


class UserRepository:
    BUCKET = 'Users'

    def __init__(self, client):
        self.client = client

    def save(self, user):
        riak_obj = self.client.bucket(self.BUCKET).get(user['user_name'])
        riak_obj.data = user
        return riak_obj.store()

    def get(self, user_name):
        riak_obj = self.client.bucket(self.BUCKET).get(user_name)
        return riak_obj.data


class MsgRepository:
    BUCKET = 'Msgs'

    def __init__(self, client):
        self.client = client

    def save(self, msg):
        msgs = self.client.bucket(self.BUCKET)
        key = self._generate_key(msg)

        riak_obj = msgs.get(key)

        if not riak_obj.exists:
            riak_obj.data = msg
            riak_obj.store(if_none_match=True)

        return riak_obj

    def get(self, key):
        riak_obj = self.client.bucket(self.BUCKET).get(key)
        return riak_obj.data

    def _generate_key(self, msg):
        return msg['sender'] + '_' + msg['created']


class TimelineRepository:
    BUCKET = 'Timelines'
    SENT = 'Sent'
    INBOX = 'Inbox'

    def __init__(self, client):
        self.client = client
        self.msg_repo = MsgRepository(client)

    def post_message(self, msg):
        # Save the canonical copy
        saved_message = self.msg_repo.save(msg)
        msg_key = saved_message.key

        # Post to sender's Sent timeline
        self._add_to_timeline(msg, self.SENT, msg_key)

        # Post to recipient's Inbox timeline
        self._add_to_timeline(msg, self.INBOX, msg_key)

    def get_timeline(self, owner, msg_type, date):
        key = self._generate_key(owner, msg_type, date)
        riak_obj = self.client.bucket(self.BUCKET).get(key)
        return riak_obj.data

    def _add_to_timeline(self, msg, msg_type, msg_key):
        timeline_key = self._generate_key_from_msg(msg, msg_type)
        riak_obj = self.client.bucket(self.BUCKET).get(timeline_key)

        if riak_obj.exists:
            riak_obj = self._add_to_existing_timeline(riak_obj,
                                                      msg_key)
        else:
            riak_obj = self._create_new_timeline(riak_obj,
                                                 msg, msg_type,
                                                 msg_key)

        return riak_obj.store()

    def _create_new_timeline(self, riak_obj, msg, msg_type, msg_key):
        owner = self._get_owner(msg, msg_type)
        new_timeline = {'owner': owner,
                        'msg_type': msg_type,
                        'msgs': [msg_key]}

        riak_obj.data = new_timeline
        return riak_obj

    def _add_to_existing_timeline(self, riak_obj, msg_key):
        riak_obj.data['msgs'].append(msg_key)
        return riak_obj

    def _get_owner(self, msg, msg_type):
        if msg_type == self.INBOX:
            return msg['recipient']
        else:
            return msg['sender']

    def _generate_key_from_msg(self, msg, msg_type):
        owner = self._get_owner(msg, msg_type)
        return self._generate_key(owner, msg_type, msg['created'])

    def _generate_key(self, owner, msg_type, datetimestr):
        dateString = string.split(datetimestr, 'T', 1)[0]
        return owner + '_' + msg_type + '_' + dateString




Finally, let’s test them:


# Setup our repositories
client = riak.RiakClient(pb_port=10017, protocol='pbc')
userRepo = UserRepository(client)
msgsRepo = MsgRepository(client)
timelineRepo = TimelineRepository(client)

# Save users
userRepo.save(marleen)
userRepo.save(joe)

# Post msg to timelines
timelineRepo.post_message(msg)

# Get Joe's inbox for today, get first message
joes_inbox_today = timelineRepo.get_timeline(
    joe['user_name'],
    TimelineRepository.INBOX,
    datetime.utcnow().isoformat())

joes_first_message = msgsRepo.get(joes_inbox_today['msgs'][0])

print 'From: {0}\nMsg : {1}\n\n'.format(
    joes_first_message['sender'],
    joes_first_message['text'])




As you can see, the repository pattern helps us with a few things:



		It helps us to see if an object exists before creating a new one


		It keeps our buckets and key names consistent


		It provides us with a consistent interface to work with.





While this set of repositories solves many of our problems, it is very
minimal and doesn’t cover all the edge cases. For instance, what happens
if two different people try to create a user with the same username?


We can also easily “compute” key names now, but how do we quickly look
up the last 10 messages a user sent? Many of these answers will be
application dependent. If your application shows the last 10 messages in
reverse order, for example, you may want to store that set of data in
another collection object to make lookup faster. There are drawbacks to
every solution, but we recommend seeking out the key/value-based
solution first, as it will likely be the quickest.


So to recap, in this chapter we learned:



		How to choose bucket names


		How to choose natural keys based on how we want to partition our data.









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/references/apis/storage/s3/index.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: RiakCS S3 Storage API
project: riakcs
version: 1.2.0+
document: api
toc: true
index: true
audience: advanced
keywords: [api, http]
moved: {
‘1.4.0-‘: ‘/references/apis/storage’
}




The Riak CS storage API is compatible with the Amazon S3 REST API, which
means that any of the operations listed below can be executed against
Riak CS using any of the commonly available S3 libraries and tools.



API Feature Comparison


The following table describes the support status for current Amazon S3
functional features.


Feature | Status | Remark
——–|——–|——–
GET Service (lists all buckets for authenticated user) | ✓ | |
DELETE Bucket | ✓ | |
PUT Bucket | ✓ | |
Bucket Lifecycle | ✗ | |
Policy (Buckets, Objects) {{1.3.0+}} | ✓ | Supports the “*” principal type and the “Secure Transport” and “IP address” conditions. |
Policy (Buckets, Objects) {{1.3.0-}} | Coming Soon | Planned for future release |
Bucket Website | ✗ | |
Bucket ACLs (GET, PUT) | ✓ | |
Bucket Location | ✗ | |
Bucket Notification | ✗ | |
Bucket Object Versions | ✗ | |
GET Bucket Info (HEAD) | ✓ | |
Bucket Request Payment | ✗ | |
PUT Object | ✓ | |
PUT Object (Copy) {{1.5.0+}} | ✓ | |
PUT Object (Copy) {{1.3.0-1.4.5}} | ✓ | Support is limited to a 0 byte copy from an object to itself for the purpose of updating metadata. |
PUT Object (Copy) {{1.3.0-}} | Coming Soon | Planned for future release |
DELETE Object | ✓ | |
DELETE Multiple Objects | ✓ | |
GET Object {{1.3.0+}} | ✓ | |
GET Object {{1.3.0-}} | ✓ | Range query unimplemented |
Object ACLs (GET, PUT) | ✓ | |
HEAD Object | ✓ | |
POST Object | ✗ | |
Copy Object | ✓ | |
Multipart Uploads {{1.5.0+}} | ✓ | |
Multipart Uploads {{1.3.0-1.4.5}} | ✓ | UploadPartCopy unimplemented |
Multipart Uploads {{1.3.0-}} | Coming Soon | Planned for future release |
Multipart Uploads {{1.5.0+}} | ✓ | |





Service-level Operations



		[[GET Service|RiakCS GET Service]] — Returns a list of all buckets
owned by the user who sent the request








Bucket-level Operations



		[[GET Bucket|RiakCS GET Bucket]] — Returns a list of the objects
within a bucket


		[[GET Bucket ACL|RiakCS GET Bucket ACL]] — Returns the [[access
control list|Access Control Lists]] (ACL) associated with a bucket


		[[GET Bucket policy|RiakCS GET Bucket policy]] — Gets the policy of
a bucket {{1.3.0+}}


		[[PUT Bucket|RiakCS PUT Bucket]] — Creates a new bucket


		[[PUT Bucket ACL|RiakCS PUT Bucket ACL]] — Sets the ACL permissions
for a bucket


		[[PUT Bucket policy|RiakCS PUT Bucket policy]] — Sets the policy for
a bucket {{1.3.0+}}


		[[DELETE Bucket|RiakCS DELETE Bucket]] — Deletes a bucket


		[[DELETE Bucket policy|RiakCS DELETE Bucket policy]] — Deletes the
policy of a bucket {{1.3.0+}}








Object-level Operations



		[[GET Object|RiakCS GET Object]] — Retrieves an object


		[[GET Object ACL|RiakCS GET Object ACL]] — Returns the ACLs associated with an object


		[[PUT Object|RiakCS PUT Object]] — Stores an object to a bucket


		{{1.3.0+}} [[PUT Object (Copy)|RiakCS PUT Object (Copy)]] — Creates a copy of an object


		[[PUT Object ACL|RiakCS PUT Object ACL]] — Sets the ACLs associated with an object


		[[HEAD Object|RiakCS HEAD Object]] — Retrieves object metadata (not the full content of the object)


		[[DELETE Object|RiakCS DELETE Object]] — Deletes an object


		[[DELETE Multiple Objects|RiakCS DELETE Multiple Objects]] — Deletes multiple objects








Multipart Upload


Multipart upload allows you to upload a single object as a set of parts.
Object parts can be uploaded independently and in any order. After all
parts are uploaded, Riak CS assembles an object out of the parts. When
your object size reaches 100MB, you should consider using multipart
uploads instead of uploading the object in a single operation. Read more
about multipart uploads on the [[overview|Multipart Upload Overview]]
page.



		[[Initiate Multipart Upload|RiakCS Initiate Multipart Upload]] —
Initiates a multipart upload and returns an upload ID


		[[Upload Part|RiakCS Upload Part]] — Uploads a part in a multipart
upload


		[[Complete Multipart Upload|RiakCS Complete Multipart Upload]] —
Completes a multipart upload and assembles previously uploaded parts


		[[Abort Multipart Upload|RiakCS Abort Multipart Upload]] — Aborts a
multipart upload and eventually frees storage consumed by previously
uploaded parts.


		[[List Parts|RiakCS List Parts]] — Lists the parts that have been
uploaded for a specific multipart upload.


		[[List Multipart Uploads|RiakCS List Multipart Uploads]] — Lists
multipart uploads that have not yet been completed or aborted.








Common Headers



		[[Common RiakCS Request Headers]]


		[[Common RiakCS Response Headers]]









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/references/apis/storage/s3/RiakCS-DELETE-Bucket-policy.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: RiakCS DELETE Bucket policy
project: riakcs
version: 1.3.0+
document: api
toc: true
index: false
audience: advanced
keywords: [api, http]
moved: {
‘1.4.0-‘: ‘/references/apis/storage/RiakCS-DELETE-Bucket-policy’
}




The DELETE Bucket policy operation deletes the policy subresource of an existing bucket. To perform this operation, you must be the bucket owner.



Requests



Request Syntax


DELETE /?policy HTTP/1.1
Host: bucketname.data.basho.com
Date: date
Authorization: signatureValue







Request Parameters


This operation does not use request parameters.





Request Headers


This operation uses only request headers that are common to all operations. For more information, see [[Common RiakCS Request Headers]].





Request Elements


No body should be appended.







Response



Response Headers


This implementation of the operation uses only response headers that are common to most responses. For more information, see [[Common RiakCS Response Headers]].





Response Elements


DELETE response elements return whether the operation succeeded or not.







Examples



Sample Request


The following request shows the DELETE individual policy request for the bucket.


DELETE /?policy HTTP/1.1
Host: bucketname.data.basho.com
Date: Tue, 04 Apr 2010 20:34:56 GMT
Authorization: AWS AKIAIOSFODNN7EXAMPLE:xQE0diMbLRepdf3YB+FIEXAMPLE=







Sample Response


HTTP/1.1 204 No Content
Date: Tue, 04 Apr 2010 12:00:01 GMT
Connection: keep-alive
Server: Riak CS









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs-index.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Riak CS
project: riakcs
version: 0.10.0+
document: tutorial
toc: true
index: true
audience: beginner
keywords: []
simple: true
versions: true
body_id: riakcs-index




[image: Riak CS Logo]


Riak CS (Cloud Storage) is easy-to-use object storage software built on
top of Riak [http://basho.com/riak/], Basho’s distributed database.
Riak CS is designed to provide simple, available, distributed cloud
storage at any scale, and can be used to build cloud architectures—be
they public or private—or as storage infrastructure for heavy-duty
applications and services. Riak CS’s API is Amazon S3
compatible [http://docs.aws.amazon.com/AmazonS3/latest/API/APIRest.html]
and supports per-tenant reporting for use cases involving billing and
metering.


Riak CS is open source and [[free for download|Download Riak CS]].



Notable Riak CS Features





		Amazon S3-API Compatibility
		Riak CS has a built-in S3 interface with S3 Access Control List
ACL
support, which means that you can both use existing S3 tools and
frameworks to manage your data and also import and extract data from
Amazon directly. The HTTP REST API supports service, bucket, and
object-level operations to easily store and retrieve data. There is also
support for the OpenStack
Swift API.







		Per-Tenant Visibility
		
With the Riak CS [[Reporting API|Monitoring and Metrics]], you can
access per-tenant usage data and statistics over network I/O. This
reporting functionality supports use cases including accounting,
subscription, chargebacks, plugins with billing systems, efficient
multi-department utilization, and much more.







		
Supports Large Objects of Arbitrary Content Type, Plus
Metadata

		
Riak CS enables you to store any conceivable data type, such as
images, text, video, documents, database backups, or software binaries.
Riak CS can store objects into the terabyte size range using multipart
file uploads. Riak CS also supports standard Amazon
metadata
headers.







		Multi-Datacenter Replication
(Enterprise Edition Only){{1.3.0+}}
		
Riak CS Enterprise
Multi-Datacenter Replication for active backups, disaster recovery,
and data locality. Provide low-latency storage wherever your users are
and maintain availability even in the event of site failure.













          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/references/apis/storage/index.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Riak CS Storage API
project: riakcs
version: 1.2.0+
document: api
toc: true
index: true
audience: advanced
keywords: [api, http]




The Riak CS storage API is compatible with the Amazon S3 REST API, which
means that any of the operations listed can be executed using any of the
commonly available S3 libraries or tools.



API Feature Comparison


The following table describes the support status for current Amazon S3
functional features.


Feature | Status | Remark
——–|——–|——–
GET Service (lists all buckets for authenticated user) | ✓ | |
DELETE Bucket | ✓ | |
PUT Bucket | ✓ | |
Bucket Lifecycle | ✗ | |
Policy (Buckets, Objects) {{1.3.0+}} | ✓ | Supports the “*” principal type and the “Secure Transport” and “IP address” conditions. |
Policy (Buckets, Objects) {{1.3.0-}} | Coming Soon | Planned for future release |
Bucket Website | ✗ | |
Bucket ACLs (GET, PUT) | ✓ | |
Bucket Location | ✗ | |
Bucket Notification | ✗ | |
Bucket Object Versions | ✗ | |
GET Bucket Info (HEAD) | ✓ | |
Bucket Request Payment | ✗ | |
PUT Object | ✓ | |
Put Object (Copy) {{1.5.0+}} | ✓ | |
PUT Object (Copy) {{1.3.0-1.5.0}} | ✓ | Support is limited to a 0 byte copy from an object to itself for the purpose of updating metadata. |
PUT Object (Copy) {{1.3.0-}} | Coming Soon | Planned for future release |
DELETE Object {{1.3.0-}} | ✓ | |
DELETE Multiple Objects | ✗ | Planned for future release |
GET Object {{1.3.0+}} | ✓ | |
GET Object {{1.3.0-}} | ✓ | Range query unimplemented |
Object ACLs (GET, PUT) | ✓ | |
HEAD Object | ✓ | |
POST Object | ✗ | |
Copy Object | ✗ | Planned for future release |
Multipart Uploads {{1.3.0+}} | ✓ | UploadPartCopy unimplemented |
Multipart Uploads {{1.3.0-}} | Coming Soon | Planned for future release |





Service-level Operations



		[[GET Service|RiakCS GET Service]] — Returns a list of all buckets
owned by the user who sent the request








Bucket-level Operations



		[[GET Bucket|RiakCS GET Bucket]] — Returns a list of the objects
within a bucket


		[[GET Bucket ACL|RiakCS GET Bucket ACL]] — Returns the [[Access
Control List]] (ACL) associated with a bucket


		[[GET Bucket policy|RiakCS GET Bucket policy]] — Gets the policy of
a bucket


		[[PUT Bucket|RiakCS PUT Bucket]] — Creates a new bucket


		[[PUT Bucket ACL|RiakCS PUT Bucket ACL]] — Sets the ACL permissions
for a bucket


		[[PUT Bucket policy|RiakCS PUT Bucket policy]] — Sets the policy for
a bucket


		[[DELETE Bucket|RiakCS DELETE Bucket]] — Deletes a bucket


		[[DELETE Bucket policy|RiakCS DELETE Bucket policy]] — Deletes the
policy of a bucket








Object-level Operations



		[[GET Object|RiakCS GET Object]] — Retrieves an object


		[[GET Object ACL|RiakCS GET Object ACL]] — Returns the ACLs
associated with an object


		[[PUT Object|RiakCS PUT Object]] — Stores an object to a bucket


		[[PUT Object (Copy)|RiakCS PUT Object (Copy)]] — Creates a copy of
an object


		[[PUT Object ACL|RiakCS PUT Object ACL]] — Sets the ACLs associated
with an object


		[[HEAD Object|RiakCS HEAD Object]] — Retrieves object metadata (not
the full content of the object)


		[[DELETE Object|RiakCS DELETE Object]] — Deletes an object








Multipart Upload


Multipart upload allows you to upload a single object as a set of parts.
Object parts can be uploaded independently and in any order. After all
parts are uploaded, Riak CS assembles an object out of the parts. When
your object size reaches 100MB, you should consider using multipart
uploads instead of uploading the object in a single operation. Read more
about multipart uploads on the [[overview|Multipart Upload Overview]]
page.



		[[Initiate Multipart Upload|RiakCS Initiate Multipart Upload]] —
Initiates a multipart upload and returns an upload ID


		[[Upload Part|RiakCS Upload Part]] — Uploads a part in a multipart
upload


		[[Complete Multipart Upload|RiakCS Complete Multipart Upload]] —
Completes a multipart upload and assembles previously uploaded parts


		[[Abort Multipart Upload|RiakCS Abort Multipart Upload]] — Aborts a
multipart upload and eventually frees storage consumed by previously
uploaded parts


		[[List Parts|RiakCS List Parts]] — Lists the parts that have been
uploaded for a specific multipart upload.


		[[List Multipart Uploads|RiakCS List Multipart Uploads]] — Lists
multipart uploads that have not yet been completed or aborted.








Common Headers



		[[Common RiakCS Request Headers]]


		[[Common RiakCS Response Headers]]





There are two storage API options for Riak CS. The first and most fully
featured is the S3 API. There is also limited but improving support for
the OpenStack Object Storage API.


Riak CS can present different APIs by using the URL-rewriting
capabilities of Webmachine [https://github.com/basho/webmachine].
Configuring what API Riak CS uses is done by specifying the proper
rewrite module in the configuration file. A rewrite module contains a
set of rules for translating requests made using a particular API to
requests in the native Riak CS API. The native API was designed to
facilitate the organization and maintenance of the Riak CS Webmachine
resource modules.



S3 API



		Module: riak_cs_s3_rewrite


		Documentation [http://docs.aws.amazon.com/AmazonS3/latest/API/APIRest.html]


		[[Mapping|Mapping From S3 API to Riak CS internal API]]








Openstack Object Storage API (v1)



		Module: riak_cs_oos_rewrite


		Documentation [http://docs.openstack.org/api/openstack-object-storage/1.0/content/index.html]


		[[Mapping|Mapping From OOS API to Riak CS internal API]]





Selecting an API is done by adding or changing the rewrite_module key in the
Riak CS riak-cs.conf file, or the old-style advanced.config or app.config
files in the riak_cs section. For example, to instruct Riak CS to present the
S3 API, ensure the following is contained in your configuration file:


rewrite_module = riak_cs_s3_rewrite



 {riak_cs, [
            %% Other configs
            {rewrite_module, riak_cs_s3_rewrite},
            %% Other configs
           ]}



 {riak_cs, [
            %% Other configs
            {rewrite_module, riak_cs_s3_rewrite},
            %% Other configs
           ]}



The S3 API is the default that is set in the configuration that is
included when installing a Riak CS package or building from source.


More details for each option can be found by following one of the
following links:



		[[S3 API|RiakCS S3 Storage API]]


		[[OpenStack API|RiakCS OpenStack Storage API]]











          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/references/apis/storage/s3/RiakCS-PUT-Object-ACL.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: RiakCS PUT Object ACL
project: riakcs
version: 1.2.0+
document: api
toc: true
index: false
audience: advanced
keywords: [api, http]
moved: {
‘1.4.0-‘: ‘/references/apis/storage/RiakCS-PUT-Object-ACL’
}




The PUT Object acl operation uses the acl subresource to set the access control list (ACL) permissions for an existing object in a bucket.


Note: You must have WRITE_ACP access to the object to use this operation.


PUT Object acl offers two methods for setting an object’s permissions:



		Specify the ACL in the request body


		Specify permissions using request headers





Note: You can specify an ACL in the request body or with request headers, not both.



Requests



Request Syntax


This example shows the syntax for setting the ACL in the request body. The Request Headers section contain a list of headers you can use instead.


PUT /ObjectName?acl HTTP/1.1
Host: bucketname.data.basho.com
Date: date
Authorization: signatureValue

  <AccessControlPolicy>
    <Owner>
      <ID>ID</ID>
      <DisplayName>EmailAddress</DisplayName>
    </Owner>
    <AccessControlList>
      <Grant>
        <Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="CanonicalUser">
          <ID>ID</ID>
          <DisplayName>EmailAddress</DisplayName>
        </Grantee>
        <Permission>Permission</Permission>
      </Grant>
      ...
    </AccessControlList>
  </AccessControlPolicy>






Request Parameters


This operation does not use request parameters.





Request Headers


PUT Object acl offers the following request headers in addition to the request headers common to all operations.


x-amz-acl - This request header specifies a predefined ACL to apply to the object being created. A predefined ACL grants specific permissions to individual accounts or predefined groups.



		Type: String


		Valid Values: private | public-read | public-read-write | authenticated-read | bucket-owner-read | bucket-owner-full-control


		Default: private








Request Elements


If you specify the ACL using the request body, you must use the following elements:


AccessControlList - Container for ACL information (Grant, Grantee, and Permission).



		Type: Container


		Ancestors: AccessControlPolicy





AccessControlPolicy - Contains the elements that set the ACL permissions for each grantee.



		Type: Container


		Ancestors: None





DisplayName - Object owner’s display name.



		Type: String


		Ancestors: AccessControlPolicy.Owner





Grant - Container for Grantee and Permission.



		Type: Container


		Ancestors: AccessControlPolicy.AccessControlList





Grantee - The subject who is being granted permissions.



		Type: String


		Valid Values: DisplayName|EmailAddress|AuthenticatedUser


		Ancestors: AccessControlPolicy.AccessControlList.Grant





ID - Object owner’s ID.



		Type: String


		Ancestors: AccessControlPolicy.Owner|AccessControlPolicy.AccessControlList.Grant





Owner - Container for object owner information.



		Type: Container


		Ancestors: AccessControlPolicy





Permission - Permission granted to the Grantee.



		Type: String


		Valid Values: FULL_CONTROL|WRITE_ACP|READ|READ_ACP


		Ancestors: AccessControlPolicy.AccessControlList.Grant





In request elements, you can specify the grantee to whom you are granting permissions in the following ways:



		emailAddress: The email address of an account





  <Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="CustomerByEmail">
    <EmailAddress>user1@basho.com</EmailAddress>
  </Grantee>



From the email address, the grantee is resolved to the CanonicalUser. The response to a GET Object acl request displays the grantee as the CanonicalUser.



		id: The user ID of an account





  <Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="CanonicalUser">
    <ID>ID</ID>
    <DisplayName>GranteesEmail</DisplayName>
  </Grantee>



For the id method, DisplayName is optional and ignored in the request.



		uri: The uri that defines a group





  <Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="Group">
    <URI>http://data.basho.com/groups/AuthenticatedUsers<URI>
  </Grantee>






Response Elements


PUT Bucket acl does not return response elements.







Examples



Sample Request with Access Permission Specified in Request Body


This sample request grants access permission to an existing object, named basho-process.jpg, by specifying the ACL in the request body. In addition to granting full control to the bucket owner, grant full control to an account identified by its canonical user ID.


PUT /basho-process.jpg?acl HTTP/1.1
Host: basho_docs.data.basho.com
Date: Fri, 01 Jun  2012 12:00:00 GMT
Authorization: AWS AKIAIOSFODNN7EXAMPLE:xQE0diMbLRepdf3YB+FIEXAMPLE=
Content-Length: 124

  <AccessControlPolicy>
    <Owner>
      <ID>75aa57f09aa0c8caeab4f8c24e99d10f8e7faeebf76c078efc7c6caea54ba06a</ID>
      <DisplayName>user1@basho.com</DisplayName>
    </Owner>
    <AccessControlList>
      <Grant>
        <Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="CanonicalUser">
          <ID>75aa57f09aa0c8caeab4f8c24e99d10f8e7faeeExampleCanonicalUserID</ID>
          <DisplayName>user2@basho.com</DisplayName>
        </Grantee>
        <Permission>FULL_CONTROL</Permission>
      </Grant>
    </AccessControlList>
  </AccessControlPolicy>






Sample Response


This is the sample response when versioning is enabled.


HTTP/1.1 200 OK
Date: Fri, 01 Jun  2012 12:00:00 GMT
Last-Modified:Fri, 01 Jun  2012 10:30:15 GMT
Content-Length: 0
Connection: close
Server: MochiWeb/1.1 WebMachine/1.9.0 (someone had painted it blue)






Sample Request Setting Access Permissions with Headers


The following request uses ACL-specific request headers, x-amz-acl, and specifies a predefined ACL (public_read) to grant object read access to everyone.


PUT basho-process.jpg?acl HTTP/1.1
Host: examplebucket.data.basho.com
x-amz-acl: public-read
Accept: */*
Authorization: AWS AKIAIOSFODNN7EXAMPLE:xQE0diMbLRepdf3YB+FIEXAMPLE=
Host: data.basho.com
Connection: Keep-Alive






Sample Response to Setting Permissions with Headers


HTTP/1.1 200 OK
x-amz-id-2: ZDsjJI9E3ke4WK56w5YegkbG6RWPxNQHIQ0CjrjyRVFZhEbabXnBO9w5G7Dmxsgk
x-amz-request-id: 827BD84C13B255B1
Date:  Fri, 01 Jun  2012 12:00:00 GMT
Content-Length: 0
Server: MochiWeb/1.1 WebMachine/1.9.0 (someone had painted it blue)









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/references/apis/storage/s3/RiakCS-GET-Bucket.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: RiakCS GET Bucket
project: riakcs
version: 1.2.0+
document: api
toc: true
index: false
audience: advanced
keywords: [api, http]
moved: {
‘1.4.0-‘: ‘/references/apis/storage/RiakCS-GET-Bucket’
}




The GET Bucket operation returns a list of objects (all or up to 1,000) in a bucket.


Note: You must have READ access to the bucket to use this operation.



Requests



Request Syntax


GET / HTTP/1.1
Host: bucketname.data.basho.com
Date: date
Authorization: signature_value






Request Parameters


GET Bucket uses the following parameters to return a subset of the objects in a bucket.


prefix - A string with which keys must begin to be included in the response.


You can use prefixes to separate the objects in a bucket into groupings of keys.



		Type: String


		Default: None





Delimiter - Keys that contain the same string between the prefix and the first occurrence of the delimiter are rolled up into a single result in the CommonPrefixes collection and aren’t returned anywhere else in the response.



		Type: String


		Default: None





Marker - The starting location in the bucket for the list of objects.



		Type: String


		Default: None





MaxKeys - The maximum number of keys returned in the response body.



		Type: String


		Default: 1000










Response Elements


Contents - Metadata about each object returned in the response.



		Type: XML metadata


		Ancestry: ListBucketResult





CommonPrefixes - Keys, if any, between the Prefix and the next occurrence of the delimiter string.


A response contains CommonPrefixes only if the request includes a delimiter. CommonPrefixes lists keys that act like subdirectories in the directory specified by Prefix. If Prefix is projects/ and delimiter is /, the common prefix in projects/marketing/2012 is projects/marketing/. The keys rolled up into a common prefix represent a single return for the calculation of the number of returns (which is limited by MaxKeys).



		Type: String


		Ancestry: ListBucketResult





Delimiter - Keys that contain the same string between the prefix and the first occurrence of the delimiter are rolled up into a single result in the CommonPrefixes collection and aren’t returned anywhere else in the response.



		Type: String


		Ancestry: ListBucketResult





DisplayName - Object owner’s display name.



		Type: String


		Ancestry: ListBucketResult.Contents.Owner





ETag - The entity tag is an MD5 hash of the object and reflects only changes to the object contents, not the object’s metadata.



		Type: String


		Ancestry: ListBucketResult.Contents





ID - Object owner’s user ID.



		Type: String


		Ancestry: ListBucketResult.Contents.Owner





IsTruncated - Indicates whether all of the results were returned (true) or only a subset (false) because the number of results returned exceeded the maximum specified by MaxKeys.



		Type: String


		Ancestry: boolean





Key - The object key.



		Type: String


		Ancestry: ListBucketResult.Contents





LastModified - The date and time that the object was last modified.



		Type: Date


		Ancestry: ListBucketResult.Contents





Marker - The starting location in the bucket for the list of objects.



		Type: String


		Ancestry: ListBucketResult





MaxKeys - The maximum number of keys returned in the response body.



		Type: String


		Ancestry: ListBucketResult





Name - Bucket’s name.



		Type: String


		Ancestry: ListBucketResult





Owner - Bucket owner.



		Type: String


		Children: DisplayName, ID


		Ancestry: ListBucketResult.Contents|CommonPrefixes





Prefix - Keys that begin with the indicated prefix.



		Type: String


		Ancestry: ListBucketResult





Size - The object’s size in bytes.



		Type: String


		Ancestry: ListBucketResult.Contents





StorageClass - Always STANDARD.



		Type: String


		Ancestry: ListBucketResult.Contents








Examples



Sample Request


A request that returns the objects in the bucket, projects.


GET / HTTP/1.1
Host: projects.data.basho.com
Date: Wed, 06 Jun 2012 20:47:15 +0000
Authorization: AWS QMUG3D7KP5OQZRDSQWB6:4Pb+A0YT4FhZYeqMdDhYls9f9AM=
Content-Type: text/plain






Sample Response


  <?xml version="1.0" encoding="UTF-8"?>
  <ListBucketResult xmlns="http://data.basho.com/2012-06-12">
      <Name>projects</Name>
      <Prefix/>
      <Marker/>
      <MaxKeys>1000</MaxKeys>
      <IsTruncated>false</IsTruncated>
      <Contents>
          <Key>scheduleQ1.jpg</Key>
          <LastModified>2012-06-01T09:20:03.000Z</LastModified>
          <ETag>"f77127731fba39869dede5c9645a3328"</ETag>
          <Size>519226</Size>
          <StorageClass>STANDARD</StorageClass>
          <Owner>
              <ID>324ABC0713CD0B420EFC086821BFAE7ED81442C</ID>
              <DisplayNamefoobar</DisplayName>
          </Owner>
      </Contents>
      <Contents>
         <Key>scheduleQ2.jpg</Key>
           <LastModified>2012-06-02T11:02:42</LastModified>
          <ETag>"645a39851b2cf27731c974f535343328"</ETag>
          <Size>990102</Size>
          <StorageClass>STANDARD</StorageClass>
          <Owner>
              <ID>324ABC0713CD0B420EFC086821BFAE7ED81442C</ID>
              <DisplayName>foobar</DisplayName>
          </Owner>
      </Contents>
  </ListBucketResult>






Sample Request Using Request Parameters


This sample request lists up to 100 keys in the projects bucket that start with IT and occur after the key that begins with ITdb.


GET ?prefix=IT HTTP/1.1
Host: projects.data.basho.com
Date: Wed, 06 Jun 2012 20:47:15 +0000
Authorization: AWS QMUG3D7KP5OQZRDSQWB6:4Pb+A0YT4FhZYeqMdDhYls9f9AM=






Sample Response Based on Request Parameters


HTTP/1.1 200 OK
x-amz-id-2: gyB+3jRPnrkN98ZajxHXr3u7EFM67bNgSAxexeEHndCX/7GRnfTXxReKUQF28IfP
x-amz-request-id: 3B3C7C725673C630
Date: Wed, 06 Jun 2012 20:48:15 GMT
Content-Type: application/xml
Content-Length: 302
Connection: close
Server: BashoData

  <?xml version="1.0" encoding="UTF-8"?>
  <ListBucketResult xmlns="http://data.basho.com/2012-06-12/">
    <Name>projects</Name>
    <Prefix>IT</Prefix>
    <Marker></Marker>
    <MaxKeys>1000</MaxKeys>
    <IsTruncated>false</IsTruncated>
    <Contents>
      <Key>ITdb</Key>
      <LastModified>2012-06-01T09:20:03.000Z</LastModified>
      <ETag>"f77127731fba39869dede5c9645a3328"</ETag>
      <Size>29493</Size>
      <StorageClass>STANDARD</StorageClass>
      <Owner>
        <ID>B420EFC086821B324ABC0713CD0FAE7ED81442C</ID>
        <DisplayName>richardp</DisplayName>
       </Owner>
    </Contents>
    <Contents>
      <Key>ITstorage</Key>
      <LastModified>2012-04-14T04:20:10.000Z</LastModified>
      <ETag>"a96f00ad9f27c3828ef3fdf83fc9ac7f"</ETag>
      <Size>4</Size>
      <StorageClass>STANDARD</StorageClass>
       <Owner>
        <ID>324ABC0713CD0B420EFC086821BFAE7ED81442C</ID>
        <DisplayName>foobar</DisplayName>
      </Owner>
   </Contents>
  </ListBucketResult>









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/references/apis/storage/s3/RiakCS-Initiate-Multipart-Upload.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: RiakCS Initiate Multipart Upload
project: riakcs
version: 1.3.0+
document: api
toc: true
audience: advanced
keywords: [api, http]
moved: {
‘1.4.0-‘: ‘/references/apis/storage/RiakCS-Initiate-Multipart-Upload’
}




Initiates a multipart upload and returns an upload ID. The upload ID is used to associate all the parts in the specific multipart upload.



Requests



Request Syntax


This example shows the syntax for initiating a multipart upload.


POST /ObjectName?uploads HTTP/1.1
Host: bucketname.data.basho.com
Date: date
Authorization: signatureValue






Request Headers


Content-Type - A standard MIME type that describes the content format.



		Type: String


		Default: binary/octet-stream


		Valid Values: 100-continue


		Constraints: None





x-amz-meta-* - User specified metadata fields which can be stored with the object.



		Type: String


		Default: None


		Constraints: None






Permission Request Headers


x-amz-acl - This request header specifies a predefined ACL to apply to the object being created. A predefined ACL grants specific permissions to individual accounts or predefined groups.



		Type: String


		Valid Values: private | public-read | public-read-write | authenticated-read | bucket-owner-read | bucket-owner-full-control


		Constraints: None










Request Elements


This operation does not use request elements.







Response



Response Headers


This implementation of the operation uses only response headers that are common to most responses. For more information, see [[Common RiakCS Response Headers]].





Response Elements


InitiateMultipartUploadResult - Container for response.



		Type: Container


		Children: Bucket, Key, UploadId


		Ancestors: None





Bucket - Name of the bucket to which the multipart upload was initiated.



		Type: String


		Children: Bucket, Key, UploadId


		Ancestors: InitiateMultipartUploadResult





Key - Object key for which the multipart upload was initiated.



		Type: String


		Ancestors: InitiateMultipartUploadResult





UploadId - ID for the initiated multipart upload.



		Type: String


		Ancestors: InitiateMultipartUploadResult










Examples



Sample Request


This operation initiates a multipart upload for the large.iso object.


POST /large.iso?uploads HTTP/1.1
Host: os.data.basho.com
Date: Mon, 1 Nov 2010 20:34:56 GMT
Authorization: AWS AKIAIOSFODNN7EXAMPLE:0RQf4/cRonhpaBX5sCYVf1bNRuU=






Sample Response


HTTP/1.1 200 OK
Date:  Mon, 1 Nov 2010 20:34:56 GMT
Content-Length: 197
Connection: keep-alive
Server: MochiWeb/1.1 WebMachine/1.9.0 (someone had painted it blue)

<?xml version="1.0" encoding="UTF-8"?>
<InitiateMultipartUploadResult xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
  <Bucket>os</Bucket>
  <Key>large.iso</Key>
  <UploadId>VXBsb2FkIElEIGZvciA2aWWpbmcncyBteS1tb3ZpZS5tMnRzIHVwbG9hZA</UploadId>
</InitiateMultipartUploadResult>









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/references/apis/storage/s3/Common-RiakCS-Request-Headers.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Common RiakCS Request Headers
project: riakcs
version: 1.2.0+
document: api
toc: true
index: false
audience: advanced
keywords: [api, http]
moved: {
‘1.4.0-‘: ‘/references/apis/storage/Common-RiakCS-Request-Headers’
}




These are the headers that are common to all Riak CS REST requests.


Header | Description | Data type
:——|:————|:———
Authorization | Information required to requests authentication. This header is not required for anonymous requests.
Cache-Control | This header is for use by caches and intermediate proxies. It can be any string. {{1.5.0+}}
Content-Length | The length of the message without headers according to RFC 2616 [https://www.ietf.org/rfc/rfc2616.txt]. This header is required for PUTs and for operations that load XML.
Content-Type | The content type of the resource, e.g. application/json.
Content-MD5 | The base64-encoded 128-bit MD5 digest of the message without the headers according to RFC 1864 [https://www.ietf.org/rfc/rfc1864.txt]. Although this header is optional, the Content-MD5 header can be used to confirm that the data is the same as what was originally sent.
Date | The current data and time according to the requester, e.g. Fri, 01 Jun 2012 12:00:00 GMT. With the Authorization header, you must specify either the x-amz-date or Date header.
Expect | When you use 100-continue in your application, it doesn’t send the request body until it receives an acknowledgment. That way, the body of the message isn’t sent if the message is rejected based on the headers.
Host | For path-style requests, the value is something like data.basho.com. For virtual-style requests, the value is something like bucketname.data.basho.com.
x-amz-date | This  header is optional for HTTP 1.0 requests but required for HTTP 1.1. Registers the current date and time according to the requester, e.g. Fri, 01 Jun 2012 12:00:00 GMT. With the Authorization header, you must specify either the x-amz-date or Date header. If you specify both, the value for this header takes precedence.




          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/references/apis/storage/s3/RiakCS-DELETE-Object.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: RiakCS DELETE Object
project: riakcs
version: 1.2.0+
document: api
toc: true
index: false
audience: advanced
keywords: [api, http]
moved: {
‘1.4.0-‘: ‘/references/apis/storage/RiakCS-DELETE-Object’
}




The DELETE Object operation removes an object, if one exists.



Requests



Request Syntax


DELETE /ObjectName HTTP/1.1
Host: bucketname.data.basho.com
Date: date
Content-Length: length
Authorization: signature_value








Examples



Sample Request


The DELETE Object operation deletes the object, projects-schedule.jpg.


DELETE /projects-schedule.jpg HTTP/1.1
Host: bucketname.data.basho.com
Date: Wed, 06 Jun 2012 20:47:15 GMT
Authorization: AWS QMUG3D7KP5OQZRDSQWB6:4Pb+A0YT4FhZYeqMdDhYls9f9AM=






Sample Response


HTTP/1.1 204 No Content
Date: Wed, 06 Jun 2012 20:47:15 GMT
Connection: close
Server: MochiWeb/1.1 WebMachine/1.9.0 (someone had painted it blue)









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/taste-of-riak/querying-python.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Taste of Riak: Querying with Python”
project: riak
version: 1.3.1+
document: tutorials
toc: true
audience: beginner
keywords: [developers, client, 2i, search, python]




####A Quick Note on Querying and Schemas
Schemas? Yes we said that correctly, S-C-H-E-M-A-S. It’s not a dirty word.Even with a Key/Value store, you will still have a logical database schema of how all the data relates to one another. This can be as simple as using the same key across multiple buckets for different types of data, to having fields in your data that are related by name.  These querying methods will introduce you to some ways of laying out your data in Riak, along with how to query it back.


###Denormalization


If you’re coming from a relational database, the easiest way to get your application’s feet wet with NoSQL is to denormalize your data into related chunks.  For example with a customer database, you might have separate tables for Customers, Addresses, Preferences, etc.  In Riak, you can denormalize all that associated data into a single object and store it into a Customer bucket.  You can keep pulling in associated data until you hit one of the big denormalization walls:



		Size Limits (objects greater than 1MB)


		Shared/Referential Data (data that the object doesn’t “own”)


		Differences in Access Patterns (objects that get read/written once vs. often)





At one of these points we will have to split the model.


###Same Keys - Different Buckets


The simplest way to split up data would be to use the same identity key across different buckets. A good example of this would be a Customer object, an Order object, and an OrderSummaries object that keeps rolled up info about orders such as Total, etc. Let’s put some data into Riak so we can play with it.


import riak

# Creating Data

customer = {
    'customer_id': 1,
    'name': "John Smith",
    'address': "123 Main Street",
    'city': "Columbus",
    'state': "Ohio",
    'zip': "43210",
    'phone': "+1-614-555-5555",
    'created_date': "2013-10-01 14:30:26"
}

orders = [
    {
        'order_id': 1,
        'customer_id': 1,
        'salesperson_id': 9000,
        'items': [
            {
                'item_id': "TCV37GIT4NJ",
                'title': "USB 3.0 Coffee Warmer",
                'price': 15.99
            },
            {
                'item_id': "PEG10BBF2PP",
                'title': "eTablet Pro, 24GB, Grey",
                'price': 399.99
            }
        ],
        'total': 415.98,
        'order_date': "2013-10-01 14:42:26"
    },
    {
        'order_id': 2,
        'customer_id': 1,
        'salesperson_id': 9001,
        'items': [
            {
                'item_id': "OAX19XWN0QP",
                'title': "GoSlo Digital Camera",
                'price': 359.99
            }
        ],
        'total': 359.99,
        'order_date': "2013-10-15 16:43:16"
    },
    {
        'order_id': 3,
        'customer_id': 1,
        'salesperson_id': 9000,
        'items': [
            {
                'item_id': "WYK12EPU5EZ",
                'title': "Call of Battle: Goats - Gamesphere 4",
                'price': 69.99
            },
            {
                'item_id': "TJB84HAA8OA",
                'title': "Bricko Building Blocks",
                'price': 4.99
            }
        ],
        'total': 74.98,
        'order_date': "2013-11-03 17:45:28"
    }]

order_summary = {
    'customer_id': 1,
    'summaries': [
        {
            'order_id': 1,
            'total': 415.98,
            'order_date': "2013-10-01 14:42:26"
        },
        {
            'order_id': 2,
            'total': 359.99,
            'order_date': "2013-10-15 16:43:16"
        },
        {
            'order_id': 3,
            'total': 74.98,
            'order_date': "2013-11-03 17:45:28"
        }
    ]
}


# Starting Client
client = riak.RiakClient(pb_port=10017, protocol='pbc')

# Creating Buckets
customer_bucket = client.bucket('Customers')
order_bucket = client.bucket('Orders')
order_summary_bucket = client.bucket('OrderSummaries')


# Storing Data
cr = customer_bucket.new(str(customer['customer_id']),
                         data=customer)
cr.store()

for order in orders:
    order_riak = order_bucket.new(str(order['order_id']),
                                  data=order)
    order_riak.store()

os = order_summary_bucket.new(str(order_summary['customer_id']),
                              data=order_summary)
os.store()



While individual Customer and Order objects don’t change much (or shouldn’t change), the Order Summaries object will likely change often.  It will do double duty by acting as an index for all customer orders, and also holding some relevant data such as the order total, etc.  If we showed this information in our application often, it’s only one extra request to get all the info.


customer = customer_bucket.get('1').data
customer['order_summary'] = order_summary_bucket.get('1').data
customer



Which returns our amalgamated objects:


{
  u'city': u'Columbus', u'name': u'John Smith', u'zip': u'43210', 
  u'created_date': u'2013-10-01 14:30:26', 
  'order_summary': { 
    u'customer_id': 1, u'summaries': [
      {u'order_id': 1, u'order_date': u'2013-10-01 14:42:26', u'total': 415.98}, 
      {u'order_id': 2, u'order_date': u'2013-10-15 16:43:16', u'total': 359.99}, 
      {u'order_id': 3, u'order_date': u'2013-11-03 17:45:28', u'total': 74.98}
    ]}, 
  u'phone': u'+1-614-555-5555', u'state': u'Ohio', u'address': u'123 Main Street', 
  u'customer_id': 1
}



While this pattern is very easy and extremely fast with respect to queries and complexity, it’s up to the application to know about these intrinsic relationships.


###Secondary Indexes


If you’re coming from a SQL world, Secondary Indexes (2i) are a lot like SQL indexes.  They are a way to quickly lookup objects based on a secondary key, without scanning through the whole dataset.  This makes it very easy to find groups of related data by values, or even ranges of values.  To properly show this off, we will now add some more data to our application, and add some secondary index entries at the same time.


for i in range(1, 4):
    order = order_bucket.get(str(i))
    # Initialize our secondary indices
    order.add_index('salesperson_id_int', order.data['salesperson_id'])
    order.add_index('order_date_bin', order.data['order_date'])
    order.store()



As you may have noticed, ordinary Key/Value data is opaque to 2i, so we have to add entries to the indexes at the application level.
Now let’s find all of Jane Appleseed’s processed orders, we’ll lookup the orders by searching the saleperson_id_int index for Jane’s id of 9000.


janes_orders = order_bucket.get_index("salesperson_id_int", 9000)
janes_orders.results



Which returns:


['1', '3']



Jane processed orders 1 and 3.  We used an “integer” index to reference Jane’s id, next let’s use a “binary” index.
Now, let’s say that the VP of Sales wants to know how many orders came in during October 2013.  In this case, we can exploit 2i’s range queries.  Let’s search the order_date_bin index for entries between 2013-10-01 and 2013-10-31.


october_orders = order_bucket.get_index("order_date_bin",
                                        "2013-10-01", "2013-10-31")
october_orders.results



Which returns:


['1', '2']



Boom, easy-peasy.  We used 2i’s range feature to search for a range of values, and demonstrated binary indexes.


So to recap:



		You can use Secondary Indexes to quickly lookup an object based on a secondary id other than the object’s key.


		Indexes can have either Integer or Binary(String) keys


		You can search for specific values, or a range of values


		Riak will return a list of keys that match the index query







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/taste-of-riak/java.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Taste of Riak: Java”
project: riak
version: 2.0.0+
document: guide
toc: true
audience: beginner
keywords: [developers, client, java]




If you haven’t set up a Riak Node and started it, please visit the
[[Prerequisites|Taste of Riak: Prerequisites]] first.


To try this flavor of Riak, a working installation of Java is required.



Client Setup


To include the Riak Java client in your project, add it to your
project’s dependencies. Here is a Maven example:


<dependencies>
  <dependency>
    <groupId>com.basho.riak</groupId>
    <artifactId>riak-client</artifactId>
    <version>2.0.0</version>
  </dependency
</dependencies>



Next, download
TasteOfRiak.java [https://github.com/basho/basho_docs/raw/master/source/data/TasteOfRiak.java]
source code for this tutorial, and save it to your working directory.



Configuring for a local cluster

The `TasteOfRiak.java` file that you downloaded is set up to communicate
with a one-node Riak cluster listening on `localhost` port 10017. We
recommend modifying the connection info directly within the
`setUpCluster()` method.

If you execute the TasteOfRiak.java file within your IDE, you should
see the following:


Basic object created
Location object created for quote object
StoreValue operation created
Client object successfully created
Object storage operation successfully completed
Success! The object we created and the object we fetched have the same value
Quote object successfully deleted
Book object created
Moby Dick information now stored in Riak
Book object successfully fetched
Success! All of our tests check out



Since Java doesn’t have a REPL environment, let’s walk through the code
to see what it actually did at each step.





Setting Up the Cluster


The first step in using the Riak Java client is to create a cluster
object to facilitate all interactions with Riak. You’ll see this on line
72:


RiakCluster cluster = setUpCluster();



This calls the private setUpCluster method which begins on line 25.
Using that cluster object, we can instantiate a client object which
will execute all Riak interactions:


RiakClient client = new RiakClient(cluster);






Creating Objects in Riak


The first object that we create is a very basic object with a content
type of text/plain. Once that object is created, we create a
StoreValue operation that will store the object later on down the line


RiakObject quoteObject = new RiakObject()
        .setContentType("text/plain")
        .setValue(BinaryValue.create("You're dangerous, Maverick"));
Namespace quotesBucket = new Namespace("quotes");
Location quoteObjectLocation = new Location(quotesBucket, "Icemand");
StoreValue storeOp = new StoreValue.Builder(quoteObject)
        .withLocation(quoteObjectLocation)
        .build();



In line 76 we use our client object to execute the storage operation:


StoreValue.Response response = client.execute(storeOp);






Reading Objects from Riak


After that, we check to make sure that the stored object has the same
value as the object that we created. This requires us to fetch the
object by way of a FetchValue operation:


FetchValue fetchOp = new FetchValue.Builder(quoteObjectLocation)
        .build();
RiakObject fetchedObject = client.execute(fetchOp).getValue(RiakObject.class);
assert(fetchedObject.getValue.equals(quoteObject.getValue()));



If the values are equal, as they should be, the Java client will say
Success! The object we created and the object we fetched have the same value. If not, then the client will throw an exception.





Deleting Objects


Now that we’ve stored and then fetched the object, we can delete it by
creating and executing a DeleteValue operation:


DeleteValue deleteOp = new DeleteValue.Builder(quoteObjectLocation)
        .build();
client.execute(deleteOp);






Working With Complex Objects


Since the world is a little more complicated than simple integers and
bits of strings, let’s see how we can work with more complex objects.
Take for example, this plain old Java object (POJO) that encapsulates
some knowledge about a book.


public class Book {
    public String title;
    public String author;
    public String body;
    public String isbn;
    publict Integer copiesOwned;
}



By default, the Java Riak client serializes POJOs as JSON. Let’s create
a new Book object to store:


Book mobyDick = new Book();
modyDick.title = "Moby Dick";
mobyDick.author = "Herman Melville";
mobyDick.body = "Call me Ishmael. Some years ago...";
mobyDick.isbn = "11119799723";
mobyDick.copiesOwned = 3;



Now we can store that POJO object just like we stored the more simple
object earlier:


Namespace booksBucket = new Namespace("books");
Location mobyDickLocation = new Location(booksBucket, "moby_dick");
StoreValue storeBookOp = new StoreValue.Builder(mobyDick)
        .withLocation(mobyDickLocation)
        .build();
client.execute(storeBookOp);



If we fetch the object (using the same method we showed up above and in
TasteOfRiak.java), we should get the following:


{
  "title": "Moby Dick",
  "author": "Herman Melville",
  "body": "Call me Ishmael. Some years ago...",
  "isbn": "1111979723",
  "copiesOwned": 3
}






Next Steps


More complex use cases can be composed from these initial create, read,
update, and delete (CRUD) operations. [[In the next chapter|Taste of
Riak: Querying]], we will look at how to store and query more
complicated and interconnected data, such as documents.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/references/apis/storage/s3/RiakCS-GET-Service.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: RiakCS GET Service
project: riakcs
version: 1.2.0+
document: api
toc: true
index: false
audience: advanced
keywords: [api, http]
moved: {
‘1.4.0-‘: ‘/references/apis/storage/RiakCS-GET-Service’
}




The GET Service operation returns a list of all buckets owned by the authenticated user who sent sent the request.


Note: The GET Service operation doesn’t list buckets created by other users. It also doesn’t list buckets for anonymous requests.



Requests



Request Syntax


GET / HTTP/1.1
Host: data.basho.com
Date: date
Authorization: signature_value








Response Elements


Bucket - Container for bucket information.



		Type: Container


		Children: Name,CreationDate


		Ancestor: ListAllMyBucketsResult.Buckets





Buckets - Container for one or more buckets.



		Type: Container


		Children: Bucket


		Ancestor: ListAllMyBucketsResult





CreationDate - Date the bucket was created.



		Type: date (format yyyy-mm-ddThh:mm:ss.timezone, e.g., 2012-06-03T15:4548:02.000Z)


		Ancestor: ListAllMyBucketsResult.Buckets.Bucket





DisplayName - Bucket owner’s display name.



		Type: String


		Ancestor: ListAllMyBucketsResult.Owner





ID - Bucket owner’s user ID.



		Type: String


		Ancestor: ListAllMyBucketsResult.Owner





ListAllMyBucketsResult - Container for response.



		Type: Container


		Children: Owner, Buckets


		Ancestor: None





Name - Bucket’s name.



		Type: String


		Ancestor: ListAllMyBucketsResult.Buckets.Bucket





Owner - Container for bucket owner information.



		Type: Container


		Ancestor: ListAllMyBucketsResult








Examples



Sample Request


The GET operation on the Service endpoint (data.basho.com in this example) returns a list of all of the buckets owned by the authenticated sender of the request.


Host: data.basho.com
Date: Wed, 06 Jun 2012 20:47:15 +0000
Authorization: AWS QMUG3D7KP5OQZRDSQWB6:4Pb+A0YT4FhZYeqMdDhYls9f9AM=






Sample Response


  <?xml version="1.0" encoding="UTF-8"?>
  <ListAllMyBucketsResult xmlns="http://data.basho.com/2012-06-12">
    <Owner>
      <ID>324ABC0713CD0B420EFC086821BFAE7ED81442C</ID>
      <DisplayName>"foobar</DisplayName>
    </Owner>
    <Buckets>
      <Bucket>
        <Name>projects</Name>
        <CreationDate>2011-05-10T14:10:15.000Z</CreationDate>
      </Bucket>
      <Bucket>
        <Name>templates</Name>
        <CreationDate>2011-05-10T14:18:25.000Z</CreationDate>
      </Bucket>
    </Buckets>
  </ListAllMyBucketsResult>









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/references/apis/storage/s3/Mapping-From-S3-API-to-Riak-CS-internal-API.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Mapping From S3 API to Riak CS internal API
project: riakcs
version: 1.4.0+
document: api
toc: true
index: true
audience: advanced
keywords: [api, http]





Overview


This document is to outline a mapping of S3 API URLs to their
rewritten format that is processed by Webmachine.





URL Mapping



Service Operations



		GET Service
		GET / -> GET /buckets














Bucket Operations


Note Common method to specify bucket is to prefix bucket name to Host header value



		GET Bucket
		GET / or GET /<bucket> -> GET /buckets/<bucket>/objects








		HEAD Bucket
		HEAD / or HEAD /<bucket> -> HEAD /buckets/<bucket>








		PUT Bucket
		PUT / or PUT /<bucket> -> PUT /buckets/<bucket>








		DELETE Bucket
		DELETE / or DELETE /<bucket> -> DELETE /buckets/<bucket>








		GET Bucket acl
		GET /?acl -> GET /buckets/<bucket>/acl








		PUT Bucket acl
		PUT /?acl -> PUT /buckets/<bucket>/acl








		GET Bucket location
		GET /?location-> GET /buckets/<bucket>/location








		PUT Bucket location
		PUT /?location-> PUT /buckets/<bucket>/location








		GET Bucket versioning
		GET /?versioning-> GET /buckets/<bucket>/versioning








		PUT Bucket versioning
		PUT /?versioning-> PUT /buckets/<bucket>/versioning








		GET Bucket policy
		GET /?policy-> GET /buckets/<bucket>/policy








		PUT Bucket policy
		PUT /?policy-> PUT /buckets/<bucket>/policy








		DELETE Bucket policy
		DELETE /?policy-> DELETE /buckets/<bucket>/policy








		List Multipart Uploads
		GET /?uploads -> GET /buckets/<bucket>/uploads








		Delete Multiple Objects (This is listed in the S3 docs as an object operation, but it fits better here)
		POST /?delete -> POST /buckets/<bucket>/delete














Object Operations


Note Common method to specify bucket is to prefix bucket name to Host header value



		GET Object
		GET /<object> -> GET /buckets/<bucket>/objects/<object>








		HEAD Object
		HEAD /<object> -> HEAD /buckets/<bucket>/objects/<object>








		PUT Object
		PUT /<object> -> PUT /buckets/<bucket>/objects/<object>








		DELETE Object
		DELETE /<object> -> DELETE /buckets/<bucket>/objects/<object>








		GET Object acl
		GET /<object>?acl -> GET /buckets/<bucket>/objects/<object>/acl








		PUT Object acl
		PUT /<object> -> PUT /buckets/<bucket>/objects/<object>/acl








		Initiate Multipart Upload
		POST /<object>?uploads -> POST /buckets/<bucket>/objects/<object>/uploads








		Upload Part
		PUT /<object>?partNumber=<part_num>&uploadId=<upload_id> -> PUT /buckets/<bucket>/objects/<object>/uploads/<upload_id>?partNumber=<part_num>








		Complete Multipart Upload
		POST /<object>?uploads -> POST /buckets/<bucket>/objects/<object>/uploads








		Upload Part
		DELETE /<object>&uploadId=<upload_id> -> DELETE /buckets/<bucket>/objects/<object>/uploads/<upload_id>








		List Parts
		GET /<object>?uploadId=<upload_id> -> GET /buckets/<bucket>/objects/<object>/uploads/<upload_id>

















          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/references/apis/storage/s3/RiakCS-PUT-Object-Copy.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: RiakCS PUT Object (Copy)
project: riakcs
version: 1.3.0+
document: api
toc: true
audience: advanced
keywords: [api, http]
moved: {
‘1.4.0-‘: ‘/references/apis/storage/RiakCS-PUT-Object-Copy’
}




The PUT Object (Copy) creates a copy of an object that is already stored in Riak CS. Adding the x-amz-copy-source HTTP header makes the PUT operation copy the source object into the destination bucket.


{{#1.5.0-}}



Note

PUT Object (Copy) is currently only supported when the source and destination object are the same. This can be used as a mechanism to update the user-defined metadata of an object. In order to modify user-defined metadata, all user configured metadata must be included, even if you are only modifying one of the attributes.


{{/1.5.0-}}
Access Permissions


PUT Object (Copy) offers the option to specify the permissions you want to grant to specific accounts or groups for the copied object. You can grant permissions to accounts or groups with request headers, using one of the following two methods:



		Specify a predefined ACL using the x-amz-acl request header. More information about predefined ACLs is available [[here|http://docs.amazonwebservices.com/AmazonS3/latest/dev/ACLOverview.html#CannedACL]].


		Specify access permissions explicitly using the x-amz-grant-read, x-amz-grant-write, x-amz-grant-read-acp, x-amz-grant-write-acp, x-amz-grant-full-control headers, which map to the set of ACL permissions supported by Amazon S3.






Note

You can use either a predefined ACL or specify access permissions explicitly, not both.

Note: You can configure an application to use the 100-continue HTTP status code, which sends the Request Headers prior to sending the request body. Doing so prevents sending the message body when the message is rejected based on the headers, for example, due to authentication failure or redirect).





Requests



Request Syntax


PUT /ObjectNameCopy HTTP/1.1
Host: bucketname.data.example.com
x-amz-copy-source: /ObjectName
Date: date
Authorization: signature_value






Request Headers


PUT Object (Copy) offers the following request headers in addition to request headers common to all operations:


Expect - When you use 100-continue in your application, it doesn’t send the request body until it receives an acknowledgment. That way, the body of the message isn’t sent if the message is rejected based on the headers.



		Type: String


		Default: None


		Valid Values: 100-continue


		Constraints: None





x-amz-copy-source - Path to source object (object to be copied).



		Type: String


		Default: None


		Constraints: None






Permission Request Headers


x-amz-acl - This request header specifies a predefined ACL to apply to the object being created. A predefined ACL grants specific permissions to individual accounts or predefined groups.



		Type: String


		Valid Values: private | public-read | public-read-write | authenticated-read | bucket-owner-read | bucket-owner-full-control


		Constraints: None












Examples



Sample Request


A request that copies the object, basho-process.jpg in the bucket, basho_docs.


PUT /basho-process.jpg HTTP/1.1
Host: basho_docs.data.basho.com
x-amz-copy-source: /basho-process.jpg
Date: Mon, 18 Feb 2013 16:38:49 GMT
Authorization: AWS AKIAIOSFODNN7EXAMPLE:xQE0diMbLRepdf3YB+FIEXAMPLE=
Content-Type: text/plain
Content-Length: 0
Expect: 100-continue






Sample Response


HTTP/1.1 100 Continue
HTTP/1.1 200 OK
Server: Riak CS
ETag: "d41d8cd98f00b204e9800998ecf8427e"
Date: Mon, 18 Feb 2013 16:38:49 GMT
Content-Type: text/plain
Content-Length: 0
Connection: close









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/references/apis/storage/s3/RiakCS-List-Multipart-Uploads.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: RiakCS List Multipart Uploads
project: riakcs
version: 1.3.0+
document: api
toc: true
audience: advanced
keywords: [api, http]
moved: {
‘1.4.0-‘: ‘/references/apis/storage/RiakCS-List-Multipart-Uploads’
}




Lists multipart uploads that have not yet been completed or aborted.


In the response, the uploads are sorted by key. If your application has
initiated more than one multipart upload using the same object key, then uploads
in the response are first sorted by key. Additionally, uploads are sorted in
ascending order within each key by the upload initiation time.



Requests



Request Syntax


This example shows the syntax for listing of multipart uploads.


GET /?uploads HTTP/1.1
Host: bucketname.data.basho.com
Date: date
Authorization: signatureValue






Request Parameters


delimiter - Character you use to group keys.



		Type: String





max-uploads - Sets the maximum number of multipart uploads, from 1 to 1,000, to return in the response body.



		Type: Integer


		Default: 1,000





key-marker - Together with upload-id-marker, this parameter specifies the multipart upload after which listing should begin.



		Type: String





prefix - Lists in-progress uploads only for those keys that begin with the specified prefix.



		Type: String





upload-id-​marker - Together with key-marker, specifies the multipart upload after which listing should begin.



		Type: String








Request Headers


This implementation of the operation uses only response headers that are common to most responses. For more information, see [[Common RiakCS Response Headers]].





Request Elements


This operation does not use request elements.







Response



Response Headers


This implementation of the operation uses only response headers that are common to most responses. For more information, see [[Common RiakCS Response Headers]].





Response Elements


ListMultipartUploadsResult - Container for the response.



		Type: Container


		Children: Bucket, KeyMarker, UploadIdMarker, NextKeyMarker, NextUploadIdMarker, MaxUploads, Delimiter, Prefix, CommonPrefixes, IsTruncated


		Ancestors: None





Bucket - Name of the bucket to which the multipart upload was initiated.



		Type: String


		Ancestors: ListMultipartUploadsResult





KeyMarker - The key at or after which the listing began.



		Type: String


		Ancestors: ListMultipartUploadsResult





UploadIdMarker - Upload ID after which listing began.



		Type: String


		Ancestors: ListMultipartUploadsResult





NextKeyMarker - When a list is truncated, this element specifies the value that should be used for the key-marker request parameter in a subsequent request.



		Type: Container


		Ancestors: ListMultipartUploadsResult





NextUploadIdMarker - When a list is truncated, this element specifies the value that should be used for the upload-id-marker request parameter in a subsequent request.



		Type: String


		Ancestors: ListMultipartUploadsResult





MaxUploads - Maximum number of multipart uploads that could have been included in the response.



		Type: Integer


		Ancestors: ListMultipartUploadsResult





IsTruncated - Indicates whether the returned list of parts is truncated.



		Type: Boolean


		Ancestors: ListPartsResult





Upload - Container for elements related to a particular multipart upload.



		Type: Container


		Children:  Key, UploadId, InitiatorOwner, StorageClass, Initiated


		Ancestors: ListMultipartUploadsResult





Key - Key of the object for which the multipart upload was initiated.



		Type: Integer


		Ancestors: Upload





UploadId - Upload ID that identifies the multipart upload.



		Type: Integer


		Ancestors: Upload





Initiator - Container element that identifies who initiated the multipart upload.



		Type: Container


		Children: ID, DisplayName


		Ancestors: Upload





ID - Canonical User ID.



		Type: String


		Ancestors: Initiator, Owner





DisplayName - Principal’s name.



		Type: String


		Ancestors: Initiator, Owner





Owner - Container element that identifies the object owner, after the object is created.



		Type: Container


		Children:  ID, DisplayName


		Ancestors: Upload





Initiated - Date and time at which the multipart upload was initiated.



		Type: Date


		Ancestors: Upload





ListMultipartUploadsResult.Prefix - When a prefix is provided in the request, this field contains the specified prefix.



		Type: String


		Ancestors: ListMultipartUploadsResult





Delimiter - Contains the delimiter you specified in the request.



		Type: String


		Ancestors: ListMultipartUploadsResult





CommonPrefixes - If you specify a delimiter in the request, then the result returns each distinct key prefix containing the delimiter in a CommonPrefixes element.



		Type: Container


		Ancestors: ListMultipartUploadsResult





CommonPrefixes.Prefix - If the request does not include the Prefix parameter, then this element shows only the substring of the key that precedes the first occurrence of the delimiter character. These keys are not returned anywhere else in the response.



		Type: String


		Ancestors: CommonPrefixes










Examples



Sample Request


The following request lists three multipart uploads.


GET /?uploads HTTP/1.1
Host: os.data.basho.com
Date: Mon, 1 Nov 2010 20:34:56 GMT
Authorization: AWS AKIAIOSFODNN7EXAMPLE:0RQf4/cRonhpaBX5sCYVf1bNRuU=






Sample Response


HTTP/1.1 200 OK
Date: Mon, 1 Nov 2010 20:34:56 GMT
Content-Length: 1330
Connection: keep-alive
Server: MochiWeb/1.1 WebMachine/1.9.0 (someone had painted it blue)

<?xml version="1.0" encoding="UTF-8"?>
<ListMultipartUploadsResult xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
  <Bucket>os</Bucket>
  <KeyMarker></KeyMarker>
  <UploadIdMarker></UploadIdMarker>
  <NextKeyMarker>large.iso</NextKeyMarker>
  <NextUploadIdMarker></NextUploadIdMarker>
  <MaxUploads></MaxUploads>
  <IsTruncated></IsTruncated>
  <Upload>
    <Key>my-divisor</Key>
    <UploadId>VXBsb2FkIElEIGZvciA2aWWpbmcncyBteS1tb3ZpZS5tMnRzIHVwbG9hZA</UploadId>
    <Initiator>
      <ID>arn:aws:iam::111122223333:user/user1-11111a31-17b5-4fb7-9df5-b111111f13de</ID>
      <DisplayName>user1-11111a31-17b5-4fb7-9df5-b111111f13de</DisplayName>
    </Initiator>
    <Owner>
      <ID>75aa57f09aa0c8caeab4f8c24e99d10f8e7faeebf76c078efc7c6caea54ba06a</ID>
      <DisplayName>OwnerDisplayName</DisplayName>
    </Owner>
    <StorageClass>STANDARD</StorageClass>
    <Initiated>2010-11-10T20:48:33.000Z</Initiated>
  </Upload>
  ...
</ListMultipartUploadsResult>









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/references/apis/storage/s3/RiakCS-HEAD-Object.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: RiakCS HEAD Object
project: riakcs
version: 1.2.0+
document: api
toc: true
index: false
audience: advanced
keywords: [api, http]
moved: {
‘1.4.0-‘: ‘/references/apis/storage/RiakCS-HEAD-Object’
}




The HEAD Object operation retrieves metadata from an object without returning the object.


Note: You must have READ access to the object to use this operation.


A HEAD request has the same options as a GET operation on an object, and the HEAD response is identical to the GET response, except that there is no response body.



Requests



Request Syntax


HEAD /ObjectName HTTP/1.1
Host: bucketname.data.basho.com
Date: date
Authorization: signature_value








Examples



Sample Request


The following request returns the metadata of an object.


HEAD /basho-process.jpg HTTP/1.1
Host: bucket.data.basho.com
Date: Wed, 06 Jun 2012 20:47:15 +0000
Authorization: AWS AKIAIOSFODNN7EXAMPLE:0RQf4/cRonhpaBX5sCYVf1bNRuU=






Sample Response


HTTP/1.1 200 OK
Date: Wed, 06 Jun 2012 20:48:15 GMT
Last-Modified: Wed, 06 Jun 2012 13:39:25 GMT
ETag: "3327731c971645a398fba9dede5f2768"
Content-Length: 611892
Content-Type: text/plain
Connection: close
Server: MochiWeb/1.1 WebMachine/1.9.0 (someone had painted it blue)









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/references/apis/storage/s3/RiakCS-PUT-Object.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: RiakCS PUT Object
project: riakcs
version: 1.2.0+
document: api
toc: true
audience: advanced
keywords: [api, http]
moved: {
‘1.4.0-‘: ‘/references/apis/storage/RiakCS-PUT-Object’
}




The PUT Object operation adds an object to a bucket. The PUT Object operation does not add partial objects, so a success response indicates that the entire object was added to the bucket.


Note: You must have WRITE permission on a bucket to use this operation.


Riak CS is a distributed system. If it receives multiple write requests for the same object at the same time, the system will overwrite all but the last object written. If necessary, you can build versioning or object locking into your application.


To prevent the storage of data corrupted during transmission over a network, the Content-MD5 header instructs Riak CS to compare the object to the MD5 value provided. If the values don’t match, the operation returns an error. In addition, if the PUT Object operation calculates the MD5, you can compare the ETag that is returned to the calculated MD5 value.


Note: You can configure an application to use the 100-continue HTTP status code, which sends the Request Headers prior to sending the request body. Doing so prevents sending the message body when the message is rejected based on the headers, for example, due to authentication failure or redirect).



Access Permissions


PUT Object offers the option to specify the permissions you want to grant to specific accounts or groups for the object. You can grant permissions to accounts or groups with request headers, using one of the following two methods:



		Specify a predefined ACL using the x-amz-acl request header. More information about predefined ACLs is available [[here|http://docs.amazonwebservices.com/AmazonS3/latest/dev/ACLOverview.html#CannedACL]].


		Specify access permissions explicitly using the x-amz-grant-read, x-amz-grant-write, x-amz-grant-read-acp, x-amz-grant-write-acp, x-amz-grant-full-control headers, which map to the set of ACL permissions supported by Amazon S3.






Note

You can use either a predefined ACL or specify access permissions explicitly, not both.




Requests



Request Syntax


PUT /ObjectName HTTP/1.1
Host: bucketname.data.example.com
Date: date
Authorization: signature_value






Request Headers


PUT Object offers the following request headers in addition to request headers common to all operations:


Content-Length - The size of the object in bytes. This header is required.



		Type: String


		Default: None


		Constraints: None





Content-MD5 - The base64-encoded 128-bit MD5 digest of the message without the headers according to RFC 1864. Although this header is optional, the Content-MD5 header can be used to confirm that the data is the same as what was originally sent.



		Type: String


		Default: None


		Constraints: None





Content-Type - A standard MIME type that describes the content format.



		Type: String


		Default: binary/octet-stream


		Valid Values: 100-continue


		Constraints: None





Expect - When you use 100-continue in your application, it doesn’t send the request body until it receives an acknowledgment. That way, the body of the message isn’t sent if the message is rejected based on the headers.



		Type: String


		Default: None


		Valid Values: 100-continue


		Constraints: None





x-amz-meta-* - User specified metadata fields which can be stored with the object.



		Type: String


		Default: None


		Constraints: None






Permission Request Headers


x-amz-acl - This request header specifies a predefined ACL to apply to the object being created. A predefined ACL grants specific permissions to individual accounts or predefined groups.



		Type: String


		Valid Values: private | public-read | public-read-write | authenticated-read | bucket-owner-read | bucket-owner-full-control


		Constraints: None












Examples



Sample Request


A request that stores the object, basho-process.jpg in the bucket, basho_docs.


PUT /basho-process.jpg HTTP/1.1
Host: basho_docs.data.basho.com
Date: Fri, 01 Jun  2012 12:00:00 GMT
Authorization: AWS AKIAIOSFODNN7EXAMPLE:xQE0diMbLRepdf3YB+FIEXAMPLE=
Content-Type: text/plain
Content-Length: 201445
Expect: 100-continue
[201445 bytes of object data]






Sample Response


HTTP/1.1 200 OK
Date: Fri, 01 Jun  2012 12:00:00 GMT
ETag: "32cf731c97645a398434535f271b2358"
Content-Length: 0
Connection: close
Server: MochiWeb/1.1 WebMachine/1.9.0 (someone had painted it blue)






Sample Request with Predefined Access Permissions


This request uses an x-amz-acl header to specify a predefined ACL to grant READ permission to the public.


...Object data in the body...
PUT draftschedule.jpg HTTP/1.1
Host: myBucket.data.basho.com
x-amz-date: b24cf9553547f8b395dd038b34a81474
x-amz-acl: public-read
Authorization: AWS AKIAIOSFODNN7EXAMPLE:xQE0diMbLRepdf3YB+FIEXAMPLE=
Content-Length: 300
Expect: 100-continue
Connection: Keep-Alive

...Object data in the body...






Sample Response for Predefined Access Permissions


HTTP/1.1 200 OK
Date: b24cf9553547f8b395dd038b34a81474
ETag: "b24cf9553547f8b395dd038b34a81474"
Content-Length: 0
Server: MochiWeb/1.1 WebMachine/1.9.0 (someone had painted it blue)









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/references/apis/storage/s3/RiakCS-GET-Bucket-policy.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: RiakCS GET Bucket policy
project: riakcs
version: 1.3.0+
document: api
toc: true
index: false
audience: advanced
keywords: [api, http]
moved: {
‘1.4.0-‘: ‘/references/apis/storage/RiakCS-GET-Bucket-policy’
}




The GET Bucket policy operation uses the policy subresource to fetch the policy currently set to an existing bucket. If the bucket does not have a policy the call ends up in 404 Not Found. To perform this operation, you must be the bucket owner.



Requests



Request Syntax


This example shows the syntax for setting the policy in the request body.


GET /?policy HTTP/1.1
Host: bucketname.data.basho.com
Date: date
Authorization: signatureValue







Request Parameters


This operation does not use request parameters.





Request Headers


This operation uses only request headers that are common to all operations. For more information, see [[Common RiakCS Request Headers]].





Request Elements


No body should be appended.







Response



Response Headers


This implementation of the operation uses only response headers that are common to most responses. For more information, see [[Common RiakCS Response Headers]].





Response Elements


GET response has a JSON which was PUT as its body.







Examples



Sample Request


The following request shows the GET individual policy request for the bucket.


GET /?policy HTTP/1.1
Host: bucketname.data.basho.com
Date: Tue, 04 Apr 2010 20:34:56 GMT
Authorization: AWS AKIAIOSFODNN7EXAMPLE:xQE0diMbLRepdf3YB+FIEXAMPLE=
Content-size: 0







Sample Response


HTTP/1.1 200 OK
Date: Tue, 04 Apr 2010 12:00:01 GMT
Connection: keep-alive
Server: Riak CS
Content-size: 256

{
  "Version": "2008-10-17",
  "Statement": [
    {
      "Sid": "Stmtaaa",
      "Effect": "Allow",
      "Principal": "*",
      "Action": ["s3:GetObjectAcl","s3:GetObject"],
      "Resource": "arn:aws:s3:::bucketname/*",
      "Condition": {
        "IpAddress": {
          "aws:SourceIp": "127.0.0.1/32"
        }
      }
    }
  ]
}









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/references/apis/storage/s3/RiakCS-GET-Bucket-ACL.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: RiakCS GET Bucket ACL
project: riakcs
version: 1.2.0+
document: api
toc: true
index: false
audience: advanced
keywords: [api, http]
moved: {
‘1.4.0-‘: ‘/references/apis/storage/RiakCS-GET-Bucket-ACL’
}




The GET Bucket acl operation uses the acl subresource to return the access control list (ACL) of a bucket.


Note: You must have READ_ACP access to the bucket to use this operation. If the anonymous user has READ_ACP permission, this operation will return the ACL of the bucket without an authorization header.



Requests



Request Syntax


GET /?acl HTTP/1.1
Host: bucketname.data.basho.com
Date: date
Authorization: signature_value






Request Parameters


The GET Bucket acl operation doesn’t use request parameters.







Response Elements


AccessControlList - Container for ACL information.



		Type: Container


		Ancestry: AccessControlPolicy





AccessControlPolicy - Container for the response.



		Type: Container


		Ancestry: None





DisplayName - Bucket owner’s display name.


Note: The operation returns the DisplayName only if the owner’s e-mail address can be determined from the ID.



		Type: String


		Ancestry: AccessControlPolicy.Owner





Grant - Container for Grantee and Permission.



		Type: Container


		Ancestry: AccessControlPolicy.AccessControlList





Grantee - Container for DisplayName and ID of the person who is being granted permissions.



		Type: Container


		Ancestry: AccessControlPolicy.AccessControlList.Grant





ID - Bucket owner’s ID.



		Type: String


		Ancestry: AccessControlPolicy.Owner





Owner - Container for bucket owner information.



		Type: Container


		Ancestry: AccessControlPolicy





Permission - Permission granted to the Grantee for bucket.



		Type: String


		TypeValid Values: FULL_CONTROL|WRITE|WRITE_ACP|READ|READ_ACP





Ancestry: AccessControlPolicy.AccessControlList.GrantAccessControlList - Container for ACL information.



		Type: Container


		Ancestry: AccessControlPolicy





AccessControlPolicy - Container for the response.



		Type: Container


		Ancestry: None





DisplayName - Bucket owner’s display name.


Note: The operation returns the DisplayName only if the owner’s e-mail address can be determined from the ID.



		Type: String


		Ancestry: AccessControlPolicy.Owner





Grant - Container for Grantee and Permission.



		Type: Container


		Ancestry: AccessControlPolicy.AccessControlList





Grantee - Container for DisplayName and ID of the person who is being granted permissions.



		Type: Container


		Ancestry: AccessControlPolicy.AccessControlList.Grant





ID - Bucket owner’s ID.



		Type: String


		Ancestry: AccessControlPolicy.Owner





Owner - Container for bucket owner information.



		Type: Container


		Ancestry: AccessControlPolicy





Permission - Permission granted to the Grantee for bucket.



		Type: String


		Valid Values: FULL_CONTROL|WRITE|WRITE_ACP|READ|READ_ACP


		Ancestry: AccessControlPolicy.AccessControlList.Grant








Examples



Sample Request


This request returns the ACL of the specified bucket.


GET ?acl HTTP/1.1
Host:bucket.data.basho.com
Date: Wed, 06 Jun 2012 20:47:15 +0000
Authorization: AWS QMUG3D7KP5OQZRDSQWB6:4Pb+A0YT4FhZYeqMdDhYls9f9AM=






Sample Response


HTTP/1.1 200 OK
Date: Wed, 06 Jun 2012 20:47:15 +0000
Last-Modified: Mon, 04 Jun 2012 12:00:00 GMT
Content-Length: 124198
Content-Type: text/plain
Connection: close
Server: MochiWeb/1.1 WebMachine/1.9.0 (someone had painted it blue)

  <AccessControlPolicy>
    <Owner>
      <ID>24ef09aa099d10f75aa57c8caeab4f8c8e7faeebf76c078efc7c6caea54ba06a</ID>
      <DisplayName>UserName@basho.com</DisplayName>
    </Owner>
    <AccessControlList>
      <Grant>
        <Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
                          xsi:type="CanonicalUser">
          <ID>24ef09aa099d10f75aa57c8caeab4f8c8e7faeebf76c078efc7c6caea54ba06a</ID>
          <DisplayName>UserName@basho.com</DisplayName>
        </Grantee>
        <Permission>FULL_CONTROL</Permission>
      </Grant>
    </AccessControlList>
  </AccessControlPolicy>









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/references/apis/storage/s3/RiakCS-GET-Object.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: RiakCS GET Object
project: riakcs
version: 1.2.0+
document: api
toc: true
index: false
audience: advanced
keywords: [api, http]
moved: {
‘1.4.0-‘: ‘/references/apis/storage/RiakCS-GET-Object’
}




The GET Object operation retrieves objects from the Riak CS storage.


Note: You must have READ access to the object to use this operation. If the anonymous user has READ access, you can retrieve an object without using an authorization header.


GET Object retrieves an object.



Requests



Request Syntax


GET /objectName HTTP/1.1
Host: bucketname.data.basho.com
Date: date
Authorization: signature_value



{{#1.3.0-}}
Note: While Range queries are planned for a future release, using Range:bytes=byte_range, this feature is not currently implemented.
{{/1.3.0-}}







Examples



Sample Request


The following request returns the object, basho-process.jpg.


GET /basho-process.jpg HTTP/1.1
Host: bucket.data.basho.com
Date: Wed, 06 Jun 2012 20:47:15 +0000
Authorization: AWS AKIAIOSFODNN7EXAMPLE:0RQf4/cRonhpaBX5sCYVf1bNRuU=






Sample Response


HTTP/1.1 200 OK
Date: Wed, 06 Jun 2012 20:48:15 GMT
Last-Modified: Wed, 06 Jun 2012 13:39:25 GMT
ETag: "3327731c971645a398fba9dede5f2768"
Content-Length: 611892
Content-Type: text/plain
Connection: close
Server: MochiWeb/1.1 WebMachine/1.9.0 (someone had painted it blue)
[611892 bytes of object data]



{{#1.3.0+}}





Sample Request Using the Range Header


This sample request asks for only the first 1000 bytes of a 1705 byte file


GET build.sh HTTP/1.1
Host: projects.data.basho.com
Date: Tue, 07 Jan 2014 19:49:11 +0000
Authorization: AWS QMUG3D7KP5OQZRDSQWB6:4Pb+A0YT4FhZYeqMdDhYls9f9AM=
Range: bytes=0-999






Sample Response Using the Range Header


HTTP/1.1 206 Partial Content
Server: BashoData
Date: Tue, 07 Jan 2014 19:49:11 GMT
Content-Type: application/xml
Content-Range: bytes 0-1000/1705
Content-Length: 1000
Accept-Ranges: bytes



{{/1.3.0+}}








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/using/application-guide.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Building Applications with Riak
project: riak
version: 2.0.0+
document: guide
audience: beginner
keywords: [developers, applications]




So you’ve decided to build an application using Riak as a data store. We
think that this is a wise choice for a broad variety of use cases. But
using Riak isn’t always straightforward, especially if you’re used to
developing with relational databases like like MySQL or PostgreSQL or
non-persistent key/value stores like Redis. So in this guide, we’ll walk
you through a set of questions that should be asked about your use case
before getting started. The answer to those questions may inform
decisions about which Riak features you should use, what kind of
replication and conflict resolution strategies you should employ, and
perhaps even how parts of your application should be built.



What Kind of Data Are You Storing?


This is an important initial question for two reasons:



		Not all data is a good fit for Riak. If your data isn’t a good fit,
we would advise that you seek out a storage system that better suits
your needs.


		The kinds of data that you’re storing should guide your decision both
about how to store and access your data in Riak and about which Riak
features would be helpful (and which ones might even be harmful).






Good Fits for Riak


Riak tends to be an excellent choice if you’re dealing with any of the
following:



		Immutable data — While Riak provides several means of
[[resolving conflicts|Conflict Resolution]] between different replicas
of objects, those processes can lead to slower performance in some
cases. Storing immutable data means that you can avoid those processes
altogether and get the most out of Riak.


		Small objects — Riak was not built as a store for large objects
like video files or other
BLOB [http://en.wikipedia.org/wiki/Binary_large_object]s. We built
Riak CS [http://basho.com/riak-cloud-storage/] for that. Riak is
great, however, for JSON, [[log files|Use Cases#log-data]], [[sensor
data|Use Cases#sensor-data]], HTML files, and other objects that tend
to run smaller than 1 MB.


		Independent objects — Objects that do not have interdependencies
on other objects are a good fit for Riak’s [[eventually
consistent|Eventual Consistency]] nature.


		Objects with “natural” keys — It is almost always advisable to
build keys for objects out of timestamps, [[usernames|User Accounts]],
or other [[“natural” markers|Key/Value Modeling]] that distinguish
that object from other objects. Data that can be modeled this way fits
nicely with Riak because Riak emphasizes extremely fast object lookup.


		Data compatible with [[Riak Data Types|Using Data Types]] — If
you’re working with mutable data, one option is to run basic CRUD
operations on that data in a standard key/value fashion and either
manage conflict resolution yourself or allow Riak to do so. But if
your data can be modeled as a [[counter|Using Data Types#Counters]],
[[set|Using Data Types#Sets]], or [[map|Using Data Types#Map]], you
should seriously consider using [[Riak Data Types|Using Data Types]],
which can speed application development and transfer a great deal of
complexity away from the application and to Riak itself.








Not-so-good Fits for Riak


Riak may not such be a good choice if you use it to store:



		Objects that exceed 1-2MB in size — If you will be
storing a lot of objects over that size, we would recommend checking
out Riak CS [http://docs.basho.com/riakcs/latest/] instead, as Riak
CS was built to solve this problem. Storing large objects in Riak will
typically lead to substandard performance.


		Objects with complex interdependencies — If your data cannot be
easily denormalized or if it requires that objects can be easily
assembled into and accessible as larger wholes—think columns or
tables—then you might want to consider a relational database
instead.








Conclusion


If it sounds like Riak is a good choice for some or all of your
application’s data needs, move on to the next sections, where you can
find out more about which Riak features are recommendable for your use
case, how you should model your data, and what kinds of data modeling
and development strategies we recommend.







Which Features Should You Consider?


Basic CRUD key/value operations are almost always the most performant
operations when using Riak. If your needs can be served using CRUD
operations, we recommend checking out our tutorial on [[key/value
modeling]] for some basic guidelines. But if basic CRUD key/value
operations don’t quite suffice for your use case, Riak offers a variety
of features that may be just what you’re looking for. In the sections
immediately below, you can find brief descriptions of those features as
well as relevant links to Basho documentation.





Search


Riak Search provides you with Apache
Solr [http://lucene.apache.org/solr/]-powered full-text indexing and
querying on top of the scalability, fault tolerance, and operational
simplicity of Riak. Our motto for Riak Search: Write it like Riak.
Query it like Solr. That is, you can store objects in Riak [[like
normal|The Basics]] and run full-text queries on those objects later on
using the Solr API.



		[[Using Search]] — Getting started with Riak Search


		[[Search Details]] — A detailed overview of the concepts and design
consideration behind Riak Search


		[[Search Schema]] — How to create custom schemas for extracting data
from Riak Search






When to Use Search



		When you need a rich querying API — Riak Search gives you access
to the entirety of Solr [http://lucene.apache.org/solr/]‘s extremely
broad API, which enables you to query on the basis of wildcards,
strings, booleans, geolocation, ranges, language-specific fulltext,
and far more. You can even use Search in conjunction with [[Riak Data
Types|Using Data Types]] (documentation coming soon).






Search is preferred for querying

In general, you should consider Search to be the default choice for
nearly all querying needs that go beyond basic CRUD/KV operations. If
your use case demands some sort of querying mechanism and you're in
doubt about what to use, you should assume that Search is the right tool
for you.




When Not to Use Search



		When deep pagination is needed — At the moment, you should
consider [[secondary indexes|Using Secondary Indexes]] instead of
Search if your use case requires deep pagination. This will be
changed, however, in a future release of Riak, at which point you
should consider Search the default choice for all querying needs.


		In large clusters — In clusters larger than 8-10 nodes, you may
experience slower performance when using Search. In clusters of that
size, we would recommend using Search in a limited fashion, setting
up a separate, dedicated cluster for Search data, or finding another
solution.










Riak Data Types


When performing basic K/V operations, Riak is agnostic toward the actual
data stored within objects. Beginning with Riak 2.0, however, you now
have access to operations-based objects based on academic research on
CRDTs [http://hal.upmc.fr/docs/00/55/55/88/PDF/techreport.pdf]. Riak
Data Types enable you to update and read [[counters|Using Data
Types#counters]], [[sets|Using Data Types#sets]], and [[maps|Using Data
Types#maps]] directly in Riak, as well as [[registers|Data Types#maps]]
and [[flags|Data Types#maps]] inside of Riak maps.


The beauty of Riak Data Types is that all convergence logic is handled
by Riak itself according to deterministic, Data Type-specific rules,
which means that your application doesn’t need to reason about
[[siblings|Conflict Resolution#Siblings]]. In many cases, this can
unburden applications of the need to handle object convergence on their
own.



		[[Using Data Types]] — A guide to setting up Riak to use Data Types,
including a variety of code samples for all of the Basho’s official
[[client libraries]]


		[[Data Types]] — A theoretical treatment of Riak Data Types, along
with implementation details


		[[Data Modeling with Riak Data Types]] — An object modeling example
that relies on Riak Data Types





Note: Riak Data Types can be used in conjunction with Riak Search,
meaning that the data stored in counters, sets, and maps can be indexed
and searched just like any other data in Riak. Documentation on Data
Types and Search is coming soon.



When to Use Riak Data Types



		When your data fits — If the data that you’re storing can be
modeled as one of the five available types, Riak Data Types could be a
very good option. Please note that in many cases there may not be a
1:1 correspondence between the five available types and the data that
you’d like to store, but there may be workarounds to close the gap.
Most things that can be stored as JSON, for example, can be stored as
maps (though with modifications).


		When you don’t need to reason about siblings — If your use case
doesn’t require that your application have access to siblings and
allows for sibling convergence logic to take place at the Riak level
rather than at the application level, then Riak Data Types are well
worth exploring.








When Not to Use Riak Data Types



		When you need to provide your own convergence logic — If your
application needs to have access to all sibling values, then Riak Data
Types are not a good choice because they by definition do not produce
siblings.


		When your data just doesn’t fit — While the five existing Data
Types allow for a great deal of flexibility and a wide range of use
cases, they don’t cover all use cases. If you have data that requires
a modeling solution that can’t be covered, you should stick to
standard K/V operations.


		When object size is of significant concern — Riak Data Types
behave much like other Riak objects, but they tend to carry more
metadata than normal Riak objects, especially maps. In most cases the
metadata payload will be a small percentage of the object’s total
size, but if you want to keep objects as lean as possible, it may be
better to stick to normal K/V operations.










MapReduce


Riak’s MapReduce feature enables you to perform batch processing jobs in
a way that leverages Riak’s distributed nature. When a MapReduce job is
sent to Riak, Riak automatically distributes the processing work to
where the target data lives, which can reduce network bandwidth. Riak
comes equipped with a set of default MapReduce jobs that you can employ,
or you can write and run your own MapReduce jobs in
Erlang [http://www.erlang.org/].



		[[Using MapReduce]] — A general guide to using MapReduce


		[[Advanced MapReduce]] — A more in-depth guide to MapReduce,
including code samples and implementation details






When to Use MapReduce



		Batch processing only — You should use MapReduce only when truly
truly necessary. MapReduce jobs are very computationally expensive and
can degrade performance in production clusters. You should restrict
MapReduce usage to infrequent batch processing operations, preferably
carried out at times when your cluster is experiencing load that is
well below average.








When Not to Use MapReduce



		When another Riak feature will do — Before even considering
using MapReduce, you should thoroughly investigate [[Riak Search|Using
Search]] or [[secondary indexes|Using Secondary Indexes]] as possible
solutions to your needs.





In general, you should not think of MapReduce as, for example, Hadoop
within Riak. While it can be useful for certain types of
non-primary-key-based queries, it is neither a “Big Data” processing
tool nor an indexing mechanism nor a replacement for [[Riak Search|Using
Search]]. If you do need a tool like Hadoop or Apache Spark, you should
consider using Riak in conjunction with a more suitable data processing
tool.







Secondary Indexes (2i)


Using basic key/value operations in Riak sometimes leads to the
following problem: how do I know which keys I should look for? Secondary
indexes (2i) provide a solution to this problem, enabling you to tag
objects with either binary or integer metadata and then query Riak for
all of the keys that share specific tags. 2i is especially useful if
you’re storing binary data that is opaque to features like [[Riak
Search|Using Search]].



		[[Using Secondary Indexes]] — A general guide to using 2i, along
with code samples and information on 2i features like pagination,
streaming, and sorting


		[[Advanced Secondary Indexes]] — Implementation details behind 2i






When to Use Secondary Indexes



		When you require deep pagination — At the moment, 2i’s
deep pagination capabilities are more performant than those offered
by Search if you require pagination of more than 3-5 pages. This
will change, however, in the future, at which point we will
recommend using Search instead.








When Not to Use Secondary Indexes



		For most querying purposes — If your use case does not
involve deep pagination, we recommend Search over 2i for all
querying purposes.


		If you’re using Bitcask — 2i is available only in the
[[LevelDB]] backend. If you’d like to use [[Bitcask]] or the
[[Memory]] backend, you will not be able to use 2i.










Mixed Approach


One thing to always bear in mind is that Riak enables you to mix and
match a wide variety of approaches in a single cluster. You can use
basic CRUD operations for some of your data, index some of your data to
be queried by Riak Search, use Riak Data Types for another subset, etc.
You are always free to use a wide array of Riak features—or you can
use none at all and stick to key/value operations.





How Should You Model Your Data?


It’s difficult to offer universally applicable data modeling guidelines
because data models differ so markedly from use case to use case. What
works when storing [[user data|Use Cases#user-data]], for example, might
be a poor fit when working with [[sensor data|Use Cases#sensor-data]].
Nonetheless, there’s a variety of material in our documentation that
might be helpful when thinking about data modeling:



		[[Object Modeling in Riak|Taste of Riak: Object Modeling]]
		[[Java|Taste of Riak: Object Modeling with Java]]


		[[Ruby|Taste of Riak: Object Modeling with Ruby]]


		[[Python|Taste of Riak: Object Modeling with Python]]


		[[C#|Taste of Riak: Object Modeling with CSharp]]


		[[Erlang|Taste of Riak: Object Modeling with Erlang]]








		[[Key/Value Modeling]]






Data Types


One feature to always bear in mind when using Riak is [[Riak Data
Types|Using Data Types]]. If some or all of your data can be modeled in
accordance with one of the available Data Types—flags (similar to
Booleans), registers (good for storing small binaries or text snippets),
[[counters|Using Data Types#counters]], [[sets|Using Data Types#sets]],
or [[maps|Using Data Types#maps]]—you might be able to streamline
application development by using them as an alternative to key/value
operations. In some cases, it might even be worthwhile to transform your
data modeling strategy in accordance with To see if this feature might
be a good fit for your application, we recommend checking out the
following documentation:



		[[Data Types]]


		[[Using Data Types]]


		[[Data Modeling with Riak Data Types]]










What are Your Consistency Requirements?


Riak has traditionally been thought of as an [[eventually
consistent|Eventual Consistency]], AP system, i.e. as a system that
favors availability and partition tolerance over data consistency. In
Riak versions 2.0 and later, the option of applying strong consistency
guarantees is available to developers that want to use Riak as a strict
CP system. One of the advantages of Riak’s approach to strong
consistency is that you don’t need to store all of your data in a
strongly consistent fashion if you use this feature. Instead, you can
mix and match a CP approach with an AP approach in a single cluster in
any way you wish.


If you need some or all of your data to be subject to strong consistency
requirements, we recommend checking out the following documentation:



		[[Strong Consistency]]


		[[Using Strong Consistency]]


		[[Managing Strong Consistency]]








Are Your Objects Mutable?


Although Riak always performs best when storing and retrieving immutable
data, Riak also handles mutable objects very ably using a variety of
eventual consistency principles. Storing mutable data in Riak, however,
can get tricky because it requires you to choose and implement a
conflict resolution strategy for when object conflicts arise, which is a
normal occurrence in Riak. For more implementation details, we recommend
checking out the following docs:



		[[Conflict Resolution]]


		[[Object Updates]]


		[[Replication Properties]]








Getting Started


If you have a good sense of how you will be using Riak for your
application (or if you just want to experiment), the following guides
will help you get up and running:



		[[Five-Minute Install]] — Install Riak and start up a five-node Riak
cluster


		[[Client Libraries]] — A listing of official and non-official client
libraries for building applications with Riak


		[[Getting Started with Client
Libraries|Five-Minute Install#Setting-Up-Your-Riak-Client]] — How to
get up and going with one of Basho’s official client libraries (Java,
Ruby, Python, and Erlang)


		[[The Basics]] — A guide to basic key/value operations in Riak


		[[Riak Glossary]] — A listing of frequently used terms in Riak’s
documentation









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/references/apis/storage/s3/RiakCS-Abort-Multipart-Upload.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: RiakCS Abort Multipart Upload
project: riakcs
version: 1.3.0+
document: api
toc: true
audience: advanced
keywords: [api, http]
moved: {
‘1.4.0-‘: ‘/references/apis/storage/RiakCS-Abort-Multipart-Upload’
}




Aborts a multipart upload. After a multipart upload is aborted, the storage
consumed by any previously uploaded parts will be freed.



Requests



Request Syntax


This example shows the syntax for aborting a multipart upload.


DELETE /ObjectName?uploadId=UploadId HTTP/1.1
Host: bucketname.data.basho.com
Date: date
Authorization: signatureValue






Request Headers


This implementation of the operation uses only response headers that are common to most responses. For more information, see [[Common RiakCS Response Headers]].





Request Elements


This operation does not use request elements.







Response



Response Headers


This implementation of the operation uses only response headers that are common to most responses. For more information, see [[Common RiakCS Response Headers]].





Response Elements


This operation does not use response elements.





Special Errors


NoSuchUpload - The specified multipart upload does not exist.







Examples



Sample Request


The following request aborts a multipart upload identified by its upload ID.


DELETE /large.iso?uploadId=VXBsb2FkIElEIGZvciA2aWWpbmcncyBteS1tb3ZpZS5tMnRzIHVwbG9hZA HTTP/1.1
Host: os.data.basho.com
Date:  Mon, 1 Nov 2010 20:34:56 GMT
Authorization: AWS AKIAIOSFODNN7EXAMPLE:0RQf3/cRonhpaBX5sCYVf1bNRuU=






Sample Response


HTTP/1.1 204 OK
Date:  Mon, 1 Nov 2010 20:34:56 GMT
Content-Length: 0
Connection: keep-alive
Server: MochiWeb/1.1 WebMachine/1.9.0 (someone had painted it blue)









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/data-modeling/blogs.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Blog Posts, Articles and Other Content
project: riak
version: 1.2.0-2.0.0
document: cookbook
toc: true
audience: intermediate
keywords: [use-cases]
moved: {
‘1.4.0-‘: ‘/cookbooks/use-cases/blogs’
}




This page no longer valid. We recommend taking a look at [[Use Cases]]
or [[Building Applications with Riak]] instead.




          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/using/mapreduce.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Using MapReduce
project: riak
version: 1.0.0+
document: tutorials
toc: true
audience: beginner
keywords: [developers, mapreduce]
moved: {
‘1.4.0-‘: ‘/tutorials/querying/MapReduce’
}





Use MapReduce sparingly

In Riak, MapReduce is the primary method for non-primary-key-based
querying. Although useful for a limited range of purposes, such as batch
processing jobs, MapReduce operations can be very computationally
expensive, sometimes to the extent that they can degrade performance in
production clusters operating under load. Thus, we recommend running
MapReduce operations in a controlled, rate-limited fashion and never for
realtime querying purposes.

MapReduce (M/R) is a technique for dividing data processing work across
a distributed system. It takes advantage of the parallel processing
power of distributed systems and also reduces network bandwidth, as the
algorithm is passed around to where the data lives rather than
transferring a potentially huge dataset to a client algorithm.


Developers can use MapReduce for things like filtering documents by
tags, counting words in documents, and extracting links to related data.
In Riak, MapReduce is one method for querying that is not strictly based
on key querying, alongside [[secondary indexes|Using Secondary Indexes]]
and [[Search|Using Search]]. MapReduce jobs can be submitted through the
[[HTTP API]] or the [[Protocol Buffers API|PBC API]], although we
strongly recommend using the Protocol Buffers API for performance
reasons.



Features



		Map phases execute in parallel with data locality


		Reduce phases execute in parallel on the node where the job was
submitted


		MapReduce queries written in Erlang








When to Use MapReduce



		When you know the set of objects over which you want to MapReduce
(i.e. the locations of the objects, as specified by [[bucket
type|Using Bucket Types]], bucket, and key)


		When you want to return actual objects or pieces of objects and not
just the keys. [[Search|Using Search]] and [[secondary indexes|Using
Secondary Indexes]] are other means of returning objects based on
non-key-based queries, but they only return lists of keys and not
whole objects.


		When you need the utmost flexibility in querying your data. MapReduce
gives you full access to your object and lets you pick it apart any
way you want.








When Not to Use MapReduce



		When you want to query data over an entire bucket. MapReduce uses a
list of keys, which can place a lot of demand on the cluster.


		When you want latency to be as predictable as possible.








How it Works


The MapReduce framework helps developers divide a query into steps,
divide the dataset into chunks, and then run those step/chunk pairs in
separate physical hosts.


There are two steps in a MapReduce query:



		Map — The data collection phase, which breaks up large chunks of
work into smaller ones and then takes action on each chunk. Map
phases consist of a function and a list of objects on which the map
operation will operate.


		Reduce — The data collation or processing phase, which combines
the results from the map step into a single output. The reduce phase
is optional.





Riak MapReduce queries have two components:



		A list of inputs


		A list of phases





The elements of the input list are object locations as specified by
[[bucket type|Using Bucket Types]], bucket, and key. The elements of the
phases list are chunks of information related to a map, a reduce, or a
link function.


A MapReduce query begins when a client makes the request to Riak. The
node that the client contacts to make the request becomes the
coordinating node responsible for the MapReduce job. As described
above, each job consists of a list of phases, where each phase is either
a map or a reduce phase. The coordinating node uses the list of phases
to route the object keys and the function that will operate over the
objects stored in those keys and instruct the proper [[vnode|Vnodes]] to
run that function over the right objects.


After running the map function, the results are sent back to the
coordinating node. This node then concatenates the list and passes that
information over to a reduce phase on the same coordinating node,
assuming that the next phase in the list is a reduce phase.


The diagram below provides an illustration of how a coordinating vnode
orchestrates a MapReduce job.


[image: MapReduce Diagram]





Example


In this example, we’ll create four objects with the text “caremad”
repeated a varying number of times and store those objects in the bucket
training (which does not bear a [[bucket type|Using Bucket Types]]).
An Erlang MapReduce function will be used to count the occurrences of
the word “caremad.”



Data object input commands


For the sake of simplicity, we’ll use curl [http://curl.haxx.se/]
in conjunction with Riak’s [[HTTP API]] to store the objects:


curl -XPUT http://localhost:8098/buckets/training/keys/foo \
  -H 'Content-Type: text/plain' \
  -d 'caremad data goes here'

curl -XPUT http://localhost:8098/buckets/training/keys/bar \
  -H 'Content-Type: text/plain' \
  -d 'caremad caremad caremad caremad'

curl -XPUT http://localhost:8098/buckets/training/keys/baz \
  -H 'Content-Type: text/plain' \
  -d 'nothing to see here'

curl -XPUT http://localhost:8098/buckets/training/keys/bam \
  -H 'Content-Type: text/plain' \
  -d 'caremad caremad caremad'






MapReduce invocation


To invoke a MapReduce function from a compiled Erlang program requires
that the function be compiled and distributed to all nodes.


For interactive use, however, it’s not necessary to do so; instead, we
can invoke the client library from the
Erlang shell [http://www.erlang.org/doc/man/shell.html] and define
functions to send to Riak on the fly.


First we defined the map function, which specifies that we want to get
the key for each object in the bucket training that contains the text
caremad.


We’re going to generalize and optimize it a bit by supplying a
compiled regular expression when we invoke MapReduce; our function
will expect that as the third argument.


ReFun = fun(O, _, Re) -> case re:run(riak_object:get_value(O), Re, [global]) of
    {match, Matches} -> [{riak_object:key(O), length(Matches)}];
    nomatch -> [{riak_object:key(O), 0}]
end end.



Next, to call ReFun on all keys in the training bucket, we can do
the following in the Erlang shell. Do not use this in a production
environment; listing all keys to identify those in the training bucket
is a very expensive process.


{ok, Re} = re:compile("caremad").



That will return output along the following lines, verifying that
compilation has completed:


{ok,{re_pattern,0,0,
                <<69,82,67,80,69,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,99,0,100,
                  ...>>}}



Then, we can create a socket link to our cluster:


{ok, Riak} = riakc_pb_socket:start_link("127.0.0.1", 8087).

%% This should return a process ID:
%% {ok,<0.34.0>}



Then we can run the compiled MapReduce job on the training bucket:


riakc_pb_socket:mapred_bucket(Riak, <<"training">>,
    [{map, {qfun, ReFun}, Re, true}]).



That will return a list of tuples. The first element in each tuple is
the key for each object in the bucket, while the second element displays
the number of instances of the word “caremad” in the object:


{ok,[{0,
      [{<<"foo">>,1},{<<"bam">>,3},{<<"baz">>,0},{<<"bar">>,4}]}]}






Recap


In this tutorial, we ran an Erlang MapReduce function against a total of
four object in the training bucket. This job took each key/value
object in the bucket and searched the text for the word “caremad,”
counting the number of instances of the word.







Advanced MapReduce Queries


For more detailed information on MapReduce queries in Riak, we recommend
checking out our [[Advanced MapReduce]] guide.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/data-modeling/key-value.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Key/Value Modeling
project: riak
version: 2.0.0+
document: guide
audience: intermediate
keywords: [keys, values, data-types]




While Riak enables you to take advantage of a wide variety of features
that can be useful in application development, such as [[Search|Using
Search]], [[secondary indexes (2i)|Using Secondary Indexes]], and [[Riak
Data Types|Using Data Types]], Riak almost always performs best when you
build your application around basic CRUD operations (create, read,
update, and delete) on objects, i.e. when you use Riak as a “pure”
key/value store.


In this tutorial, we’ll suggest some strategies for naming and modeling
for key/value object interactions with Riak. If you’d like to use some
of Riak’s other features, we recommend checking out the documentation
for each of them or consulting our guide to [[building applications with
Riak]] for a better sense of which features you might need.



Advantages of Key/Value Operations


Riak’s key/value architecture enables it to be more performant than
relational databases in many scenarios because Riak doesn’t need to
perform lock, join, union, or other operations when working with
objects. Instead, it interacts with objects on a one-by-one basis, using
primary key lookups.


Primary key lookups store and fetch objects in Riak on the basis of
three basic locators:



		The object’s [[key|Keys and Objects#keys]], which can be anything you
want as long as it is Unicode compliant [http://www.unicode.org/]


		The [[bucket|Buckets]] which houses the object and its key (bucket
names are also Unicode compliant)


		The [[bucket type|Using Bucket Types]] that determines the bucket’s
[[replication|Replication Properties]] and other properties





It may be useful to think of this system as analogous to a nested
key/value hash [http://en.wikipedia.org/wiki/Hash_function] as you
would find in most programming languages. Below is an example from
Ruby [http://www.ruby-doc.org/core-2.1.2/Hash.html]. The hash
simpsons contains keys for all of the available seasons, while each
key houses a hash for each episode of that season:


simpsons = {
  'season 1': {
    { 'episode 1': 'Simpsons Roasting on an Open Fire' },
    { 'episode 2': 'Bart the Genius' },
    # ...
  },
  'season 2': {
    { 'episode 1': 'Bart Gets an "F"' },
    # ...
  },
  # ...
}



If we want to find out the title of an episode, we can retrieve it based
on hash keys:


simpsons['season 4']['episode 12']

# => "Marge vs. the Monorail"



Storing data in Riak is a lot like this. Let’s say that we want to store
JSON objects with a variety of information about every episode of the
Simpsons. We could store each season in its own bucket and each episode
in its own key within that bucket. Here’s what the URL structure would
look like (for the [[HTTP API]]):


GET/PUT/DELETE /bucket/<season>/keys/<episode number>



The most important benefit of sorting Riak objects this way is that
these types of lookup operations are extremely fast. Riak doesn’t need
to search through columns or tables to find an object. If it knows the
bucket/key “address” of the object, so to speak, it can locate that
object just about as quickly with billions of objects in a cluster as
when the cluster holds only a handful of objects.





Overcoming the Limitations of Key/Value Operations


Using any key/value store can be tricky at first, especially if you’re
used to relational databases. The central difficulty is that your
application cannot run arbitrary selection queries like SELECT * FROM table, and so it needs to know where to look for objects in advance.


One of the best ways to enable applications to discover objects in Riak
more easily is to provide structured bucket and key names for
objects. This approach often involves wrapping information about the
object in the object’s location data itself.


Here are some example sources for bucket or key names:



		Timestamps, e.g. 2013-11-05T08:15:30-05:00


		UUID [http://en.wikipedia.org/wiki/Universally_unique_identifier]s,
e.g. 9b1899b5-eb8c-47e4-83c9-2c62f0300596


		Geographical coordinates, e.g. 40.172N-21.273E





We could use these markers by themselves or in combination with other
markers. For example, sensor data keys could be prefaced by sensor_ or
temp_sensor1_ followed by a timestamp (e.g.
sensor1_2013-11-05T08:15:30-05:00), or user data keys could be
prefaced with user_ followed by a UUID (e.g.
user_9b1899b5-eb8c-47e4-83c9-2c62f0300596).


Any of the above suggestions could apply to bucket names as well as key
names. If you were building Twitter using Riak, for example, you could
store tweets from each user in a different bucket and then construct key
names using a combination of the prefix tweet_ and then a timestamp.
In that case, all the tweets from the user BashoWhisperer123 could be
housed in a bucket named BashoWhisperer123, and keys for tweets would
look like tweet_<timestamp>.


The possibilities are essentially endless and, as always, defined by the
use case at hand.





Object Discovery with Riak Sets


Let’s say that we’ve created a solid bucket/key naming scheme for a user
information store that enables your application to easily fetch user
records, which are all stored in the bucket users with each user’s
username acting as the key. The problem at this point is this: how can
Riak know which user records actually exist?


One way to determine this is to [[list all keys|PBC List Keys]] in the
bucket users. This approach, however, is not recommended, because
listing all keys in a bucket is a very expensive operation that should
not be used in production. And so another strategy must be employed.


A better possibility is to use [[Riak sets|Using Data Types#sets]] to
store lists of keys in a bucket. Riak sets are a [[Riak Data Type|Data
Types]] that enable you to store lists of binaries or strings in Riak.
Unlike normal Riak objects, you can interact with Riak sets much like
you interact with sets in most programming languages, i.e. you can add
and remove elements at will.


Going back to our user data example, instead of simply storing user
records in our users bucket, we could set up our application to store
each key in a set when a new record is created. We’ll store this set in
the bucket user_info_sets (we’ll keep it simple) and in the key
usernames. The following will also assume that we’ve [[set up a bucket
type|Using Data Types#setting-up-buckets-to-use-riak-data-types]] called
sets.


We can interact with that set on the basis of its location:


Location userIdSet = new Location(new Namespace("sets", "user_info_sets"), "usernames");

// With this Location, we can construct fetch operations like this:
FetchSet fetchUserIdSet = new FetchSet.Builder(userIdSet).build();



require 'riak'

set_bucket = client.bucket('user_info_sets')

# We'll make this set global because we'll use it
# inside of a function later on

$user_id_set = Riak::Crdt::Set.new(set_bucket, 'usernames', 'sets')



$command = (new \Basho\Riak\Command\Builder\FetchSet($riak))
    ->buildLocation('usernames', 'user_info_sets', 'sets')
    ->build();



from riak.datatypes import Set

bucket = client.bucket_type('sets').bucket('user_info_sets')
user_id_set = Set(bucket, 'usernames')




Getting started with Riak clients

If you are connecting to Riak using one of Basho's official [[client
libraries]], you can find more information about getting started with
your client in our [[quickstart guide|Five-Minute
Install#setting-up-your-riak-client]].

Then, we can create a function that stores a user record’s key in that
set every time a record is created:


// A User class for constructing user records
class User {
  public String username;
  public String info;

  public User(String username, String info) {
    this.username = username;
    this.info = info;
  }
}

// A function for storing a user record that has been created
public void storeUserRecord(User user) throws Exception {
  // User records themselves will be stored in the bucket "users"
  Location userObjectLocation =
    new Location(new Namespace("users"), user.username);
  RiakObject userObject = new RiakObject()
      // We'll keep it simple and store User object data as plain text
      .setContentType("text/plain")
      .setValue(user.info);
  StoreValue store = new StoreValue.Builder(userObjectLocation, userObject)
      .build();
  client.execute(store);

  Location userIdSet =
    new Location(new Namespace("sets", "user_info_sets"), "usernames");
  SetUpdate su = new SetUpdate()
      .add(BinaryValue.create(user.username));
  UpdateSet update = new UpdateSet.Builder(su, update)
      .build();
  client.execute(update);
}



class User
  attr_accessor :username, :info
end

def store_record(user)
  # First we create an empty object and specify its bucket and key
  obj = Riak::RObject.new(client.bucket('users'), user.username)

  # We'll keep it simple by storing plain text for each user's info
  obj.content_type = 'text/plain'
  obj.raw_data = user.info
  obj.store

  # Finally, we'll add the user's username to the set
  user_id_set.add(user.username)
end



class User
{
  public $user_name;
  public $info;

  public function __construct($user_name, $info)
  {
    $this->user_name = $user_name;
    $this->info = $info;
  }
}

function store_user(User $user)
{
  (new \Basho\Riak\Command\Builder\StoreObject)
    ->buildLocation($user->user_name, 'users')
    ->buildJsonObject($user)
    ->build()
    ->execute();

  (new \Basho\Riak\Command\Builder\UpdateSet)
    ->buildLocation('usernames', 'user_info_sets', 'sets')
    ->add($user->user_name)
    ->build()
    ->execute();
}



class User:
    def __init__(self, username, info):
        this.username = username
        this.info = info

# Using the "user_id_set" object from above
def store_record(user):
    # First we create an empty object and specify its bucket and key
    obj = RiakObject(client, 'users', user.username)

    # We'll keep it simple by storing plain text for each user's info
    obj.content_type = 'text/plain'
    obj.data = user.info
    obj.store()

    # Finally, we'll add the user's username to the set
    user_id_set.add(username)
    user_id_set.store()



Now, let’s say that we want to be able to pull up all user records in
the bucket at once. We could do so by iterating through the usernames
stored in our set and then fetching the object corresponding to each
username:


public Set<User> fetchAllUserRecords() {
    // Empty builder sets for usernames and User objects
    Set<String> userIdSet = new HashSet<String>();
    Set<User> userSet = new HashSet<User>();

    // Turn the Riak username set into a set of Strings
    Location userIdSet =
        new Location(new Namespace("sets", "sets"), "usernames");
    FetchSet fetchUserIdSet = new FetchSet.Builder(userIdSet).build();
    RiakSet set = client.execute(fetchUserIdSet).getDatatype();
    set.viewAsSet().forEach((BinaryValue username) -> {
        userIdSet.add(username.toString());
    });

    // Fetch User objects for each of the usernames stored in the set
    userIdSet.forEach((String username) -> {
        Location userLocation = new Location(new Namespace("users"), username);
        FetchValue fetch = new FetchValue.Builder(userLocation).build();
        User user = client.execute(fetch).getValue(User.class);
        userSet.add(user);
    });
    return userSet;
}



# Using the "user_id_set" set from above

def fetch_all_user_records
  users_bucket = $client.bucket('users')
  user_records = Array.new
  $user_id_set.members.each do |user_id|
    user_record = users_bucket.get(user_id).data
    user_records.push(user_record)
  end
  user_records
end



function fetch_users()
{
  $users = [];

  $response = (new \Basho\Riak\Command\Builder\UpdateSet)
    ->buildLocation('usernames', 'user_info_sets', 'sets')
    ->build()
    ->execute();

  $user_names = $response->getSet()->getData();
  foreach($user_names as $user_name) {
    $response = (new \Basho\Riak\Command\Builder\FetchObject)
      ->buildLocation($user_name, 'users')
      ->build()
      ->execute();

    $users[$user_name] = $response->getObject()->getData();
  }

  return $users;
}



# We'll create a generator object that will yield a list of Riak objects
def fetch_all_user_records():
    users_bucket = client.bucket('users')
    user_id_list = list(user_id_set.reload().value)
    for user_id in user_id_list:
        yield users_bucket.get(user_id)

# We can retrieve that list of Riak objects later on
list(fetch_all_user_records())






Naming and Object Verification


Another advantage of structured naming is that you can prevent queries
for objects that don’t exist or that don’t conform to how your
application has named them. For example, you could store all user data
in the bucket users with keys beginning with the fragment user_
followed by a username, e.g. user_coderoshi or user_macintux. If an
object with an inappropriate key is stored in that bucket, it won’t even
be seen by your application because it will only ever query keys that
begin with user_:


// Assuming that we've created a class User:

public User getUserByUsername(String username) {
    String usernameKey = String.format("user_%s", username)
    Location loc = new Location("users")
            .setKey(usernameKey);
    FetchValue fetchUser = new FetchValue.Builder(loc).build();
    FetchValue.Response res = client.execute(fetchUser);
    User userObject = res.getValue(User.class);
    return userObject;
}



def get_user_by_username(username)
  bucket = client.bucket('users')
  obj = bucket.get('user_#{username}')
  return obj.raw_data
end



function fetchUser($user_name)
{
    $response = (new \Basho\Riak\Command\Builder\FetchObject)
      ->buildLocation($user_name, 'users')
      ->build()
      ->execute();

    return $response->getObject()->getData();
}



def get_user_by_username(username):
  bucket = client.bucket('users')
  obj = bucket.get('user_{}'.format(username))
  return obj.data






Bucket Types as Additional Namespaces


Riak [[bucket types|Using Bucket Types]] have two essential functions:
they enable you to manage [[bucket configurations|Buckets]] in an
efficient and streamlined way and, more importantly for our purposes
here, they act as a third namespace in Riak in addition to buckets and
keys. Thus, in Riak versions 2.0 and later you have access to a third
layer of information for locating objects if you wish.


While bucket types are typically used to assign different bucket
properties to groups of buckets, you can also create named bucket types
that simply extend Riak’s [[defaults|Using Bucket
Types#bucket-types-as-namespaces]] or multiple bucket types that have
the same configuration but have different names.


Here’s an example of creating four bucket types that only extend Riak’s
defaults:


riak-admin bucket-type create john
riak-admin bucket-type create robert
riak-admin bucket-type create jimmy
riak-admin bucket-type create john-paul



Or you can create five different bucket types that all set n_val to 2
but have different names:


riak-admin bucket-type create earth '{"props":{"n_val":2}}'
riak-admin bucket-type create fire '{"props":{"n_val":2}}'
riak-admin bucket-type create wind '{"props":{"n_val":2}}'
riak-admin bucket-type create water '{"props":{"n_val":2}}'
riak-admin bucket-type create heart '{"props":{"n_val":2}}'




Bucket Types Example


To extend our Simpsons example from above, imagine that we become
dissatisfied with our storage scheme because we want to separate the
seasons into good seasons and bad seasons (we’ll leave it up to you to
make that determination).


One way to improve our scheme might be to change our bucket naming
system and preface each bucket name with good or bad, but a more
elegant way would be to use bucket types instead. So instead of this URL
structure...


GET/PUT/DELETE /bucket/<season>/keys/<episode number>



...we can use this structure:


GET/PUT/DELETE /types/<good or bad>/buckets/<season>/keys/<episode number>



That adds an additional layer of namespacing and enables us to think
about our data in terms of a deeper hash than in the example above:


simpsons = {
  'good': {
    'season X': {
      { 'episode 1': '<title>' },
      # ...
    }
  },
  'bad': {
    'season Y': {
      { 'episode 1': '<title>' },
      # ...
    }
  }
}



We can fetch the title of season 8, episode 6:


# For the sake of example, we'll classify season 8 as good:

simpsons['good']['season 8']['episode 6']

# => "A Milhouse Divided"



If your data is best modeled as a three-layered hash, you may want to
consider using bucket types in the way shown above.







Resources


More on key/value modeling in Riak can be found in this
presentation [http://www.youtube.com/watch?v=-_3Us7Ystyg#aid=P-4heI_bFwo]
by Basho evangelist Hector Castro [https://github.com/hectcastro], with
the presentation slides available on Speaker
Deck [https://speakerdeck.com/hectcastro/throw-some-keys-on-it-data-modeling-for-key-value-data-stores-by-example].






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/using/updates.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Object Updates
project: riak
version: 2.0.0+
document: tutorials
audience: beginner
keywords: [developers, updating, kv]




While Riak supports a variety of querying mechanisms, such as [[Riak
Search|Using Search]] and [[secondary indexes|Using Secondary Indexes]],
we always recommend sticking to basic Create, Read, Update,
and Delete (CRUD) operations as much as possible, as these
operations are generally the most performant and reliable operations
that Riak offers. A complete guide to making decisions about which Riak
features to use can be found in our [[Application Guide|Building
Applications with Riak#Which-Features-Should-You-Consider]].


Amongst the four CRUD operations, object updates in Riak tend to be the
least straightforward and to require a bit more subtle reasoning on the
application side than the others. In this document, we’ll discuss some
best practices for updating Riak objects and provide code examples for
each of our official [[client libraries]]: Java, Ruby, Python, .NET, and
Erlang.



Note on immutable data

An important thing to bear in mind is that Riak almost always performs
best with immutable data. If your use case allows for it, we suggest
sticking to that. If not, this tutorial shows you how to work with
mutable data in a way that is consistent with Riak's strengths.


The Object Update Cycle


If you decide that your application requires mutable data in Riak, we
recommend that you:



		avoid high-frequency object updates to the same key (i.e. multiple
updates per second for long periods of time), as this will degrade
Riak performance; and that you


		follow a read-modify-write cycle when performing updates.





That cycle looks something like this:



		Read the object from Riak. This step is important for updates
because this enables you to fetch the object’s [[causal context]], which
is the information that Riak uses to make decisions about which object
values are most recent (this is especially useful for objects that are
frequently updated). This context object needs to be passed back to Riak
when you update the object. This step is handled for you by Basho’s
client libraries as long as you perform a read prior to an update. In
addition, if you have chosen to allow Riak to generate
[[siblings|Conflict Resolution#Siblings]] (which we recommend), you
should resolve sibling conflicts upon read if they exist. For more
on this, please see our documentation on [[conflict resolution]], along
with examples from our official client libraries:






		[[Java|Conflict Resolution: Java]]


		[[Ruby|Conflict Resolution: Ruby]]


		[[Python|Conflict Resolution: Python]]


		[[C#|Conflict Resolution: CSharp]]






		Modify the object on the application side.


		Write the new, modified object to Riak. Because you read the
object first, Riak will receive the object’s causal context metadata.
Remember that this happens automatically.





In general, you should read an object before modifying it. Think of it
as performing a GET prior to any PUT when interacting with a REST
API.



Note on strong consistency

If you are using Riak's [[strong consistency|Using Strong Consistency]]
feature, it is not only desirable but also necessary to use the
read/modify/write cycle explained in the section above. If you attempt
to update an object without fetching the object first, your update
operation will necessarily fail. More information can be found in the
[[strong consistency documentation|Using Strong
Consistency#Strongly-Consistent-Writes]].


Updating Deleted Objects


You should use the read-modify-write cycle explained above at all times,
even if you’re updating deleted objects. The reasons for that can be
found in our documentation on [[tombstones|Object Deletion#Tombstones]].
There are some modifications that you may need to make if you are
updating objects that may have been deleted previously. If you are using
the Java client, an explanation and examples are given in the
[[Java-specific section below|Object Updates#Java-Client-Example]]. If
you are using the Python or Erlang clients, causal context for deleted
objects will be handled automatically. If you are using the Ruby client,
you will need to explicitly set the deletedvclock parameter to true
when reading an object, like so:


bucket = client.bucket('fruits')
obj = bucket.get('banana', deletedvclock: true)








Example Update


In this section, we’ll provide an update example for Basho’s official Ruby,
Python, .NET, Node.js and Erlang clients. Because updates with the official Java client
functions somewhat differently, those examples can be found in the [[section
below|Object Updates#Java-Client-Example]].


For our example, imagine that you are storing information about NFL head
coaches in the bucket coaches, which will bear the bucket type
siblings, which sets allow_mult to true. The key for each object
is the name of the team, e.g. giants, broncos, etc. Each object will
consist of the name of the coach in plain text. Here’s an example of
creating and storing such an object:


bucket = client.bucket('coaches')
obj = bucket.get_or_new('seahawks', type: 'siblings')
obj.content_type = 'text/plain'
obj.raw_data = 'Pete Carroll'
obj.store



$location = new \Basho\Riak\Location('seahawks', new \Basho\Riak\Bucket('coaches', 'siblings'));
$response = (new \Basho\Riak\Command\Builder\FetchObject($riak))
  ->atLocation($location)
  ->build()
  ->execute();

if ($response->isSuccess()) {
  $object = $response->getObject();
  $object->setData('Pete Carroll');
} else {
  $object = new \Basho\Riak\Object('Pete Carroll', 'text/plain');
}

(new \Basho\Riak\Command\Builder\StoreObject($riak))
  ->withObject($object)
  ->atLocation($location)
  ->build()
  ->execute();



bucket = client.bucket_type('siblings').bucket('coaches')
obj = RiakObject(client, bucket, 'seahawks')
obj.content_type = 'text/plain'
obj.data = 'Pete Carroll'
obj.store()



var id = new RiakObjectId("siblings", "coaches", "seahawks");
var obj = new RiakObject(id, "Pete Carroll",
    RiakConstants.ContentTypes.TextPlain);
var rslt = client.Put(obj);



var riakObj = new Riak.Commands.KV.RiakObject();
riakObj.setContentType('text/plain');
riakObj.setBucketType('siblings');
riakObj.setBucket('coaches');
riakObj.setKey('seahawks');
riakObj.setValue('Pete Carroll');
client.storeValue({ value: riakObj }, function (err, rslt) {
    if (err) {
        throw new Error(err);
    } else {
        logger.info('Stored Pete Carroll');
    }
});



Obj = riakc_obj:new({<<"siblings">>, <<"coaches">>},
                     <<"seahawks">>,
                     <<"Pete Carroll">>,
                     <<"text/plain">>).
riakc_pb_socket:put(Pid, Obj).



Every once in a while, though, head coaches change in the NFL, which
means that our data would need to be updated. Below is an example
function for updating such objects:


def update_coach(team, new_coach)
  bucket = client.bucket('coaches')
  # The read phase
  obj = bucket.get_or_new(team, type: 'siblings')
  # The modify phase
  obj.data = new_coach
  # The write phase
  obj.store
end

# Example usage
update_coach('packers', 'Vince Lombardi')



function update_coach($team, $coach) {
  $location = new \Basho\Riak\Location('seahawks', new \Basho\Riak\Bucket('coaches', 'siblings'));
  $response = (new \Basho\Riak\Command\Builder\FetchObject($riak))
    ->atLocation($location)
    ->build()
    ->execute();

  if ($response->isSuccess()) {
    $object = $response->getObject();
    $object->setData('Pete Carroll');
  } else {
    $object = new \Basho\Riak\Object('Pete Carroll', 'text/plain');
  }

  $response = (new \Basho\Riak\Command\Builder\StoreObject($riak))
    ->withObject($object)
    ->atLocation($location)
    ->build()
    ->execute();

  return $response->isSuccess();
}

echo update_coach('packers', 'Vince Lombardi'); // true



def update_coach(team, new_coach):
    bucket = client.bucket_type('siblings').bucket('coaches')
    # The read phase
    obj = bucket.get(team)
    # The modify phase
    obj.data = new_coach
    # The write phase
    obj.store()

# Example usage
update_coach('packers', 'Vince Lombardi')



private void UpdateCoach(string team, string newCoach)
{
    var id = new RiakObjectId("siblings", "coaches", team);
    var getResult = client.Get(id);

    RiakObject obj = getResult.Value;
    obj.SetObject<string>(newCoach, RiakConstants.ContentTypes.TextPlain);
    client.Put(obj);
}



function update_coach(team, newCoach) {
    client.fetchValue({
        bucketType: 'siblings', bucket: 'coaches', key: team
    }, function (err, rslt) {
        if (err) {
            throw new Error(err);
        }

        var riakObj = rslt.values.shift();
        riakObj.setValue(newCoach);
        client.storeValue({ value: riakObj }, function (err, rslt) {
            if (err) {
                throw new Error(err);
            }
        });
    });
}



update_coach(team, new_coach) ->
    {ok, Obj} = riakc_pb_socket:get(Pid,
                                    {<<"siblings">>, <<"coaches">>},
                                    <<team>>),
    ModifiedObj = riakc_obj:update(Obj, <<new_coach>>),
    riakc_pb_socket:put(Pid, ModifiedObj).

%% Example usage
update_coach('packers', 'Vince Lombardi')



In the example above, you can see the three steps in action: first, the
object is read, which automatically fetches the object’s causal context;
then the object is modified, i.e. the object’s value is set to the name
of the new coach; and finally the object is written back to Riak.





Object Update Anti-patterns


The most important thing to bear in mind when updating objects is this:
you should always read an object prior to updating it unless you are
certain that no object is stored there. If you are storing [[sensor
data|Use Cases#Sensor-Data]] in Riak and using timestamps as keys, for
example, then you can be sure that keys are not repeated. In that case,
making writes to Riak without first reading the object is fine. If
you’re not certain, however, then we recommend always reading the object
first.





Java Client Example


As with the other official clients, object updates using the Java client
will automatically fetch the object’s causal context metadata, modify
the object, and then write the modified value back to Riak. You can
update object values by creating your own UpdateValue operations that
extend the abstract class Update<T>. An UpdateValue operation must
have an apply method that returns a new T. In our case, the data
class that we’re dealing with is User. First, let’s create a very
basic User class:


public class User {
  public String username;
  public List<String> hobbies;

  public User(String username, List<String> hobbies) {
    this.name = username;
    this.hobbies = hobbies;
  }
}



In the example below, we’ll create an update value operation called
UpdateUserName:


import com.basho.riak.client.api.commands.kv.UpdateValue.Update;

public class UpdateUserName extends Update<User> {
    @Override
    public User apply(User original) {
        // update logic goes here
    }
}



In the example above, we didn’t specify any actual update logic. Let’s
change that by creating an UpdateValue operation that changes a User
object’s name parameter:


public class UpdateUserName extends Update<User> {
    private String newUsername;

    public UpdateUserName(String newUsername) {
        this.newUsername = newUsername;
    }

    @Override
    public User apply(User original) {
        original.username = newUsername;
        return original;
    }
}



Now, let’s put our UpdateUserName operation into effect. In the
example below, we’ll change a User object’s username from whatever
it currently is to cliffhuxtable1986:


import com.basho.riak.client.api.commands.kv.FetchValue;

Location location = new Location(...);
UpdateValue updateOp = new UpdateValue.Builder(location)
        .withFetchOption(FetchValue.Option.DELETED_VCLOCK, true)
        .withUpdate(new UpdateUserName("cliffhuxtable1986"))
        .build();
client.execute(updateOp);



You may notice that a fetch option was added to our UpdateValue
operation: FetchValue.Option.DELETED_VCLOCK was set to true.
Remember from the section above that you should always read an object
before modifying and writing it, even if the object has been deleted.
Setting this option to true ensures that the causal context is fetched
from Riak if the object has been deleted. We recommend always setting
this option to true when constructing UpdateValue operations.



Clobber Updates


If you’d like to update an object by simply replacing it with an
entirely new value of the same type (unlike in the section above, where
only one property of the object was updated), the Java client provides
you with a “clobber” update that you can use to replace the existing
object with a new object of the same type rather than changing one or
more properties of the object. Imagine that there is a User object
stored in the bucket users in the key cliffhuxtable1986, as in the
example above, and we simply want to replace the object with a brand new
object:


Location location = new Location(new Namespace("users"), "cliffhuxtable1986");
User brandNewUser = new User(/* new user info */);
UpdateValue updateOp = new UpdateValue.Builder(Location)
        // As before, we set this option to true
        .withFetchOption(FetchValue.Option.DELETED_VCLOCK, true)
        .withUpdate(Update.clobberUpdate(brandNewUser))
        .build();
client.execute(updateOp);






No-operation Updates in Java


The Java client also enables you to construct no-operation updates
that don’t actually modify the object and simply write the original
value back to Riak. What is the use of that, given that it isn’t
changing the value of the object at all? No-operation updates can be
useful because they can help Riak resolve [[sibling conflicts|Conflict
Resolution#Siblings]]. If you have an object—or many objects, for that
matter—with siblings, a no-operation update will fetch the object and
its causal context and write the object back to Riak with the same,
fetched context. This has the effect of telling Riak that you deem this
value to be most current. Riak can then use this information in internal
sibling resolution operations.


Below is an example:


Location loc = new Location(...);
UpdateValue updateOp = new UpdateValue.Builder(loc)
        .withUpdate(Update.noopUpdate())
        .build();
client.execute(updateOp);



The example above would update the object without fetching it. You
could, however, use a no-operation update to read an object as well if
you set return_body to true in your request:


// Using the Location object "loc" from above:
UpdateValue updateOp = new UpdateValue.Builder(loc)
        .withFetchOption(Option.RETURN_BODY, true)
        .withUpdate(Update.noopUpdate())
        .build();
UpdateValue.Response response = client.execute(updateOp);
RiakObject object = response.getValue(RiakObject.class);

// Or to continue the User example from above:
User user = response.getValue(User.class);



In general, you should use no-operation updates only on keys that you
suspect may have accumulated siblings or on keys that are frequently
updated (and thus bear the possibility of accumulating siblings).
Otherwise, you’re better off performing normal reads.








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/data-modeling/session-storage.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Session Storage
project: riak
version: 1.2.0-2.0.0
document: cookbook
toc: true
audience: intermediate
keywords: [use-cases]
moved: {
‘1.4.0-‘: ‘/cookbooks/use-cases/serving-ads’
}




This page no longer valid. We recommend taking a look at [[Use Cases]]
or [[Building Applications with Riak]] instead.




          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/using/conflict-resolution/index.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Conflict Resolution
project: riak
version: 2.0.0+
document: tutorials
audience: intermediate
keywords: [developers, conflict-resolution, vclocks, vector-clocks]




One of Riak’s [[central goals|Why Riak]] is high availability. It was
built as a [[clustered|Clusters]] system in which any [[node|Riak
Glossary#Node]] is capable of receiving requests without requiring that
every node participate in each request.


If you are using Riak in an [[eventually consistent|Eventual
Consistency]] way, conflicts between object values on different nodes is
unavoidable. Often, Riak can resolve these conflicts on its own
internally if you use causal context, i.e. [[vector clocks|Causal
Context#Vector-Clocks]] or [[dotted version vectors|Causal
Context#Dotted-Version-Vectors]], when updating objects. Instructions
on this can be found in the section [[below|Conflict
Resolution#Siblings]].



Important note on terminology

In versions of Riak prior to 2.0, vector clocks were the only causal
context mechanism available in Riak, which changed with the introduction
of dotted version vectors in 2.0. Please note that you may frequent find
terminology in client library APIs, internal Basho documentation, and
more that uses the term "vector clock" interchangeably with causal
context in general. Riak's HTTP API still uses a `X-Riak-Vclock` header,
for example, even if you are using dotted version vectors.

But even when you use causal context, Riak cannot always decide which
value is most causally recent, especially in cases involving concurrent
updates to an object. So how does Riak behave when it can’t decide on a
single most-up-to-date value? That is your choice. A full listing of
available options can be found in the [[section below|Conflict
Resolution#Client-and-Server-side-Conflict-Resolution]]. For now,
though, please bear in mind that we strongly recommend one of the
following two options:



		If your data can be modeled as one of the currently available [[Riak
Data Types|Data Types]], we recommend using one of these types,
because all of them have conflict resolution built in, completely
relieving applications of the need to engage in conflict resolution.


		If your data cannot be modeled as one of the available Data Types,
we recommend allowing Riak to generate [[siblings|Conflict
Resolution#Siblings]] and to design your application to resolve
conflicts in a way that fits your use case. Developing your own
conflict resolution strategy can be tricky, but it has clear
advantages over other approaches.





Because Riak allows for a mixed approach when storing and managing data,
you can apply multiple conflict resolution strategies within a cluster.



Note on strong consistency

In versions of Riak 2.0 and later, you have the option of using Riak in
a strongly consistent fashion. This document pertains to usage of Riak
as an eventually consistent system. If you'd like to use Riak's
strong consistency feature, please refer to the following documents:
		[[Using Strong Consistency]] — A guide for developers



		[[Managing Strong Consistency]] — A guide for operators



		[[Strong Consistency]] — A more theoretical explication of strong
consistency







Client- and Server-side Conflict Resolution


Riak’s eventual consistency model is powerful because Riak is
fundamentally non-opinionated about how data resolution takes place.
While Riak does have a set of [[defaults|Replication
Properties#available-parameters]], there are a variety of general
approaches to conflict resolution that are available. In Riak, you can
mix and match conflict resolution strategies at the bucket level,
[[using bucket types]]. The most important [[bucket properties|Buckets]]
to consider when reasoning about conflict resolution are the
allow_mult and last_write_wins properties.


These properties provide you with the following basic options:



Timestamp-based Resolution


If the [[allow_mult|Conflict Resolution#siblings]] parameter is set to
false, Riak resolves all object replica conflicts internally and does
not return siblings to the client. How Riak resolves those conflicts
depends on the value that you set for a different bucket property,
[[last_write_wins|Buckets]]. If last_write_wins is set to false,
Riak will resolve all conflicts on the basis of
timestamps [http://en.wikipedia.org/wiki/Timestamp], which are
attached to all Riak objects as metadata.


The problem with timestamps is that they are not a reliable resolution
mechanism in distributed systems, and they always bear the risk of data
loss. A better yet still-problematic option is to adopt a
last-write-wins strategy, described directly below.





Last-write-wins


Another way to manage conflicts is to set allow_mult to false, as
with timestamp-based resolution, while also setting the
[[last_write_wins|Conflict Resolution#last-write-wins]] parameter to
true. This produces a so-called last-write-wins (LWW) strategy whereby
Riak foregoes the use of all internal conflict resolution strategies
when making writes, effectively disregarding all previous writes.


The problem with LWW is that it will necessarily drop some writes in the
case of concurrent updates in the name of preventing sibling creation.
If your use case requires that your application be able to reason about
differing values produced in the case of concurrent updates, then we
advise against LWW as a general conflict resolution strategy.


However, LWW can be useful—and safe—if you are certain that there
will be no concurrent updates. If you are storing immutable data in
which each object is guaranteed to have its own key or engaging in
operations related to bulk loading, you should consider LWW.



Undefined behavior warning

Setting both allow_mult and last_write_wins to
true necessarily leads to unpredictable behavior and should
always be avoided.




Resolve Conflicts on the Application Side


While setting allow_mult to false unburdens applications from having
to reason about siblings, delegating that responsibility to Riak itself,
it bears all of the drawbacks explained above. On the other hand,
setting allow_mult to true has the following benefits:



		Riak will retain writes even in the case of concurrent updates to a
key, which enables you to capture the benefits of high availability
with a far lower risk of data loss


		If your application encounters siblings, it can apply its own
use-case-specific conflict resolution logic





Conflict resolution in Riak can be a complex business, but the presence
of this variety of options means that requests to Riak can always be
made in accordance with your data model(s), business needs, and use
cases. For examples of client-side sibling resolution, see the following
client-library-specific docs:



		[[Java|Conflict Resolution: Java]]


		[[Ruby|Conflict Resolution: Ruby]]


		[[Python|Conflict Resolution: Python]]


		[[C#|Conflict Resolution: CSharp]]


		[[Node.js|Conflict Resolution: NodeJS]]





In Riak versions 2.0 and later, allow_mult is set to true by default
for any [[bucket types|Using Bucket Types]] that you create. This means
that if you wish to avoid client-side sibling resolution, you have a few
options:



		Explicitly create and activate [[bucket types|Using Bucket Types]]
that set allow_mult to false


		Use Riak’s [[configuration files]] to change the [[default bucket
properties|Configuration Files#Default-Bucket-Properties]] for your
cluster. If you set the buckets.default.allow_mult parameter to
false, all bucket types that you create will have allow_mult set
to false by default.










Causal Context


When a value is stored in Riak, it is tagged with a piece of metadata
called a causal context which establishes the object’s initial
version. Causal context comes in one of two possible forms, depending
on what value you set for dvv_enabled. If set to true, [[dotted
version vectors|Causal Context#Dotted-Version-Vectors]] will be used; if
set to false (the default), [[vector clocks|Causal
Context#Vector-Clocks]] will be used.


Causal context essentially enables Riak to compare the different values
of objects stored in Riak and to determine a number of important things
about those values:



		Whether one value is a direct descendant of the other


		Whether the values are direct descendants of a common parent


		Whether the values are unrelated in recent heritage





Using the information provided by causal context, Riak is frequently,
though not always, able to resolve conflicts between values without
producing siblings.


Both vector clocks and dotted version vectors are non human readable and
look something like this:


a85hYGBgzGDKBVIcR4M2cgczH7HPYEpkzGNlsP/VfYYvCwA=



If allow_mult is set to true, you should always use causal context
when updating objects, unless you are certain that no object exists
under that key. Failing to use causal context with mutable data,
especially for objects that are frequently updated, can lead to
[[sibling explosion|Latency Reduction Checklist#Siblings]], which can
produce a variety of problems in your cluster. Fortunately, much of the
work involved with using causal context is handled automatically by
Basho’s official [[client libraries]]. Examples can be found for each
client library in the [[Object Updates]] document.





Siblings


A sibling is created when Riak is unable to resolve the canonical
version of an object being stored, i.e. when Riak is presented with
multiple possible values for an object and can’t figure out which one is
most causally recent. The following scenarios can create sibling values
inside of a single object:



		Concurrent writes — If two writes occur simultaneously from
clients, Riak may not be able to choose a single value to store, in
which case the object will be given a sibling. These writes could happen
on the same node or on different nodes.


		Stale causal context — Writes from any client using a stale
[[causal context]]. This is a less likely scenario if a client updates
the object by reading the object first, fetching the causal context
currently attached to the object, and then returning that causal context
to Riak when performing the update (fortunately, our client libraries
handle much of this automatically). However, even if a client follows
this protocol when performing updates, a situation may occur in which an
update happens from a different client while the read/write cycle is
taking place. This may cause the first client to issue the write with an
old causal context value and for a sibling to be created. A client is
“misbehaved” if it habitually updates objects with a stale or no context
object.


		Missing causal context — If an object is updated with no causal
context attached, siblings are very likely to be created. This is an
unlikely scenario if you’re using a Basho client library, but it can
happen if you are manipulating objects using a client like curl and
forgetting to set the X-Riak-Vclock header.








Siblings in Action


Let’s have a more concrete look at how siblings work in Riak. First,
we’ll create a bucket type called siblings_allowed with allow_mult
set to true:


riak-admin bucket-type create siblings_allowed '{"props":{"allow_mult":true}}'
riak-admin bucket-type activate siblings_allowed
riak-admin bucket-type status siblings_allowed



If the type has been activated, running the status command should
return siblings_allowed is active. Now, we’ll create two objects and
write both of them to the same key without first fetching the object
(which obtains the causal context):


Location bestCharacterKey =
  new Location(new Namespace("siblings_allowed", "nickolodeon"), "best_character");

RiakObject obj1 = new RiakObject()
        .withContentType("text/plain")
        .withValue(BinaryValue.create("Ren"));
RiakObject obj2 = new RiakObject()
        .withContentType("text/plain")
        .withValue(BinaryValue.create("Stimpy"));
StoreValue store1 = new StoreValue.Builder(obj1)
        .withLocation(bestCharacterKey)
        .build();
StoreValue store2 = new StoreValue.Builder(obj2)
        .withLocation(bestCharacterKey)
        .build();
client.execute(store1);
client.execute(store2);



bucket = client.bucket_type('siblings_allowed').bucket('nickolodeon')
obj1 = Riak::RObject.new(bucket, 'best_character')
obj1.content_type = 'text/plain'
obj1.raw_data = 'Ren'
obj1.store

obj2 = Riak::RObject.new(bucket, 'best_character')
obj2.content_type = 'text/plain'
obj2.raw_data = 'Stimpy'
obj2.store



bucket = client.bucket_type('siblings_allowed').bucket('nickolodeon')
obj1 = RiakObject(client, bucket, 'best_character')
obj1.content_type = 'text/plain'
obj1.data = 'Ren'
obj1.store()

obj2 = RiakObject(client, bucket, 'best_character')
obj2.content_type = 'text/plain'
obj2.data = 'Stimpy'
obj2.store()



var id = new RiakObjectId("siblings_allowed", "nickolodeon", "best_character");

var renObj = new RiakObject(id, "Ren", RiakConstants.ContentTypes.TextPlain);
var stimpyObj = new RiakObject(id, "Stimpy", RiakConstants.ContentTypes.TextPlain);

var renResult = client.Put(renObj);
var stimpyResult = client.Put(stimpyObj);



var obj1 = new Riak.Commands.KV.RiakObject();
obj1.setContentType('text/plain');
obj1.setBucketType('siblings_allowed');
obj1.setBucket('nickolodeon');
obj1.setKey('best_character');
obj1.setValue('Ren');

var obj2 = new Riak.Commands.KV.RiakObject();
obj2.setContentType('text/plain');
obj2.setBucketType('siblings_allowed');
obj2.setBucket('nickolodeon');
obj2.setKey('best_character');
obj2.setValue('Ren');

var storeFuncs = [];
[obj1, obj2].forEach(function (obj) {
    storeFuncs.push(
        function (async_cb) {
            client.storeValue({ value: obj }, function (err, rslt) {
                async_cb(err, rslt);
            });
        }
    );
});

async.parallel(storeFuncs, function (err, rslts) {
    if (err) {
        throw new Error(err);
    }
});



Obj1 = riakc_obj:new({<<"siblings_allowed">>, <<"nickolodeon">>},
                     <<"best_character">>,
                     <<"Ren">>,
                     <<"text/plain">>),
Obj2 = riakc_obj:new({<<"siblings_allowed">>, <<"nickolodeon">>},
                     <<"best_character">>,
                     <<"Stimpy">>,
                     <<"text/plain">>),
riakc_pb_socket:put(Pid, Obj1),
riakc_pb_socket:put(Pid, Obj2).



curl -XPUT http://localhost:8098/types/siblings_allowed/nickolodeon/whatever/keys/best_character \
  -H "Content-Type: text/plain" \
  -d "Ren"

curl -XPUT http://localhost:8098/types/siblings_allowed/nickolodeon/whatever/keys/best_character \
  -H "Content-Type: text/plain" \
  -d "Stimpy"




Getting started with Riak clients

If you are connecting to Riak using one of Basho's official
[[client libraries]], you can find more information about getting
started with your client in our [[quickstart
guide|Five-Minute Install#setting-up-your-riak-client]].

At this point, multiple objects have been stored in the same key without
passing any causal context to Riak. Let’s see what happens if we try to
read contents of the object:


Location bestCharacterKey =
  new Location(new Namespace("siblings_allowed", "nickolodeon"), "best_character");

FetchValue fetch = new FetchValue.Builder(bestCharacterKey).build();
FetchValue.Response response = client.execute(fetch);
RiakObject obj = response.getValue(RiakObject.class);
System.out.println(obj.getValue().toString());



bucket = client.bucket_type('siblings_allowed').bucket('nickolodeon')
obj = bucket.get('best_character')
obj



bucket = client.bucket_type('siblings_allowed').bucket('nickolodeon')
obj = bucket.get('best_character')
obj.siblings



var id = new RiakObjectId("siblings_allowed", "nickolodeon", "best_character");
var getResult = client.Get(id);
RiakObject obj = getResult.Value;
Debug.WriteLine(format: "Sibling count: {0}", args: obj.Siblings.Count);
foreach (var sibling in obj.Siblings)
{
    Debug.WriteLine(
        format: "    VTag: {0}",
        args: sibling.VTag);
}



client.fetchValue({
    bucketType: 'siblings_allowed', bucket:
        'nickolodeon', key: 'best_character'
}, function (err, rslt) {
    if (err) {
        throw new Error(err);
    }
    logger.info("nickolodeon/best_character has '%d' siblings",
        rslt.values.length);
});



curl http://localhost:8098/types/siblings_allowed/buckets/nickolodeon/keys/best_character



Uh-oh! Siblings have been found. We should get this response:


com.basho.riak.client.cap.UnresolvedConflictException: Siblings found



<Riak::RObject {nickolodeon,best_character} [#<Riak::RContent [text/plain]:"Ren">, #<Riak::RContent [text/plain]:"Stimpy">]>



[<riak.content.RiakContent object at 0x10a00eb90>, <riak.content.RiakContent object at 0x10a00ebd0>]



Sibling count: 2
    VTag: 1DSVo7VED8AC6llS8IcDE6
    VTag: 7EiwrlFAJI5VMLK87vU4tE



info: nickolodeon/best_character has '2' siblings



Siblings:
175xDv0I3UFCfGRC7K7U9z
6zY2mUCFPEoL834vYCDmPe



As you can see, reading an object with sibling values will result in
some form of “multiple choices” response (e.g. 300 Multiple Choices in
HTTP). If you’re using the HTTP interface and want to view all sibling
values, you can attach an Accept: multipart/mixed header to your
request:


curl -H "Accept: multipart/mixed" \
  http://localhost:8098/types/siblings_allowed/buckets/nickolodeon/keys/best_character



Response (without headers):


ren
--WUnzXITIPJFwucNwfdaofMkEG7H

stimpy
--WUnzXITIPJFwucNwfdaofMkEG7H--



If you select the first of the two siblings and retrieve its value, you
should see Ren and not Stimpy.



Using Causal Context


Once you are presented with multiple options for a single value, you
must determine the correct value. In an application, this can be done
either in an automatic fashion, using a use case-specific resolver, or
by presenting the conflicting objects to the end user. For more
information on application-side conflict resolution, see our
client-library-specific documentation for the following languages:



		[[Java|Conflict Resolution: Java]]


		[[Ruby|Conflict Resolution: Ruby]]


		[[Python|Conflict Resolution: Python]]


		[[C#|Conflict Resolution: CSharp]]


		[[Node.js|Conflict Resolution: NodeJS]]





We won’t deal with conflict resolution in this section. Instead, we’ll
focus on how to use causal context.


After having written several objects to Riak in the section above, we
have values in our object: Ren and Stimpy. But let’s say that we
decide that Stimpy is the correct value based on our application’s use
case. In order to resolve the conflict, we need to do three things:



		Fetch the current object (which will return both siblings)


		Modify the value of the object, i.e. make the value Stimpy


		Write the object back to the best_character key





What happens when we fetch the object first, prior to the update, is
that the object handled by the client has a causal context attached. At
that point, we can modify the object’s value, and when we write the
object back to Riak, the causal context will automatically be attached
to it. Let’s see what that looks like in practice:


// First, we fetch the object
Location bestCharacterKey =
  new Location(new Namespace("siblings_allowed", "nickolodeon"), "best_character");
FetchValue fetch = new FetchValue.Builder(bestCharacterKey).build();
FetchValue.Response res = client.execute(fetch);
RiakObject obj = res.getValue(RiakObject.class);


// Then we modify the object's value
obj.setValue(BinaryValue.create("Stimpy"));

// Then we store the object, which has the vector clock already attached
StoreValue store = new StoreValue.Builder(obj)
        .withLocation(bestCharacterKey);
client.execute(store);



# First, we fetch the object
bucket = client.bucket('nickolodeon')
obj = bucket.get('best_character', type: 'siblings_allowed')

# Then we modify the object's value
obj.raw_data = 'Stimpy'

# Then we store the object, which has the vector clock already attached
obj.store



# First, we fetch the object
bucket = client.bucket_type('siblings_allowed').bucket('nickolodeon')
obj = bucket.get('best_character')

# Then we modify the object's value
new_obj.data = 'Stimpy'

# Then we store the object, which has the vector clock already attached
new_obj.store(vclock=vclock)



// First, fetch the object
var getResult = client.Get(id);

// Then, modify the object's value
RiakObject obj = getResult.Value;
obj.SetObject<string>("Stimpy", RiakConstants.ContentTypes.TextPlain);

// Then, store the object which has vector clock attached
var putRslt = client.Put(obj);
CheckResult(putRslt);

obj = putRslt.Value;
// Voila, no more siblings!
Debug.Assert(obj.Siblings.Count == 0);



client.fetchValue({
        bucketType: 'siblings_allowed',
        bucket: 'nickolodeon',
        key: 'best_character'
    }, function (err, rslt) {
        if (err) {
            throw new Error(err);
        }

        var riakObj = rslt.values.shift();
        riakObj.setValue('Stimpy');
        client.storeValue({ value: riakObj, returnBody: true },
            function (err, rslt) {
                if (err) {
                    throw new Error(err);
                }

                assert(rslt.values.length === 1);
            }
        );
    }
);



curl -i http://localhost:8098/types/siblings_allowed/buckets/nickolodeon/keys/best_character

# In the HTTP interface, the causal context can be found in the
# "X-Riak-Vclock" header. That will look something like this:

X-Riak-Vclock: a85hYGBgzGDKBVIcR4M2cgczH7HPYEpkzGNlsP/VfYYvCwA=

# When performing a write to the same key, that same header needs to
# accompany the write for Riak to be able to use the vector clock




Concurrent conflict resolution

It should be noted that it is possible to have two clients that are
simultaneously engaging in conflict resolution. To avoid a pathological
divergence, you should be sure to limit the number of reconciliations
and fail once that limit has been exceeded.




Sibling Explosion


Sibling explosion occurs when an object rapidly collects siblings
without being reconciled. This can lead to myriad issues. Having an
enormous object in your node can cause reads of that object to crash
the entire node. Other issues include [[increased cluster
latency|Latency Reduction Checklist]] as the object is replicated and
out-of-memory errors.





Vector Clock Explosion


Besides sibling explosion, the vector clock itself can grow extremely
large when a significant volume of updates are performed on a single
object in a small period of time. While updating a single object
extremely frequently is not recommended, you can tune Riak’s vector
clock pruning to prevent vector clocks from growing too large too
quickly. More on pruning in the [[section below|Conflict
Resolution#vector-clock-pruning]].





How does last_write_wins affect resolution?


On the surface, it seems like setting allow_mult to false
(the default) and last_write_wins to true would result in the same
behavior, but there is a subtle distinction.


Even though both settings return only one value to the client, setting
allow_mult to false still uses vector clocks for resolution, whereas
if last_write_wins is true, Riak reads the timestamp to determine
the latest version. Deeper in the system, if allow_mult is false,
Riak will still allow siblings to exist when they are created (via
concurrent writes or network partitions), whereas setting
last_write_wins to true means that Riak will overwrite the value
with the one that has the later timestamp.


When you don’t care about sibling creation, setting allow_mult to
false has the least surprising behavior: you get the latest value,
but network partitions are handled gracefully. However, for cases in
which keys are rewritten often (and quickly) and the new value isn’t
necessarily dependent on the old value, last_write_wins will provide
better performance. Some use cases where you might want to use
last_write_wins include caching, session storage, and insert-only
(no updates).



Note on combining allow_mult and
last_write_wins

The combination of setting both the allow_mult and
last_write_wins properties to true leads to
undefined behavior and should not be used.






Vector Clock Pruning


Riak regularly prunes vector clocks to prevent overgrowth based on four
parameters which can be set for any bucket type that you create:


Parameter | Default value | Description
:———|:————–|:———–
small_vclock | 50 | If the length of the vector clock list is smaller than this value, the list’s entries will not be pruned
big_vclock | 50 | If the length of the vector clock list is larger than this value, the list will be pruned
young_vclock | 20 | If a vector clock entry is younger than this value (in milliseconds), it will not be pruned
old_vclock | 86400 (one day) | If a vector clock entry is older than this value (in milliseconds), it will be pruned


This diagram shows how the values of these parameters dictate the vector
clock pruning process:


[image: Vclock Pruning]





More Information


Additional background information on vector clocks:



		Vector Clocks on Wikipedia [http://en.wikipedia.org/wiki/Vector_clock]


		Why Vector Clocks are Easy [http://basho.com/why-vector-clocks-are-easy/]


		Why Vector Clocks are Hard [http://basho.com/why-vector-clocks-are-hard/]


		The vector clocks used in Riak are based on the work of Leslie Lamport [http://portal.acm.org/citation.cfm?id=359563]









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/data-modeling/data-types.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Data Modeling with Riak Data Types
project: riak
version: 2.0.0+
document: tutorial
audience: intermediate
keywords: [use-cases, developers, data-modeling, datatypes]




In our [[tutorial on Riak Data Types|Using Data Types]], we show you how
to create and perform a variety of operations on each of the
CRDT-inspired [[Data Types]] available in Riak 2.0 and later:
[[registers|Data Types#Registers]], [[flags|Data Types#Flags]],
[[counters|Data Types#Counters]], [[sets|Data Types#Sets]], and
[[maps|Data Types#Maps]].


While that tutorial covers the basics of using Data Types, most
real-world applications would need to use Data Types in a more
structured and less ad hoc way. Here, we’ll walk through a basic example
of how an application might approach Data Types in conjunction with
application-side data models, creating a User type as the basis for a
CRM-style user information store.



Creating the Basic Data Model


We can begin by creating a new type, User, that will house the
following information about each user:



		first name


		last name


		interests


		visits to our site


		whether the user has a paid account





We can see from the above that a User is best modeled as a Riak map
because maps can hold a variety of Data Types within them, in our case a
few strings (best modeled as [[registers|Data Types#Registers]]), an
array (best modeled as a [[set|Data Types#Set]]), and a Boolean (best
modeled as a [[flag|Data Types#Flags]]). Maps can also house other maps,
but that will not be covered in this tutorial.


Our basic modeling approach will be to create a User class that ties
any given User object directly to a map in Riak. From there, we’ll
create class methods that define interactions with Riak, so that the map
can be properly updated when updates are made to the User object.





Connecting Our Data Model to Riak


The first step in connecting our data model to Riak is the same step
that is always involved with using Riak maps. We need to create a bucket
type suited for maps, i.e. with the datatype property set to map,
which is covered in our tutorial on [[using bucket types]].


Once the bucket type is ready (we’ll name it maps for the sake of
simplicity, although you can name yours whatever you’d like), we need to
create a client to connect to Riak. For this tutorial, we’ll use
localhost as our host and 8087 as our [[protocol buffers|PBC API]]
port:


public class User {
    private RiakClient client;

    public User() {
        // Assuming that you have initialized and started a RiakCluster object:

        this.client = new RiakClient(cluster);
    }
}



$client = Riak::Client.new(:host => 'localhost', :pb_port => 8087)



require __DIR__ . '/../vendor/autoload.php';

use \Basho\Riak;

class User
{
    /**
     * @var Riak $riak
     */
    private $riak = null;

    /**
     * @var Riak\DataType\Map $data
     */
    private $data = null;

    /**
     * @var Riak\Bucket $bucket
     */
    private $bucket;

    public function __construct(Riak $riak)
    {
        $this->riak = $riak;
        $this->bucket = new Riak\Bucket('users', 'maps');
    }
}



from riak import RiakClient
client = RiakClient(protocol='pbc', pb_port=8087)



/*
 * We're going to separate CRUD logic from our Model classes by using
 * the INotifyPropertyChanged event and a manager that uses a
 * Repository to store Models when these events happen.
 */
IRiakEndPoint endpoint = RiakCluster.FromConfig("riakConfig");
IRiakCliet client = endpoint.CreateClient();
var entityManager = new EntityManager(client);



var Riak = require('basho-riak-client');

var client = new Riak.Client([ 'localhost:8087' ]);




Getting started with Riak clients

If you are connecting to Riak using one of Basho's official [[client
libraries]], you can find more information about getting started with
your client in our [[quickstart guide|Five-Minute
Install#setting-up-your-riak-client]].

Now, we can begin connecting our data model to a Riak map. We can do
that by creating a reference to a bucket type, bucket, and key. We
already know which bucket type we’re using (maps) from above. So from
there we need to choose a bucket and key. In this tutorial, we’ll assume
that all user maps are stored in the bucket maps, and for the key
we’ll do something a bit more creative: we’ll construct a key out of
each user’s first and last name, with an underscore in the middle. And
so the map for the user Brian May would have the key brian_may. Below,
we’ll start building our class, initializing the class with a reference
to the appropriate map:


public class User {
    private String key;
    private Location location;

    public User(String firstName, String lastName) {
        String key =
            String.format("%s_%s", firstName.toLowerCase(), lastName.toLowerCase());

        this.key = key;

        // In the Java client, maps are updated on the basis of the
        // map's bucket type/bucket/key Location:
        this.location = new Location(new Namespace(bucketType, bucket), key);
    }
}



class User
  def initialize(first_name, last_name)
    key = "#{first_name}_#{last_name}"
    @map = Riak::Crdt::Map.new($client.bucket('users'), key)
  end
end



class User
{
    #... continued ...#

    /**
     * @var Riak\Location $location
     */
    private $location;

    /**
     * @var string $first_name
     */
    private $first_name;

    /**
     * @var string $last_name
     */
    private $last_name;

    public function __construct(Riak $riak, $first_name, $last_name)
    {
        $this->riak = $riak;
        $this->bucket = new Riak\Bucket('users', 'maps');
        $this->first_name = $first_name;
        $this->last_name = $last_name;
        $this->location = new Riak\Location(sprintf('%s_%s', $first_name, $last_name), $this->bucket);
    }
}



class User:
    def __init__(self, first_name, last_name):
        bucket = client.bucket_type('maps').bucket('users')
        key = "{}_{}".format(first_name, last_name)

        # The Python client can use the new() function to automatically
        # detect that a map is being targeted by the client
        user_map = bucket.new(key)



/*
 * The C# example uses a User model class and a UserRepository class wired
 * together via INotifyPropertyChanged events and handling those events
 * See the entire example in the RiakClientExamples project here:
 * https://github.com/basho/riak-dotnet-client/tree/develop/src/RiakClientExamples/Dev/DataModeling
 */
public class User : IModel, INotifyPropertyChanged
{
    private readonly string firstName;
    private readonly string lastName;
    private readonly ICollection<string> interests;
    private uint pageVisits = 0;
    private bool accountStatus = false;

    public User(
        string firstName,
        string lastName,
        ICollection<string> interests,
        uint pageVisits = 0,
        bool accountStatus = false)
    {
        if (string.IsNullOrWhiteSpace(firstName))
        {
            throw new ArgumentNullException("firstName", "firstName is required");
        }

        this.firstName = firstName;

        if (string.IsNullOrWhiteSpace(lastName))
        {
            throw new ArgumentNullException("lastName", "lastName is required");
        }

        this.lastName = lastName;
        this.interests = interests;
        this.pageVisits = pageVisits;
        this.accountStatus = accountStatus;
    }

    public event PropertyChangedEventHandler PropertyChanged;

    public string ID
    {
        get
        {
            return string.Format("{0}_{1}",
                firstName.ToLowerInvariant(), lastName.ToLowerInvariant());
        }
    }

    public string FirstName
    {
        get { return firstName; }
    }

    public string LastName
    {
        get { return lastName; }
    }

    public IEnumerable<string> Interests
    {
        get { return interests; }
    }

    public void AddInterest(string interest)
    {
        if (!interests.Contains(interest))
        {
            interests.Add(interest);
            /*
             * Real-world you would be using your own entity changed
             * event interface that allows custom events to be
             * raised instead of using formatted strings
             */
            var data = string.Format("Interests:Added:{0}", interest);
            var e = new PropertyChangedEventArgs(data);
            PropertyChanged(this, e);
        }
    }

    public void RemoveInterest(string interest)
    {
        if (interests.Contains(interest))
        {
            interests.Remove(interest);
            var data = string.Format("Interests:Removed:{0}", interest);
            var e = new PropertyChangedEventArgs(data);
            PropertyChanged(this, e);
        }
    }

    public uint PageVisits
    {
        get { return pageVisits; }
    }

    public void VisitPage()
    {
        ++pageVisits;
        var e = new PropertyChangedEventArgs("PageVisits");
        PropertyChanged(this, e);
    }

    public bool AccountStatus
    {
        get { return accountStatus; }
    }
}



/*
 * The Node.js example uses a User model class and a UserRepository class wired
 * together via events and handling those events.
 * See the entire example here:
  * https://github.com/basho/riak-nodejs-client-examples/tree/master/dev/data-modeling
 */






Storing An Object’s Properties in Our Riak Map


At this point, we have a Riak map associated with instantiations of our
User type, but that map will be empty. Let’s modify our initializer
function to populate [[registers|Data Types#Registers]] in the map with
first name and last name information:


public class User {
    private String key;
    private Location location;

    public User(String firstName, String lastName) {
        this.key = String.format("%s_%s", firstName.toLowerCase(), lastName.toLowerCase());
        this.location = new Location(new Namespace(bucketType, bucket), key);
        RegisterUpdate ru1 = new RegisterUpdate(BinaryValue.create(firstName));
        RegisterUpdate ru2 = new RegisterUpdate(BinaryValue.create(lastName));
        MapUpdate mu = new MapUpdate()
                .update("first_name", ru1)
                .update("last_name", ru2);
        updateMapWithoutContext(mu);
    }

    /**
     * Fetches our map's abstract context object, which assists Riak in
     * making intelligent decisions about map convergence behind the
     * scenes. This will assist us later in the tutorial.
     */

    private Context getMapContext() throws Exception {
        FetchMap fetch = new FetchMap.Builder(location).build();
        return client.execute(fetch).getContext();
    }

    /**
     * Updates our map using the abstract context object fetched using
     * the private getMapContext() function above.
     */

    private void updateMapWithContext(MapUpdate mu) throws Exception {
        Context ctx = getMapContext();
        UpdateMap update = new UpdateMap.Builder(location, mu)
                .withContext(ctx)
                .build();
        client.execute(update);
    }

    /**
     * Updates our map without an abstract context object. Context is not
     * needed for some map updates.
     */

    private void updateMapWithoutContext(MapUpdate mu) throws Exception {
        UpdateMap update = new UpdateMap.Builder(location, mu).build();
        client.execute(update);
    }
}



class User
  def initialize(first_name, last_name)
    key = "#{first_name}_#{last_name}"
    @map = Riak::Crdt::Map.new($client.bucket 'users', key)
    @map.batch do |m|
      m.registers['first_name'] = first_name
      m.registers['last_name'] = last_name
    end
  end
end



class User
{
    #... continued ...#

    private function init()
    {
        $response = (new Riak\Command\Builder\UpdateMap($this->riak))
            ->updateRegister('first_name', $this->first_name)
            ->updateRegister('last_name', $this->last_name)
            ->withParameter('returnbody', 'true')
            ->build()
            ->execute();

        return $response->getMap();
    }
}



class User:
    def __init__(self, first_name, last_name):
        bucket = client.bucket_type('maps').bucket('users')
        key = "{}_{}".format(first_name, last_name)
        user_map = Map(bucket, key)
        user_map.registers['first_name'].assign(first_name)
        user_map.registers['last_name'].assign(last_name)

        # Thus far, all changes to the user_map object have only been
        # made locally. To commit them to Riak, we have to use the
        # store() method. You can alter Riak Data Types as much as you
        # wish on the client side prior to committing those changes to
        # Riak.
        user_map.store()



/*
 * The C# example uses a User model class and a User Repository class
 * See the entire example in the RiakClientExamples project here:
 * https://github.com/basho/riak-dotnet-client/tree/develop/src/RiakClientExamples/Dev/DataModeling/UserRepository.cs
 */



/*
 * The Node.js example uses a User model class and a UserRepository class wired
 * together via events and handling those events.
 * See the entire example here:
  * https://github.com/basho/riak-nodejs-client-examples/tree/master/dev/data-modeling
 */



Now, if we create a new user, that user will have a map instance
variable attached to it, the first_name and last_name strings will
be stored in Riak registers, and the key will be Bruce_Wayne:


User bruce = new User("Bruce", "Wayne");



bruce = User.new 'Bruce', 'Wayne'
#=> #<User:0x007fe2965cafc8 @map=#<Riak::Crdt::Map:0x007fe2965caf78 @bucket=#<Riak::Bucket {users}>, @key"Bruce_Wayne", @bucket_type"map", @options{}, @dirtyfalse, @counters#<Riak::Crdt::TypedCollection:0x007fe296125ae0 @type=Riak::Crdt::InnerCounter, @parent=#<Riak::Crdt::Map:0x007fe2965caf78 ...>, @contents{}, @flags#<Riak::Crdt::TypedCollection:0x007fe2961257c0 @type=Riak::Crdt::InnerFlag, @parent=#<Riak::Crdt::Map:0x007fe2965caf78 ...>, @contents{}, @maps#<Riak::Crdt::TypedCollection:0x007fe296125428 @type=Riak::Crdt::InnerMap, @parent=#<Riak::Crdt::Map:0x007fe2965caf78 ...>, @contents{}, @registers#<Riak::Crdt::TypedCollection:0x007fe296124e60 @type=Riak::Crdt::InnerRegister, @parent=#<Riak::Crdt::Map:0x007fe2965caf78 ...>, @contents{"last_name"=>"Wayne", "first_name"=>"Bruce"}, @sets#<Riak::Crdt::TypedCollection:0x007fe296124460 @type=Riak::Crdt::InnerSet, @parent=#<Riak::Crdt::Map:0x007fe2965caf78 ...>, @contents{}, @context"M\x01\x83P\x00\x00\x00\xC4x\x01\xCB`\xCAa```\xCC`\xCA\x05R\x1CG\x836r\a3\x1F\xB1Od\xC9\x02\t3e\x00!H\x82+-\xB3\xA8\xB8$>/175\x85\x81\xAF(31;>\xA5$>\xA7\xBC\xBC(5=\x03\xBB\t\xCCY\x10\xAD\xACNE\xA5\xC9\xA9y\xEC\fB%\xEE\xD1\x1F?\xB1\xC0\x8C\xE4\xCCI$\xD1D\x16\x98\x89\xE1\x89\x95y \x13y\x9B\xC0&f\x01\x00\xAF\x055\xA8"



$riak = new Riak((new Riak\Node\Builder())->buildLocalhost([8087]));
$iAmBatman = new User($riak, 'Bruce', 'Wayne');



bruce = User('Bruce', 'Wayne')



var bruce = new User("Bruce", "Wayne");



var userOptions = {
    client: client,
    firstName: 'Bruce',
    lastName: 'Wayne'
};
var bruce = new User(userOptions, function (err, rslt) {
    // Callback logic here...
});



So now we have our first_name and last_name variables stored in our
map, but we still need to account for interests and visits. First,
let’s modify our class definition to store each user’s interests in a
set within the map:


public class User {
    // Retaining our getMapContext() and other functions from above:

    public User(String firstName, String lastName, Set<String> interests) {
        this.key = String.format("%s_%s", firstName.toLowerCase(), lastName.toLowerCase());
        this.location = new Location(new Namespace(bucketType, bucket), key);
        RegisterUpdate ru1 = new RegisterUpdate(BinaryValue.create(firstName));
        RegisterUpdate ru2 = new RegisterUpdate(BinaryValue.create(lastName));
        SetUpdate su = setIntoSetUpdate(rawSet);
        MapUpdate mu = new MapUpdate()
                .update("first_name", ru1)
                .update("last_name", ru2)
                .update("interests", su);
        updateMapWithoutContext(mu);
    }

  /**
   * Transforms a Set of Strings into a SetUpdate that can be sent to
   * Riak:
   */

    private SetUpdate setIntoSetUpdate(Set<String> rawSet) {
        SetUpdate su = new SetUpdate():
    for (String item : rawSet) {
      su.add(BinaryValue.create(item));
    }
        return su;
    }
}



class User
  def initialize first_name, last_name, interests
    @key = "#{first_name}_#{last_name}"
    @map = Riak::Crdt::Map.new($client.bucket 'users', @key)

    # We'll use a batch function here to avoid making more trips to Riak
    # than we need to. We highly recommend using batch functions of this
    # sort whenever possible.
    @map.batch do |m|
      m.registers['first_name'] = first_name
      m.registers['last_name'] = last_name
      interests.each do |i|
        m.sets['interests'].add i
      end
    end
  end
end



class User
{
    #... continued ...#

    public function addInterests(array $interests)
    {
        $updateSetBuilder = (new Riak\Command\Builder\UpdateSet($this->riak));
        foreach($interests as $interest) {
            $updateSetBuilder->add($interest);
        }

        $response = (new Riak\Command\Builder\UpdateMap($this->riak))
            ->atLocation($this->location)
            ->updateSet('interests', $updateSetBuilder)
            ->withParameter('returnbody', 'true')
            ->build()
            ->execute();

        if ($response->isSuccess()) {
            $this->data = $response->getMap();
        }

        return $this;
    }
}



class User:
    def __init__(self, first_name, last_name, interests):
        bucket = client.bucket_type('maps').bucket('users')
        key = "{}_{}".format(first_name, last_name)
        user_map = Map(bucket, key)
        user_map.registers['first_name'].assign(first_name)
        user_map.registers['last_name'].assign(last_name)
        for interest in interests:
            user_map.sets['interests'].add(interest)
        user_map.store()



/*
 * The C# example uses a User model class and a User Repository class
 * See the entire example in the RiakClientExamples project here:
 * https://github.com/basho/riak-dotnet-client/tree/develop/src/RiakClientExamples/Dev/DataModeling
 */
// Changes to UserRepository.Save method:
if (EnumerableUtil.NotNullOrEmpty(model.Interests))
{
    var interestsSetOp = new SetOp();
    interestsSetOp.adds.AddRange(
        model.Interests.Select(i => TextSerializer(i))
    );
    mapUpdates.Add(new MapUpdate
    {
        set_op = interestsSetOp,
        field = new MapField
        {
            name = TextSerializer(interestsSet),
            type = MapField.MapFieldType.SET
        }
    });
}



/*
 * The Node.js example uses a User model class and a UserRepository class wired
 * together via events and handling those events.
 * See the entire example here:
  * https://github.com/basho/riak-nodejs-client-examples/tree/master/dev/data-modeling
 */



Now when we create new users, we need to specify their interests as a
list:


Set<String> interests = new HashSet<String>();
interests.add("distributed systems");
interests.add("Erlang");
User joe = new User("Joe", "Armstrong", interests);



joe = User.new('Joe', 'Armstrong', ['distributed systems', 'Erlang'])
#=> #<User:0x007f9a4b81ead8 @map=#<Riak::Crdt::Map:0x007f9a4b81ea88 @bucket=#<Riak::Bucket {users}>, @key"\#{first_name}\#{last_name}", @bucket_type"map", @options{}, @dirtyfalse, @counters#<Riak::Crdt::TypedCollection:0x007f9a4b89fae8 @type=Riak::Crdt::InnerCounter, @parent=#<Riak::Crdt::Map:0x007f9a4b81ea88 ...>, @contents{}, @flags#<Riak::Crdt::TypedCollection:0x007f9a4b89f8b8 @type=Riak::Crdt::InnerFlag, @parent=#<Riak::Crdt::Map:0x007f9a4b81ea88 ...>, @contents{}, @maps#<Riak::Crdt::TypedCollection:0x007f9a4b89f688 @type=Riak::Crdt::InnerMap, @parent=#<Riak::Crdt::Map:0x007f9a4b81ea88 ...>, @contents{}, @registers#<Riak::Crdt::TypedCollection:0x007f9a4b89f4a8 @type=Riak::Crdt::InnerRegister, @parent=#<Riak::Crdt::Map:0x007f9a4b81ea88 ...>, @contents{"last_name"=>"Armstrong", "first_name"=>"Joe"}, @sets#<Riak::Crdt::TypedCollection:0x007f9a4b89f0e8 @type=Riak::Crdt::InnerSet, @parent=#<Riak::Crdt::Map:0x007f9a4b81ea88 ...>, @contents{"interests"=>#<Riak::Crdt::InnerSet:0x007f9a4b89ee90 @parent=#<Riak::Crdt::TypedCollection:0x007f9a4b89f0e8 ...>, @value#<Set: {"Erlang"}, @name="interests">}, @context"M\x01\x83P\x00\x00\x01Ex\x01\xCB`\xCAa```\xCC`\xCA\x05R\x1CG\x836r\a3\x1F\xB1O\xE4\xCC\x02\t3g0A$\xB8\xD22\x8B\x8AK\xE2\xF3\x12sSS\x18\xF8\x8A2\x13\xB3\xE3SJ\xE2s\xCA\xCB\x8BR\xD33\xB0\x9B\xC0\x9E\x05\xD1\xCA\xEC\x95\x9F\x9A\xC7\xCE\xF0%\xF7\xD8\xB2\x8F\x9FX`\x06rf\xE6\x95\xA4\x16\xA5\x16\x97\x14#\x99\x97_T\\\x9E_\x82\xC3<N\xA0yX\x9D\xCA\bv*\xD4\al\xAEE9\x89y\xE98\x14\x02\x8D\x808\x8A3'\x91D\xEFp@\xBD\xC3\xE9X\x94[\\R\x94\x9F\x97\x0E\xF4TF\x1D\xD8SY\x00K\x04Y\xA1"



$user = (new User($riak, 'Joe', 'Armstrong'))
    ->addInterests(['distributed systems', 'Erlang']);



joe = User('Joe', 'Armstrong', ['distributed systems', 'Erlang'])



var interests = new[] { "distributed systems", "Erlang" };
var user = new User("Joe", "Armstrong", interests);



var interests = [ "distributed systems", "Erlang" ];
var user = new User("Joe", "Armstrong", interests);



Our visits variable will work a little bit differently, because when a
new user is created the value will simply be zero. This is true of all
Riak counters. If you fetch the value of a counter that has not yet been
modified, it will be zero, even if you query a counter in a random
bucket and key. Let’s create a new instance method that increments the
visits counter by one every time it is called:


public class User {
    public User() {
        // Retaining from above
    }

    public void visitPage() {
        CounterUpdate cu = new CounterUpdate(1);

        // To decrement a counter, pass a negative number to the
        // CounterUpdate object

        MapUpdate mu = new MapUpdate()
                .update("visits", cu);

        // Using our updateMapWithoutContext method from above, as
        // context is not necessary for counter updates
        updateMapWithoutContext(mu);
    }
}



class User
  def initialize first_name, last_name, interests
    @map = Riak::Crdt::Map.new($client.bucket 'users', "#{first_name}_#{last_name}")
    @map.batch do |m|
      m.registers['first_name'] = first_name
      m.registers['last_name'] = last_name
      interests.each do |i|
        m.sets['interests'].add i
      end
    end
  end

  def visit_page
    @map.counters['visits'].increment
  end
end



class User
{
    #... continued ...#

    public function recordVisit()
    {
        $updateCounterBuilder = (new Riak\Command\Builder\IncrementCounter($this->riak))
            ->withIncrement(1);

        $response = (new Riak\Command\Builder\UpdateMap($this->riak))
            ->updateCounter('visits', $updateCounterBuilder)
            ->atLocation($this->location)
            ->withParameter('returnbody', 'true')
            ->build()
            ->execute();

        if ($response->isSuccess()) {
            $this->data = $response->getMap();
        }

        return $this;
    }
}



class User:
    def __init__(self, first_name, last_name, interests):
        bucket = client.bucket_type('maps').bucket('users')
        key = "{}_{}".format(first_name, last_name)
        self.user_map = Map(bucket, key)
        self.user_map.registers['first_name'].assign(first_name)
        self.user_map.registers['last_name'].assign(last_name)
        for interest in interests:
            self.user_map.sets['interests'].add(interest)
        self.user_map.store()

    def visit_page(self):
        self.user_map.counters['visits'].increment()
        self.user_map.store()



// In User.cs
public void VisitPage()
{
    ++pageVisits;
    var e = new PropertyChangedEventArgs("PageVisits");
    PropertyChanged(this, e);
}

// In UserRepository.cs
public void IncrementPageVisits()
{
    var mapUpdates = new List<MapUpdate>();

    mapUpdates.Add(new MapUpdate
    {
        counter_op = new CounterOp { increment = 1 },
        field = new MapField
        {
            name = TextSerializer(visitsCounter),
            type = MapField.MapFieldType.COUNTER
        }
    });

    // Update without context
    var rslt = client.DtUpdateMap(
        GetRiakObjectId(), TextSerializer, null, null, mapUpdates, null);
    CheckResult(rslt.Result);
}



// https://github.com/basho/riak-nodejs-client-examples/tree/master/dev/data-modeling
// user.js
User.prototype.visitPage = function () {
    this.visits += 1;
    this.propertyChanged('visits', 1);
};

// user-repository.js
UserRepository.prototype.incrementPageVisits = function (model) {

    var mapOp = new Riak.Commands.CRDT.UpdateMap.MapOperation();
    mapOp.incrementCounter('visits', 1);

    var bucketType = this.getBucketType(),
        bucket = this.getBucketName(),
        options = {
            bucketType: bucketType,
            bucket: bucket,
            key: model.id,
            op: mapOp
        };

    this.client.updateMap(options, function (err, rslt) {
        if (err) {
            throw new Error(err);
        } else {
            logger.debug("[UserRepository.incrementPageVisits] rslt: '%s'", JSON.stringify(rslt));
        }
    });
};



And then we can have Joe Armstrong visit our page:


joe.visitPage();



joe.visit_page



$user->recordVisit();



joe.visit_page()



joe.VisitPage();



joe.visitPage();



The page visit counter did not exist prior to this method call, but the
counter will be created (and incremented) all at once.


Finally, we need to include paid_account in our map as a [[flag|Data
Types#Flags]]. Each user will initially be added to Riak as a non-paying
user, and we can create methods to upgrade and downgrade the user’s
account at will:


public class User {
    // Retaining all of the class methods from above

    public void upgradeAccount() {
        FlagUpdate setToTrue = new FlagUpdate().set(true);
        Context ctx = getMapContext();
        MapUpdate mu = new MapUpdate()
                .withContext(ctx)
                .update("paid_account", setToTrue);
        updateMapWithContext(mu);
    }

    public void downgradeAccount() {
        FlagUpdate setToFalse = new FlagUpdate().set(false);
        MapUpdate mu = new MapUpdate()
                .withContext(ctx)
                .update("paid_account", setToFalse);
        updateMapWithContext(mu);
    }
}



class User
  def initialize first_name, last_name, interests
    @map = Riak::Crdt::Map.new($client.bucket 'users', "#{first_name}_#{last_name}")
    @map.batch do |m|
      m.registers['first_name'] = first_name
      m.registers['last_name'] = last_name
      interests.each do |i|
        m.sets['interests'].add i
      end
      m.flags['paid_account'] = false
    end
  end

  def upgrade_account
    @map.flags['paid_account'] = true
  end

  def downgrade_account
    @map.flags['paid_account'] = false
  end
end



class User
{
    #... continued ...#

    private function init()
    {
        $response = (new Riak\Command\Builder\UpdateMap($this->riak))
            ->updateRegister('first_name', $this->first_name)
            ->updateRegister('last_name', $this->last_name)
            ->updateFlag('paid_account', false)
            ->atLocation($this->location)
            ->withParameter('returnbody', 'true')
            ->build()
            ->execute();

        return $response->getMap();
    }

    public function upgradeAccount()
    {
        $response =  (new Riak\Command\Builder\UpdateMap($this->riak))
            ->updateFlag('paid_account', true)
            ->atLocation($this->location)
            ->withParameter('returnbody', 'true')
            ->build()
            ->execute();

        if ($response->isSuccess()) {
            $this->data = $response->getMap();
        }

        return $this;
    }

    public function downgradeAccount()
    {
        $response = (new Riak\Command\Builder\UpdateMap($this->riak))
            ->updateFlag('paid_account', false)
            ->atLocation($this->location)
            ->withParameter('returnbody', 'true')
            ->build()
            ->execute();

        if ($response->isSuccess()) {
            $this->data = $response->getMap();
        }

        return $this;
    }
}



class User:
    def __init__(self, first_name, last_name, interests):
        bucket = client.bucket_type('maps').bucket('users')
        key = "{}_{}".format(first_name, last_name)
        self.user_map = Map(bucket, key)
        self.user_map.registers['first_name'].assign(first_name)
        self.user_map.registers['last_name'].assign(last_name)
        for interest in interests:
            self.user_map.sets['interests'].add(interest)
        self.user_map.store()

    def upgrade_account(self):
        self.user_map.flags['paid_account'].enable()
        self.user_map.store()

    def downgrade_account(self):
        self.user_map.flags['paid_account'].disable()
        self.user_map.store()



/*
 * See the entire example in the RiakClientExamples project here:
 * https://github.com/basho/riak-dotnet-client/tree/develop/src/RiakClientExamples/Dev/DataModeling/UserRepository.cs
 */

public void UpgradeAccount()
{
    var mapUpdates = new List<MapUpdate>();

    mapUpdates.Add(new MapUpdate
    {
        flag_op = MapUpdate.FlagOp.ENABLE,
        field = new MapField
        {
            name = TextSerializer(paidAccountFlag),
            type = MapField.MapFieldType.FLAG
        }
    });

    UpdateMap(mapUpdates, fetchFirst: true);
}

public void DowngradeAccount()
{
    var mapUpdates = new List<MapUpdate>();

    mapUpdates.Add(new MapUpdate
    {
        flag_op = MapUpdate.FlagOp.DISABLE,
        field = new MapField
        {
            name = TextSerializer(paidAccountFlag),
            type = MapField.MapFieldType.FLAG
        }
    });

    UpdateMap(mapUpdates, fetchFirst: true);
}



/*
 * See the entire example here:
 * https://github.com/basho/riak-nodejs-client-examples/tree/master/dev/data-modeling
 */

// user-repository.js
UserRepository.prototype.setPaidAccount = function (model, value) {

    var mapOp = new Riak.Commands.CRDT.UpdateMap.MapOperation();
    mapOp.setFlag('paid_account', value);

    var bucketType = this.getBucketType(),
        bucket = this.getBucketName(),
        options = {
            bucketType: bucketType,
            bucket: bucket,
            key: model.id,
            op: mapOp
        };

    this.client.updateMap(options, function (err, rslt) {
        if (err) {
            throw new Error(err);
        } else {
            logger.debug("[UserRepository.incrementPageVisits] rslt: '%s'", JSON.stringify(rslt));
        }
    });

};



The problem with our User model so far is that we can’t actually
retrieve any information about specific users from Riak. So let’s
create some getters to do that:


public class User {

    /**
     * Fetches our map from Riak in its current state, which enables us
     * to fetch current values for all of the fields of the map, as
     * in the methods below.
     */

    private RiakMap getMap() throws Exception {
        FetchMap fetch = new FetchMap.Builder(location).build();
        return client.execute(fetch).getDatatype();
    }

    public String getFirstName() {
        return getMap().getRegister("first_name").toString();
    }

    public String getLastName() {
        return getMap().getRegister("last_name").toString();
    }

    public Set<String> getInterests() {
        Set<String> setBuilder = new HashSet<String>();
        Set<BinaryValue> binarySet = getMap().getSet("interests").viewAsSet();
        binarySet.forEach((BinaryValue item) -> {
            setBuilder.add(item.toString());
        });
        return setBuilder;
    }

    public Long getVisits() {
        return getMap().getCounter("visits").view();
    }

    public boolean getAccountStatus() {
        return getMap().getFlag("paid_account").view();
    }
}



class User
  # retain class methods from above

  def first_name
    @map.registers['first_name']
  end

  def last_name
    @map.registers['last_name']
  end

  def interests
    @map.sets['interests'].to_a
  end

  def visits
    @map.counters['visits'].value
  end

  def paid_account
    @map.flags['paid_account']
  end
end



class User
{
    #... continued ...#

    private function getData()
    {
        $response = (new Riak\Command\Builder\FetchMap($this->riak))
            ->atLocation($this->location)
            ->build()
            ->execute();

        if ($response->isSuccess()) {
            $this->data = $response->getMap();
        } elseif ($response->isNotFound()) {
            $this->data = $this->init();
        } else {
            throw new Exception('Unknown error:' . $response->getStatusCode());
        }

        return $this->data;
    }

    public function getFirstName()
    {
        return $this->getData()->getRegister('first_name');
    }

    public function getLastName()
    {
        return $this->getData()->getRegister('last_name');
    }

    public function getInterests()
    {
        return $this->getData()->getSet('interests')->getData();
    }

    public function getVisits()
    {
        return $this->getData()->getCounter('visits')->getData();
    }

    public function getPaidAccount()
    {
        return $this->getData()->getFlag('paid_account');
    }
}



class User:
    # retain class methods from above

    @property
    def first_name(self):
        return self.user_map.reload().registers['first_name'].value

    @property
    def last_name(self):
        return self.user_map.reload().registers['last_name'].value

    @property
    def interests(self):
        return self.user_map.reload().sets['interests'].value

    @property
    def visits(self):
        return self.user_map.reload().counters['visits'].value

    @property
    def paid_account(self):
        return self.user_map.reload().flags['paid_account'].value



/*
 * See the entire example in the RiakClientExamples project here:
 * https://github.com/basho/riak-dotnet-client/tree/develop/src/RiakClientExamples/Dev/DataModeling/UserRepository.cs
 */

public override User Get(string key, bool notFoundOK = false)
{
    var fetchRslt = client.DtFetchMap(GetRiakObjectId());
    CheckResult(fetchRslt.Result);

    string firstName = null;
    string lastName = null;
    var interests = new List<string>();
    uint pageVisits = 0;

    foreach (var value in fetchRslt.Values)
    {
        RiakDtMapField mapField = value.Field;
        switch (mapField.Name)
        {
            case firstNameRegister:
                if (mapField.Type != RiakDtMapField.RiakDtMapFieldType.Register)
                {
                    throw new InvalidCastException("expected Register type");
                }
                firstName = TextDeserializer(value.RegisterValue);
                break;
            case lastNameRegister:
                if (mapField.Type != RiakDtMapField.RiakDtMapFieldType.Register)
                {
                    throw new InvalidCastException("expected Register type");
                }
                lastName = TextDeserializer(value.RegisterValue);
                break;
            case interestsSet:
                if (mapField.Type != RiakDtMapField.RiakDtMapFieldType.Set)
                {
                    throw new InvalidCastException("expected Set type");
                }
                interests.AddRange(value.SetValue.Select(v => TextDeserializer(v)));
                break;
            case pageVisitsCounter:
                if (mapField.Type != RiakDtMapField.RiakDtMapFieldType.Counter)
                {
                    throw new InvalidCastException("expected Counter type");
                }
                pageVisits = (uint)value.Counter.Value;
                break;
            /*
                * Note: can do additional checks here in default case
                */
        }
    }

    return new User(firstName, lastName, interests, pageVisits);
}



/*
 * See the entire example here:
 * https://github.com/basho/riak-nodejs-client-examples/tree/master/dev/data-modeling
 */

// user-repository.js
UserRepository.prototype.buildModel = function (rslt) {
    var firstName = rslt.map.registers.first_name.toString('utf8');
    var lastName = rslt.map.registers.last_name.toString('utf8');

    var interests = [];
    if (rslt.map.sets.interests) {
        rslt.map.sets.interests.forEach(function (interest) {
            interests.push(interest);
        });
    }

    var visits = 0;
    if (rslt.map.counters.visits) {
        visits = rslt.map.counters.visits;
    }

    var paid_account = false;
    if (rslt.map.flags.paid_account) {
        paid_account = rslt.map.flags.paid_account;
    }

    return new User(firstName, lastName, interests, visits, paid_account);
};



Now, we can create a new user and then access that user’s
characteristics directly from our Riak map:


Set<String> interests = new HashSet<String>();
interests.add("distributed systems");
interests.add("Erlang");
User joe = new User("Joe", "Armstrong", interests);

joe.getFirstName(); // Joe
joe.getLastName(); // Armstrong
joe.getInterests(); // ["distributed systems", "Erlang"]
joe.getVisits(); // 0
joe.visitPage();
joe.getVisits(); // 1
joe.getAccountStatus(); // false



joe = User.new('Joe', 'Armstrong', ['distributed systems', 'Erlang'])
joe.first_name #=> "Joe"
joe.last_name #=> "Armstrong"
joe.interests #=> ["distributed systems", "Erlang"]
joe.visits #=> 0
joe.visit_page
joe.visits #=> 1
joe.paid_account #=> fase



$riak = new Riak((new Riak\Node\Builder())->buildLocalhost([8087]));

$joe = (new User($riak, 'Joe', 'Armstrong'))
    ->addInterests(['distributed systems', 'Erlang'])
    ->recordVisit();

var_dump(
    $joe->getFirstName(),
    $joe->getLastName(),
    $joe->getInterests(),
    $joe->getVisitCount(),
    $joe->recordVisit()->getVisitCount(),
    $joe->getPaidAccount()
);



joe = User('Joe', 'Armstrong', ['distributed systems', 'Erlang'])
joe.first_name # 'Joe'
joe.last_name # 'Armstrong'
joe.interests # frozenset(['Erlang', 'distributed systems'])
joe.visits # 0
joe.visit_page()
joe.visits # 1
joe.paid_account # false



var interests = new HashSet<string> { "distributed systems", "Erlang" };
var joe = new User("Joe", "Armstrong", interests);

joe.FirstName; // Joe
joe.LastName; // Armstrong
joe.Interests; // ["distributed systems", "Erlang"]
joe.PageVisits; // 0
joe.VisitPage();
joe.PageVisits; // 1
joe.AccountStatus; // false



var interests = [ "distributed systems", "Erlang" ];
var joe = new User("Joe", "Armstrong", interests);

joe.firstName; // Joe
joe.lastName; // Armstrong
joe.interests; // ["distributed systems", "Erlang"]
joe.visits; // 0
joe.VisitPage();
joe.visits; // 1
joe.paid_account; // false



We can also create instance methods that add and remove specific
interests:


public class User {
    // Retaining all of the class methods from above

    public void addInterest(String interest) {
        SetUpdate su = new SetUpdate().add(BinaryValue.create(interest));
        MapUpdate mu = new MapUpdate()
                .update("interests", su);
        updateMapWithoutContext(mu);
    }

    public void removeInterest(String interest) {
        SetUpdate su = new SetUpdate().remove(BinaryValue.create(interest));
        Context ctx = getMapContext();
        MapUpdate mu = new MapUpdate()
                .withContext(ctx)
                .update("interests", mu);
        updateMapWithContext(mu);
    }
}



class User
  # retain class methods from above

  def add_interest interest
    @map.sets['interests'].add interest
  end

  def remove_interest interest
    unless !interests.include? interest
      @map.sets['interests'].remove interest
    end
  end
end



class User
{
    #... continued ...#

    public function addInterest($interest)
    {
        $updateSetBuilder = (new Riak\Command\Builder\UpdateSet($this->riak))->add($interest);

        $response = (new Riak\Command\Builder\UpdateMap($this->riak))
            ->atLocation($this->location)
            ->updateSet('interests', $updateSetBuilder)
            ->withParameter('returnbody', 'true')
            ->build()
            ->execute();

        if ($response->isSuccess()) {
            $this->data = $response->getMap();
        }

        return $this;
    }

    public function removeInterest($interest)
    {
        $updateSetBuilder = (new Riak\Command\Builder\UpdateSet($this->riak))->remove($interest);

        $response = (new Riak\Command\Builder\UpdateMap($this->riak))
            ->atLocation($this->location)
            ->updateSet('interests', $updateSetBuilder)
            ->withParameter('returnbody', 'true')
            ->withContext($this->data->getContext())
            ->build()
            ->execute();

        if ($response->isSuccess()) {
            $this->data = $response->getMap();
        }

        return $this;
    }
}



class User:
    # retain class methods from above

    def add_interest(self, interest):
        self.user_map.sets['interests'].add(interest)
        self.user_map.store()

    def remove_interest(self, interest):
        self.user_map.sets['interests'].discard(interest)
        self.user_map.store()



public void AddInterest(string interest)
{
    if (!interests.Contains(interest))
    {
        interests.Add(interest);
        /*
            * Real-world you would be using your own entity changed
            * event interface that allows events like these to be
            * raised instead of using formatted strings
            */
        var data = string.Format("Interests:Added:{0}", interest);
        var e = new PropertyChangedEventArgs(data);
        PropertyChanged(this, e);
    }
}

public void RemoveInterest(string interest)
{
    if (interests.Contains(interest))
    {
        interests.Remove(interest);
        var data = string.Format("Interests:Removed:{0}", interest);
        var e = new PropertyChangedEventArgs(data);
        PropertyChanged(this, e);
    }
}



/*
 * See the entire example here:
 * https://github.com/basho/riak-nodejs-client-examples/tree/master/dev/data-modeling
 */

// user.js
User.prototype.addInterest = function (interest) {
    if (this.interests) {
        this.interests.push(interest);
    } else {
        this.interests = [ interest ];
    }
    this.propertyChanged('interest:add', interest);
};

User.prototype.removeInterest = function (interest) {
    if (this.interests) {
        var index = this.interests.indexOf(interest);
        if (index > -1) {
            this.interests.splice(index, 1);
            this.propertyChanged('interest:remove', interest);
        }
    }
};






Converting to JSON


If we wanted to connect our application to an in-browser interface, we
would probably need to be able to convert any given User to JSON. So
let’s add a JSON conversion method to our class:


// For JSON generation, we'll use the Jackson JSON library

import com.fasterxml.jackson.databind.ObjectMapper;

class User {
    // Retaining all of the class methods from above

    public String toJson() throws Exception {
        ObjectMapper jsonMapper = new ObjectMapper();

        Map<String, Object> userJsonMap = new HashMap<String, Object>();

        RiakMap userRiakMap = getMap();

        userJsonMap.put("firstName", userRiakMap.getRegister("first_name").getValue().toString());
        userJsonMap.put("lastName", userRiakMap.getRegister("last_name").getValue().toString());
        userJsonMap.put("interests", userRiakMap.getSet("interests").viewAsSet());
        userJsonMap.put("visits", userRiakMap.getCounter("visits").view());
        userJsonMap.put("paidAccount", userRiakMap.getFlag("paid_account").view());

        return jsonMapper.writeValueAsString(userJsonMap);
    }
}



require 'json'

class User
  # retain class methods from above

  def as_json
    {
      :first_name => first_name,
      :last_name => last_name,
      :interests => interests,
      :visits => visits
    }.to_json
  end
end



class User
{
    #... continued ...#

    public function __toString()
    {
        return json_encode([
            'first_name' => $this->first_name,
            'last_name' => $this->last_name,
            'interests' => $this->getInterests(),
            'visits' => $this->getVisitCount(),
            'paid_account' => $this->getPaidAccount()
        ]);
    }
}



import json

class User:
    # retain class methods from above

    def as_json():
        m = self.user_map.reload()
        user_dict = {
            'firstName': m.registers['first_name'].value,
            'lastName': m.registers['last_name'].value,
            'interests': list(m.sets['interests'].value),
            'visits': m.counters['visits'].value,
            'paidAccount': m.flags['paid_account'].value
        }
        return json.dumps(user_dict)



/*
 * Since the User model object does not contain Riak Data Type
 * information internally, JSON.NET can serialize the object
 * directly
 */



/*
 * Since the User model object does not contain Riak Data Type
 * information internally, Javascript can serialize the object
 * directly
 */
JSON.stringify(joe);



Now, we can instantly convert our User map into a stringified JSON
object and pipe it to our client-side application:


Set<String> interests = new HashSet<String>();
interests.add("crime fighting");
interests.add("climbing stuff");
User bruce = new User("Bruce", "Wayne", interests);
bruce.toJson();



bruce = User.new('Bruce', 'Wayne', ['crime fighting', 'climbing stuff'])
bruce.visit_page
bruce.as_json
#=>  "{"first_name":"Bruce","last_name":"Wayne","interests":["climbing","crime fighting"],"visits":1}"



$iAmBatman = new User($riak, 'Bruce', 'Wayne');
$iAmBatman->addInterests(['crime fighting', 'climbing stuff']);
// prints json data string to standard out
echo $iAmBatman;



bruce = User('Bruce', 'Wayne', ['crime fighting', 'climbing stuff'])
bruce.visit_page()
bruce.as_json()
# '{"interests": ["climbing", "crime fighting"], "lastName": "Wayne", "visits": 1, "firstName": "Bruce", "paidAccount": false}'



/*
 * Since the User model object does not contain Riak Data Type
 * information internally, JSON.NET can serialize the object
 * directly
 */



/*
 * Since the User model object does not contain Riak Data Type
 * information internally, Javascript can serialize the object
 * directly
 */
JSON.stringify(joe);







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/using/2i.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Using Secondary Indexes
project: riak
version: 1.0.0+
document: tutorials
toc: true
audience: beginner
keywords: [developers, 2i]
moved: {
‘1.4.0-‘: ‘/tutorials/querying/Secondary-Indexes’
}





Note: Riak Search preferred for querying

If you're interested in non-primary-key-based querying in Riak, i.e. if
you're looking to go beyond straightforward K/V operations, we now
recommend [[Riak Search|Using Search]] rather than secondary indexes for
a variety of reasons. Most importantly, Riak Search has a far more
capacious querying API and can be used with all of Riak's storage
backends.

Secondary indexes (2i) in Riak enable you to tag objects stored in Riak,
at write time, with one or more queryable values. Those values can then
be used to find multiple objects in Riak. If you’re storing [[user
data|Use Cases#User-Accounts]], for example, you could tag each object
associated with that user with a username or other unique marker. Once
tagged, you could find all objects in a Riak bucket sharing that tag.
Secondary indexes can be either a binary or string, such as
sensor_1_data or admin_user or click_event, or an integer, such as
99 or 141121.


[[Riak Search|Using Search]] serves analogous purposes but is quite
different because it parses key/value data itself and builds indexes on
the basis of Solr schemas.


Please note that 2i can be used only with the [[LevelDB]] and [[Memory]]
backends.



Features



		Allows two types of secondary attributes: integers and strings (aka
binaries)


		Allows querying by exact match or range on one index


		Allows pagination of results


		Allows streaming of results


		Query results can be used as input to a [[MapReduce|Using MapReduce]]
query






Note on 2i and strong consistency

Secondary indexes do not currently work with the [[strong consistency]]
feature introduced in Riak version 2.0. If you store objects in
[[strongly consistent buckets|Using Strong
Consistency#Creating-a-Strongly-Consistent-Bucket-Type]] and attach
secondary index metadata to those objects, you can still perform
strongly consistent operations on those objects but the secondary
indexes will be ignored.




When to Use Secondary Indexes


Secondary indexes are useful when you want to find data on the basis of
something other than objects’ bucket type, bucket, and key, i.e. when
you want objects to be discoverable based on more than their location
alone.


2i works best for objects whose value is stored in an opaque blob, like
a binary file, because those objects don’t offer any clues that enable
you to discover them later. Indexing enables you to tag those objects
and find all objects with the same tag in a specified bucket later on.


2i is thus recommended when your use case requires an easy-to-use search
mechanism that does not require a schema (as does [[Riak Search|Search
Details#schemas]]) and a basic query interface, i.e. an interface that
enables an application to tell Riak things like “fetch all objects
tagged with the string Milwaukee_Bucks” or “fetch all objects tagged
with numbers between 1500 and 1509.”


2i is also recommended if your use case requires anti-entropy. Since
secondary indexes are just metadata attached to key/value objects, 2i
piggybacks off of read-repair.





When Not to Use Secondary Indexes



		If your ring size exceeds 512 partitions, 2i can cause performance
issues in large clusters.


		When you need more than the exact match and range searches that 2i
supports. If that’s the case, we recommend checking out [[Riak
Search|Using Search]].


		When you want to use composite queries. A query like
last_name=zezeski AND state=MD would have to be split into two
queries and the results merged (or it would need to involve
[[MapReduce|Using MapReduce]]).








Query Interfaces and Examples


Typically, the result set from a 2i query is a list of object keys from
the specified bucket that include the index values in question. As we’ll
see below, when executing range queries in Riak 1.4 or higher, it is
possible to retrieve the index values along with the object keys.



Inserting Objects with Secondary Indexes


In this example, the key john_smith is used to store user data in the
bucket users, which bears the default bucket type. Let’s say that an
application would like add a Twitter handle and an email address to this
object as secondary indexes.


Location johnSmithKey = new Location(new Namespace("default", "users"), "john_smith");

// In the Java client (and all clients), if you do not specify a bucket type,
// the client will use the default type. And so the following store command
// would be equivalent to the one above:
Location johnSmithKey = new Location(new Namespace("users"), "john_smith");

RiakObject obj = new RiakObject()
        .setContentType("application/json")
        .setValue(BinaryValue.create("{'user_data':{ ... }}"));

obj.getIndexes().getIndex(StringBinIndex.named("twitter")).add("jsmith123");
obj.getIndexes().getIndex(StringBinIndex.named("email")).add("jsmith@basho.com");

StoreValue store = new StoreValue.Builder(obj)
        .withLocation(johnSmithKey)
        .build();
client.execute(store);



bucket = client.bucket_type('default').bucket('users')
obj = Riak::RObject.new(bucket, 'john_smith')
obj.content_type = 'application/json'
obj.raw_data = '{"user_data":{ ... }}'

# String/binary indexes must be set as an array of strings
obj.indexes['twitter_bin'] = %w{ jsmith123 }
obj.indexes['email_bin'] = %w{ jsmith@basho.com }
obj.store

# In the Ruby client (and all clients), if you do not specify a bucket
# type, the client will use the default type. And so the following set
# of commands would be equivalent to the one above:

bucket = client.bucket('users')
# repeat the same commands for building the object
obj.store



$object = (new \Basho\Riak\Object('{"user_data":{ ... }}', ['Content-type' => 'application/json']))
  ->addValueToIndex('twitter_bin', 'jsmith123')
  ->addValueToIndex('email_bin', 'jsmith@basho.com');

(new \Basho\Riak\Command\Builder\StoreObject($riak))
  ->withObject($object)
  ->buildLocation('john_smith', 'users', 'default')
  ->build()
  ->execute();



bucket = client.bucket_type('default').bucket('users')
# In the Python client (and all clients), if you do not specify a bucket type,
# the client will use the default type. And so the following store command
# would be equivalent to the one above:
bucket = client.bucket('users')

obj = RiakObject(client, bucket, 'john_smith')
obj.content_type = 'text/plain'
obj.data = '...user data...'
obj.add_index('twitter_bin', 'jsmith123')
obj.add_index('email_bin', 'jsmith@basho.com')
obj.store()



var id = new RiakObjectId("default", "users", "john_smith");
var obj = new RiakObject(id, "...user data...",
    RiakConstants.ContentTypes.TextPlain);
obj.BinIndex("twitter").Set("jsmith123");
obj.BinIndex("email").Set"jsmith@basho.com");
var rslt = client.Put(obj);



var riakObj = new Riak.Commands.KV.RiakObject();
riakObj.setContentType('text/plain');
riakObj.setBucket('users');
riakObj.setKey('john_smith');
riakObj.setValue('...user data...');
riakObj.addToIndex('twitter_bin', 'jsmith123');
riakObj.addToIndex('email_bin', 'jsmith@basho.com');
client.storeValue({ value: riakObj }, function (err, rslt) {
    if (err) {
        throw new Error(err);
    }
});



Obj = riakc_obj:new({<<"default">>, <<"users">>},
                    <<"john_smith">>,
                    <<"...user data...">>,
                    <<"text/plain">>),
%% In the Erlang client (and all clients), if you do not specify a bucket type,
%% the client will use the default type. And so the following object would be
%% equivalent to the one above:

Obj = riakc_obj:new(<<"users">>,
                    <<"john_smith">>,
                    <<"...user data...">>,
                    <<"text/plain">>),
MD1 = riakc_obj:get_update_metadata(Obj),
MD2 = riakc_obj:set_secondary_index(
    MD1,
    [{{binary_index, "twitter"}, [<<"jsmith123">>]},
     {{binary_index, "email"}, [<<"jsmith@basho.com">>]}]),
Obj2 = riakc_obj:update_metadata(Obj, MD2),
riakc_pb_socket:put(Pid, Obj2).



curl -XPOST localhost:8098/types/indexes/buckets/users/keys/john_smith \
  -H 'x-riak-index-twitter_bin: jsmith123' \
  -H 'x-riak-index-email_bin: jsmith@basho.com' \
  -H 'Content-Type: application/json' \
  -d '{"userData":"data"}'




Getting started with Riak clients

If you are connecting to Riak using one of Basho's official [[client
libraries]], you can find more information about getting started with
your client in our [[quickstart guide|Five-Minute
Install#setting-up-your-riak-client]].

This has accomplished the following:



		The object has been stored with a primary bucket/key of
users/john_smith


		The object now has a secondary index called twitter_bin with a value
of jsmith123


		The object now has a secondary index called email_bin with a value
of jsmith@basho.com








Querying Objects with Secondary Indexes


Let’s query the users bucket on the basis of Twitter handle to make
sure that we can find our stored object:


Namespace usersBucket = new Namespace("users");
BinIndexQuery biq = new BinIndexQuery.Builder(usersBucket, "twitter", "jsmith123")
        .build();
BinIndexQuery.Response response = client.execute(biq);
List<BinIndexQuery.Response.Entry> entries = response.getEntries();
for (BinIndexQuery.Response.Entry entry : entries) {
    System.out.println(entry.getRiakObjectLocation().getKey());
}



bucket = client.bucket('users')
bucket.get_index('twitter_bin', 'jsmith123')

# This is equivalent to the following:
bucket = client.bucket_type('default').bucket('users')
bucket.get_index('twitter_bin', 'jsmith123')



$response = (new \Basho\Riak\Command\Builder\QueryIndex($riak))
  ->buildBucket('users')
  ->withIndexName('twitter_bin')
  ->withScalarValue('jsmith123')
  ->build()
  ->execute()
  ->getResults();



bucket = client.bucket('users') # equivalent to client.bucket_type('default').bucket('users')
bucket.get_index('twitter_bin', 'jsmith123').results



var idxId = new RiakIndexId("default", "users", "twitter");
var rslt = client.GetSecondaryIndex(idxId, "jsmith123");
var idxRslt = rslt.Value;
foreach (var keyTerm in idxRslt.IndexKeyTerms)
{
    Debug.WriteLine(keyTerm.Key);
}



var query_keys = [];
function query_cb(err, rslt) {
    if (err) {
        throw new Error(err);
    }

    if (rslt.done) {
        query_keys.forEach(function (key) {
            logger.info("2i query key: '%s'", key);
        });
    }

    if (rslt.values.length > 0) {
        Array.prototype.push.apply(query_keys,
            rslt.values.map(function (value) {
                return value.objectKey;
            }));
    }
}

var cmd = new Riak.Commands.KV.SecondaryIndexQuery.Builder()
    .withBucket('users')
    .withIndexName('twitter_bin')
    .withIndexKey('jsmith123')
    .withCallback(query_cb)
    .build();
client.execute(cmd);



{ok, Results} =
    riakc_pb_socket:get_index(Pid,
                              <<"users">>, %% bucket
                              {binary_index, "twitter"}, %% index name
                              <<"jsmith123">>). %% index



curl localhost:8098/buckets/users/index/twitter_bin/jsmith123



The response:


john_smith



["john_smith"]



['john_smith']



['john_smith']



john_smith



john_smith



{ok,{index_results_v1,[<<"john_smith">>],
                      undefined,undefined}}.



{
  "keys": [
    "john_smith"
  ]
}








Examples


To run the following examples, make sure that Riak is configured to use
an index-capable storage backend, such as [[LevelDB]] or [[Memory]].





Indexing Objects


The following example indexes four different objects. Notice that we’re
storing both integer and string (aka binary) fields. Field names are
automatically lowercased, some fields have multiple values, and
duplicate fields are automatically de-duplicated, as in the following
example:


Namespace peopleBucket = new Namespace("indexes", "people");

RiakObject larry = new RiakObject()
        .setValue(BinaryValue.create("My name is Larry"));
larry.getIndexes().getIndex(StringBinIndex.named("field1")).add("val1");
larry.getIndexes().getIndex(LongIntIndex.named("field2")).add(1001L);
StoreValue storeLarry = new StoreValue.Builder(larry)
        .withLocation(peopleBucket.setKey("larry"))
        .build();
client.execute(storeLarry);

RiakObject moe = new RiakObject()
        .setValue(BinaryValue.create("Ny name is Moe"));
moe.getIndexes().getIndex(StringBinIdex.named("Field1")).add("val2");
moe.getIndexes().getIndex(LongIntIndex.named("Field2")).add(1002L);
StoreValue storeMoe = new StoreValue.Builder(moe)
        .withLocation(peopleBucket.setKey("moe"))
        .build();
client.execute(storeMoe);

RiakObject curly = new RiakObject()
        .setValue(BinaryValue.create("My name is Curly"));
curly.getIndexes().getIndex(StringBinIndex.named("FIELD1")).add("val3");
curly.getIndexes().getIndex(LongIntIndex.named("FIELD2")).add(1003L);
StoreValue storeCurly = new StoreValue.Builder(curly)
        .withLocation(peopleBucket.setKey("curly"))
        .build();
client.execute(storeCurly);

RiakObject veronica = new RiakObject()
        .setValue(BinaryValue.create("My name is Veronica"));
veronica.getIndexes().getIndex(StringBinIndex.named("field1"))
        .add("val4").add("val4");
veronica.getIndexes().getIndex(LongIntIndex.named("field2"))
        .add(1004L).add(1005L).add(1006L).add(1004L).add(1004L).add(1007L);
StoreValue storeVeronica = new StoreValue.Builder(veronica)
        .withLocation(peopleBucket.setKey("veronica"))
        .build();
client.execute(storeVeronica);



bucket = client.bucket_type('indexes').bucket('people')

obj1 = Riak::RObject.new(bucket, 'larry')
obj1.content_type = 'text/plain'
obj1.raw_data = 'My name is Larry'
obj1.indexes['field1_bin'] = %w{ val1 }
# Like binary/string indexes, integer indexes must be set as an array,
# even if you wish to add only a single index
obj1.indexes['field2_int'] = [1001]
obj1.store

obj2 = Riak::RObject.new(bucket, 'moe')
obj2.content_type = 'text/plain'
obj2.raw_data = 'My name is Larry'
obj2.indexes['Field1_bin'] = %w{ val2 }
obj2.indexes['Field2_int'] = [1002]
obj2.store

obj3 = Riak::RObject.new(bucket, 'curly')
obj3.content_type = 'text/plain'
obj3.raw_data = 'My name is Curly'
obj3.indexes['FIELD1_BIN'] = %w{ val3 }
obj3.indexes['FIELD2_INT'] = [1003]
obj3.store

obj4 = Riak::RObject.new(bucket, 'veronica')
obj4.content_type = 'text/plain'
obj4.raw_data = 'My name is Veronica'
obj4.indexes['field1_bin'] = %w{ val4 val4 val4a val4b }
obj4.indexes['field2_int'] = [1004, 1004, 1005, 1006]
obj4.indexes['field2_int'] = [1004]
obj4.indexes['field2_int'] = [1004]
obj4.indexes['field2_int'] = [1004]
obj4.indexes['field2_int'] = [1007]
obj4.store



$bucket = new \Basho\Riak\Bucket('people', 'indexes');

$object = (new \Basho\Riak\Object'My name is Larry', ['Content-type' => 'text/plain']))
  ->addValueToIndex('field1_bin', 'val1')
  ->addValueToIndex('field2_int', 1001);

(new \Basho\Riak\Command\Builder\StoreObject($riak))
  ->withObject($object)
  ->withLocation(new \Basho\Riak\Location('larry', $bucket))
  ->build()
  ->execute();

$object = (new \Basho\Riak\Object'My name is Moe', ['Content-type' => 'text/plain']))
  ->addValueToIndex('Field1_bin', 'val2')
  ->addValueToIndex('Field2_int', 1002);

(new \Basho\Riak\Command\Builder\StoreObject($riak))
  ->withObject($object)
  ->withLocation(new \Basho\Riak\Location('moe', $bucket))
  ->build()
  ->execute();

$object = (new \Basho\Riak\Object'My name is Curly', ['Content-type' => 'text/plain']))
  ->addValueToIndex('FIELD1_BIN', 'val3')
  ->addValueToIndex('FIELD2_int', 1003);

(new \Basho\Riak\Command\Builder\StoreObject($riak))
  ->withObject($object)
  ->withLocation(new \Basho\Riak\Location('curly', $bucket))
  ->build()
  ->execute();

$object = (new \Basho\Riak\Object'My name is Veronica', ['Content-type' => 'text/plain']))
  ->addValueToIndex('field1_bin', 'val4')
  ->addValueToIndex('field1_bin', 'val4')
  ->addValueToIndex('field1_bin', 'val4a')
  ->addValueToIndex('field1_bin', 'val4b')
  ->addValueToIndex('field2_int', 1004)
  ->addValueToIndex('field2_int', 1005)
  ->addValueToIndex('field2_int', 1006)
  ->addValueToIndex('field2_int', 1004)
  ->addValueToIndex('field2_int', 1004)
  ->addValueToIndex('field2_int', 1007);

(new \Basho\Riak\Command\Builder\StoreObject($riak))
  ->withObject($object)
  ->withLocation(new \Basho\Riak\Location('veronica', $bucket))
  ->build()
  ->execute();



bucket = client.bucket_type('indexes').bucket('people')

obj1 = RiakObject(client, bucket, 'larry')
obj1.content_type = 'text/plain'
obj1.data = 'My name is Larry'
obj1.add_index('field1_bin', 'val1').add_index('field2_int', 1001)
obj1.store()

obj2 = RiakObject(client, bucket, 'moe')
obj2.content_type = 'text/plain'
obj2data = 'Moe'
obj2.add_index('Field1_bin', 'val2').add_index('Field2_int', 1002)
obj2.store()

obj3 = RiakObject(client, bucket, 'curly')
obj3.content_type = 'text/plain'
obj3.data = 'Curly'
obj3.add_index('FIELD1_BIN', 'val3').add_index('FIELD2_INT', 1003)
obj3.store()

obj4 = RiakObject(client, bucket, 'veronica')
obj4.content_type = 'text/plain'
obj4.data = 'Veronica'
obj4.add_index('field1_bin', 'val4').add_index('field1_bin', 'val4a').add_index('field1_bin', 'val4b').add_index('field2_int', 1004).add_index('field2_int', 1004).add_index('field2_int', 1005).add_index('field2_int', 1006).add_index('field2_int', 1004).add_index('field2_int', 1004).add_index('field2_int', 1004).add_index('field2_int', 1007)
obj4.store()



var larryId = new RiakObjectId("indexes", "people", "larry");
var larry = new RiakObject(larryId, "My name is Larry",
    RiakConstants.ContentTypes.TextPlain);

larry.BinIndex("field1").Set("val1");
larry.IntIndex("field2").Set(1001);

client.Put(larry);

var moeId = new RiakObjectId("indexes", "people", "moe");
var moe = new RiakObject(moeId, "My name is Moe",
    RiakConstants.ContentTypes.TextPlain);

moe.BinIndex("Field1").Set("val2");
moe.IntIndex("Field2").Set(1002);

client.Put(moe);

var curlyId = new RiakObjectId("indexes", "people", "curly");
var curly = new RiakObject(curlyId, "My name is Curly",
    RiakConstants.ContentTypes.TextPlain);

curly.BinIndex("FIELD1").Set("val3");
curly.IntIndex("FIELD2").Set(1003);

client.Put(curly);

var veronicaId = new RiakObjectId("indexes", "people", "veronica");
var veronica = new RiakObject(veronicaId, "My name is Veronica",
    RiakConstants.ContentTypes.TextPlain);

veronica.BinIndex("FIELD1").Set(new string[] { "val4", "val4a", "val4b" });
veronica.IntIndex("FIELD2").Set(new BigInteger[] {
    1004, 1005, 1006, 1004, 1004, 1007
});

client.Put(veronica);



function store_cb(err, rslt, async_cb) {
    if (err) {
        throw new Error(err);
    }
    async_cb(null, rslt);
}

var storeFuncs = [
    function (async_cb) {
        var riakObj = new Riak.Commands.KV.RiakObject();
        riakObj.setContentType('text/plain');
        riakObj.setBucketType('indexes');
        riakObj.setBucket('people');
        riakObj.setKey('larry');
        riakObj.setValue('My name is Larry');
        riakObj.addToIndex('field1_bin', 'val1');
        riakObj.addToIndex('field2_int', 1001);
        client.storeValue({ value: riakObj }, function (err, rslt) {
            store_cb(err, rslt, async_cb);
        });
    },
    function (async_cb) {
        var riakObj = new Riak.Commands.KV.RiakObject();
        riakObj.setContentType('text/plain');
        riakObj.setBucketType('indexes');
        riakObj.setBucket('people');
        riakObj.setKey('moe');
        riakObj.setValue('My name is Moe');
        riakObj.addToIndex('Field1_bin', 'val2');
        riakObj.addToIndex('Field2_int', 1002);
        client.storeValue({ value: riakObj }, function (err, rslt) {
            store_cb(err, rslt, async_cb);
        });
    },
    function (async_cb) {
        var riakObj = new Riak.Commands.KV.RiakObject();
        riakObj.setContentType('text/plain');
        riakObj.setBucketType('indexes');
        riakObj.setBucket('people');
        riakObj.setKey('curly');
        riakObj.setValue('My name is Curly');
        riakObj.addToIndex('FIELD1_BIN', 'val3');
        riakObj.addToIndex('FIELD2_INT', 1003);
        client.storeValue({ value: riakObj }, function (err, rslt) {
            store_cb(err, rslt, async_cb);
        });
    },
    function (async_cb) {
        var riakObj = new Riak.Commands.KV.RiakObject();
        riakObj.setContentType('text/plain');
        riakObj.setBucketType('indexes');
        riakObj.setBucket('people');
        riakObj.setKey('veronica');
        riakObj.setValue('My name is Veronica');
        riakObj.addToIndex('FIELD1_bin', 'val4');
        riakObj.addToIndex('FIELD1_bin', 'val4');
        riakObj.addToIndex('FIELD1_bin', 'val4a');
        riakObj.addToIndex('FIELD1_bin', 'val4b');
        riakObj.addToIndex('FIELD2_int', 1004);
        riakObj.addToIndex('FIELD2_int', 1005);
        riakObj.addToIndex('FIELD2_int', 1006);
        riakObj.addToIndex('FIELD2_int', 1004);
        riakObj.addToIndex('FIELD2_int', 1004);
        riakObj.addToIndex('FIELD2_int', 1007);
        client.storeValue({ value: riakObj }, function (err, rslt) {
            store_cb(err, rslt, async_cb);
        });
    }
];
async.parallel(storeFuncs, function (err, rslts) {
    if (err) {
        throw new Error(err);
    }
});



Larry = riakc_obj:new(
    {<<"indexes">>, <<"people">>},
    <<"larry">>,
    <<"My name is Larry">>,
    <<"text/plain">>),
LarryMetadata = riakc_obj:get_update_metadata(Larry),
LarryIndexes = riakc_obj:set_secondary_index(
    LarryMetadata,
    [{{binary_index, "field1"}, [<<"val1">>]}, {{integer_index, "field2"}, [1001]}]
),
LarryWithIndexes = riakc_obj:update_metadata(Larry, LarryIndexes).

Moe = riakc_obj:new(
    {<<"indexes">>, <<"people">>},
    <<"moe">>,
    <<"My name is Moe">>,
    <<"text/plain">>),
MoeMetadata = riakc_obj:get_update_metadata(Moe),
MoeIndexes = riakc_obj:set_secondary_index(
    MoeMetadata,
    [{{binary_index, "Field1"}, [<<"val2">>]}, {{integer_index, "Field2"}, [1002]}]
),
MoeWithIndexes = riakc_obj:update_metadata(Moe, MoeIndexes).

Curly = riakc_obj:new(
    {<<"indexes">>, <<"people">>},
    <<"curly">>,
    <<"My name is Curly">>,
    <<"text/plain">>),
CurlyMetadata = riakc_obj:get_update_metadata(Curly),
CurlyIndexes = riakc_obj:set_secondary_index(
    CurlyMetadata,
    [{{binary_index, "FIELD1"}, [<<"val3">>]}, {{integer_index, "FIELD2"}, [1003]}]
),
CurlyWithIndexes = riakc_obj:update_metadata(Curly, CurlyIndexes).

Veronica = riakc_obj:new(
    {<<"indexes">>, <<"people">>},
    <<"veronica">>,
    <<"My name is Veronica">>,
    <<"text/plain">>),
VeronicaMetadata = riakc_obj:get_update_metadata(Veronica),
VeronicaIndexes = riakc_obj:set_secondary_index(
    VeronicaMetadata,
    [{{binary_index, "field1"}, [<<"val4">>]}, {{binary_index, "field1"}, [<<"val4">>]}, {{integer_index, "field2"}, [1004]}, {{integer_index, "field2"}, [1004]}, {{integer_index, "field2"}, [1005]}, {{integer_index, "field2"}, [1006]}, {{integer_index, "field2"}, [1004]}, {{integer_index, "field2"}, [1004]}, {{integer_index, "field2"}, [1007]}]
),
VeronicaWithIndexes = riakc_obj:update_metadata(Veronica, VeronicaIndexes).



curl -v -XPUT localhost:8098/types/indexes/buckets/people/keys/larry \
  -H "x-riak-index-field1_bin: val1" \
  -H "x-riak-index-field2_int: 1001" \
  -d 'My name is Larry'

curl -v -XPUT localhost:8098/types/indexes/buckets/people/keys/moe \
  -H "x-riak-index-Field1_bin: val2" \
  -H "x-riak-index-Field2_int: 1002" \
  -d 'My name is Moe'

curl -v -XPUT localhost:8098/types/indexes/buckets/people/keys/curly \
  -H "X-RIAK-INDEX-FIELD1_BIN: val3" \
  -H "X-RIAK-INDEX-FIELD2_INT: 1003" \
  -d 'My name is Curly'

curl -v -XPUT 127.0.0.1:8098/types/indexes/buckets/people/keys/veronica \
  -H "x-riak-index-field1_bin: val4, val4, val4a, val4b" \
  -H "x-riak-index-field2_int: 1004, 1004, 1005, 1006" \
  -H "x-riak-index-field2_int: 1004" \
  -H "x-riak-index-field2_int: 1004" \
  -H "x-riak-index-field2_int: 1004" \
  -H "x-riak-index-field2_int: 1007" \
  -d 'My name is Veronica'



The above objects will end up having the following secondary indexes,
respectively:



		Larry — Binary index field1_bin and integer index field2_int


		Moe — Binary index field1_bin and integer index field2_int
(note that the index names are set to lowercase by Riak)


		Curly — Binary index field1_bin and integer index field2_int
(note again that the index names are set to lowercase)


		Veronica — Binary index field1_bin with the values val4,
val4a, and val4b and integer index field2_int with the values
1004, 1005, 1006, and 1007 (note that redundancies have been removed)





As these examples show, there are safeguards in Riak that both normalize
the names of indexes and prevent the accumulation of redundant indexes.





Invalid Field Names and Types


The following examples demonstrate what happens when an index field is
specified with an invalid field name or type. The system responds with
400 Bad Request and a description of the error.


Invalid field name:


// The Java client will not allow you to provide invalid index names,
// because you are not required to add "_bin" or "_int" to the end of
// those names



bucket = client.bucket_type('indexes').bucket('people')
obj = Riak::RObject.new(bucket, 'larry')
obj.indexes['field2_foo'] = [1001]

# The Ruby client will let you get away with this...at first. But when
# you attempt to store the object, you will get an error response such
# as this:

NoMethodError: undefined method 'map' for 1001:Fixnum



// throws \InvalidArgumentException
$object = (new \Basho\Riak\Object('{"user_data":{ ... }}', ['Content-type' => 'application/json']))
  ->addValueToIndex('twitter', 'jsmith123');



bucket = client.bucket_type('indexes').bucket('people')
obj = RiakObject(client, bucket, 'larry')
obj.add_index('field2_foo', 1001)

# Result:
riak.RiakError: "Riak 2i fields must end with either '_bin' or '_int'."



// The Riak .NET Client will not allow you to provide invalid index names,
// because you are not required to add "_bin" or "_int" to the end of
// those names



var cmd = new Riak.Commands.KV.SecondaryIndexQuery.Builder()
    .withBucketType('indexes')
    .withBucket('people')
    .withIndexName('field2_foo')
    .withIndexKey('jsmith123')
    .withCallback(query_cb)
    .build();
client.execute(cmd);

// Produces the following stack trace (truncated):
error: query_cb err: 'Error processing incoming message: error:function_clause:[{riak_api_pb_server,
    send_error,
    [{unknown_field_type,
        <<"field2_foo">>},
    {state,
        {gen_tcp,inet},
        #Port<0.68338>,
        undefined,
        ...
        ...
        ...



Obj = riakc_obj:new(
    {<<"indexes">>, <<"people">>},
    <<"larry">>,
    <<"some data">>,
    <<"text/plain">>
),
MD1 = riakc_obj:get_update_metadata(Obj),
MD2 = riakc_obj:set_secondary_index(MD1, [{{foo_index, "field2"}, [1001]}]).

%% The Erlang client will return an error message along these lines:
** exception error: no function clause matching
                    riakc_obj:set_secondary_index( ... ).



curl -XPUT 127.0.0.1:8098/types/indexes/buckets/people/keys/larry \
  -H "x-riak-index-field2_foo: 1001" \
  -d 'data1'

# Response
Unknown field type for field: 'field2_foo'.



Incorrect data type:


Location key = new Location(new Namespace("people"), "larry");
RiakObject obj = new RiakObject();
obj.getIndexes().getIndex(LongIntIndex.named("field2")).add("bar");

// The Java client will return a response indicating a type mismatch.
// The output may look something like this:

Error:(46, 68) java: no suitable method found for add(java.lang.String)
    method com.basho.riak.client.query.indexes.RiakIndex.add(java.lang.Long) is not applicable
      (argument mismatch; java.lang.String cannot be converted to java.lang.Long)
    method com.basho.riak.client.query.indexes.RiakIndex.add(java.util.Collection<java.lang.Long>) is not applicable
      (argument mismatch; java.lang.String cannot be converted to java.util.Collection<java.lang.Long>)



bucket = client.bucket_type('indexes').bucket('people')
obj = Riak::RObject.new(bucket, 'larry')
obj.indexes['field2_int'] = %w{ bar }

# The Ruby client will let you get away with this...at first. But when
# you attempt to store the object, you will get an error response such
# as this:

NoMethodError: undefined method 'map' for 1001:Fixnum



// throws \InvalidArgumentException
$object = (new \Basho\Riak\Object('{"user_data":{ ... }}', ['Content-type' => 'application/json']))
  ->addValueToIndex('twitter_int', 'not_an_int');

// throws \InvalidArgumentException
$object = (new \Basho\Riak\Object('{"user_data":{ ... }}', ['Content-type' => 'application/json']))
  ->addValueToIndex('twitter_int', ['arrays', 'are', 'not', 'strings']);

// does not throw an exception, it will just write ints as a string
// only requirement is that value is scalar (int, float, string, bool)
$object = (new \Basho\Riak\Object('{"user_data":{ ... }}', ['Content-type' => 'application/json']))
  ->addValueToIndex('twitter_bin', 12);



bucket = client.bucket_type('indexes').bucket('people')
obj = RiakObject(client, bucket, 'larry')
obj.add_index('field2_int', 'bar')

# The Python client will let you get away with this...at first. But when you
# attempt to store the object, you will get an error response such as this:
riak.RiakError: '{precommit_fail,[{field_parsing_failed,{<<"field2_int">>,<<"bar">>}}]}'



var id = new RiakObjectId("indexes", "people", "larry");
var obj = new RiakObject(id, "test value", "text/plain");
var intIdx = obj.IntIndex("test-int-idx");
intIdx.Add("invalid-value");

// The .NET client will throw a FormatException at this point
// The output may look something like this:

The value could not be parsed.



var riakObj = new Riak.Commands.KV.RiakObject();
riakObj.setContentType('text/plain');
riakObj.setBucketType('indexes');
riakObj.setBucket('people');
riakObj.setKey('larry');
riakObj.addToIndex('field2_int', 'bar');
try {
    client.storeValue({ value: riakObj }, function (err, rslt) {
        logger.error("incorrect_data_type err: '%s'", err);
    });
} catch (e) {
    logger.error("incorrect_data_type err: '%s'", e);
}

// Output:

buffer.js:67
    throw new TypeError('must start with number, buffer, array or string');
          ^
TypeError: must start with number, buffer, array or string
    at new Buffer (buffer.js:67:11)



Obj = riakc_obj:new(
    {<<"indexes">>, <<"people">>},
    <<"larry">>,
    <<"some data">>,
    <<"text/plain">>
),
MD1 = riakc_obj:get_update_metadata(Obj),
MD2 = riakc_obj:set_secondary_index(MD1, [{{integer_index, "field2"}, [<<"bar">>]}]).

%% The Erlang client will return an error message along these lines:
** exception error: bad argument
     in function  integer_to_list/1
        called as integer_to_list(<<"bar">>) ...



curl -XPUT 127.0.0.1:8098/types/indexes/buckets/people/keys/larry \
  -H "x-riak-index-field2_int: bar" \
  -d 'data1'

# Response
HTTP/1.1 400 Bad Request

Could not parse field 'field2_int', value 'bar'.






Querying



Note on 2i queries and the R parameter

For all 2i queries, the [[R|Replication
Properties#R-Value-and-Read-Failure-Tolerance]] parameter is set to 1,
which means that queries that are run while [[handoffs|Riak
Glossary#Hinted-Handoff]] and related operations are underway may not
return all keys as expected.


Exact Match


The following examples perform an exact match index query.


Query a binary index:


Namespace myBucket = new Namespace("indexes", "people");
BinIndexQuery biq = new BinIndexQuery.Builder(myBucket, "field1", "val1").build();
BinIndexQuery.Response response = client.execute(biq);



bucket = client.bucket_type('indexes').bucket('people')
bucket.get_index('field1_bin', 'val1')



(new \Basho\Riak\Command\Builder\QueryIndex($riak))
  ->buildBucket('people', 'indexes')
  ->withIndexName('field1_bin')
  ->withScalarValue('val1')
  ->build()
  ->execute()
  ->getResults();



bucket = client.bucket_type('indexes').bucket('people')
bucket.get_index('field1_bin', 'val1')



var riakIndexId = new RiakIndexId("indexes", "people", "field1");
// Note: using a string argument indicates a binary index query:
var indexRiakResult = client.GetSecondaryIndex(riakIndexId, "val1");
var indexResult = indexRiakResult.Value;



var binIdxCmd = new Riak.Commands.KV.SecondaryIndexQuery.Builder()
    .withBucketType('indexes')
    .withBucket('people')
    .withIndexName('field1_bin')
    .withIndexKey('val1')
    .withCallback(query_cb)
    .build();
client.execute(binIdxCmd);



{ok, Results} = riakc_pb_socket:get_index(
    Pid,
    {<<"indexes">>, <<"people">>}, %% bucket type and bucket name
    {binary_index, "field2"},
    <<"val1">>
).



curl localhost:8098/types/indexes/buckets/people/index/field1_bin/val1



Query an integer index:


Namespace myBucket = new Namespace("indexes", "people");
IntIndexQuery iiq = new IntIndexQuery.Builder(myBucket, "field2", 1001L)
        .build();
IntIndexQuery.Response response = client.execute(iiq);



bucket = client.bucket_type('indexes').bucket('people')
bucket.get_index('field2_int', 1001)



(new \Basho\Riak\Command\Builder\QueryIndex($riak))
  ->buildBucket('people', 'indexes')
  ->withIndexName('field2_int')
  ->withScalarValue(1001)
  ->build()
  ->execute()
  ->getResults();



bucket = client.bucket_type('indexes').bucket('people')
bucket.get_index('field2_int', 1001)



var riakIndexId = new RiakIndexId("indexes", "people", "field2");
// Note: using an integer argument indicates an int index query:
var indexRiakResult = client.GetSecondaryIndex(riakIndexId, 1001);
var indexResult = indexRiakResult.Value;



var intIdxCmd = new Riak.Commands.KV.SecondaryIndexQuery.Builder()
    .withBucketType('indexes')
    .withBucket('people')
    .withIndexName('field2_int')
    .withIndexKey(1001)
    .withCallback(query_cb)
    .build();
client.execute(intIdxCmd);



{ok, Results} = riakc_pb_socket:get_index(
    Pid,
    {<<"indexes">>, <<"people">>}, %% bucket type and bucket name
    {integer_index, "field2"},
    1001
).



curl localhost:8098/types/indexes/buckets/people/index/field2_int/1001



The following example performs an exact match query and pipes the
results into a MapReduce job:


curl -XPOST localhost:8098/mapred \
  -H "Content-Type: application/json" \
  -d @-<<EOF
{
  "inputs": {
    "bucket": "people",
    "index": "field2_bin",
    "key":"val3"
  },
  "query": [
    {
      "reduce": {
        "language":"erlang",
        "module": "riak_kv_mapreduce",
        "function": "reduce_identity",
        "keep": true
      }
    }
  ]
}
EOF






Range


The following examples perform a range query.


Query a binary index...


Namespace myBucket = new Namespace("indexes", "people");
BinIndexQuery biq = new BinIndexQuery.Builder(myBucket, "field1", "val2", "val4")
        .build();
BinIndexQuery.Response response = client.execute(biq);



bucket = client.bucket_type('indexes').bucket('people')
bucket.get_index('field1_bin', 'val2'..'val4')



(new \Basho\Riak\Command\Builder\QueryIndex($riak))
  ->buildBucket('people', 'indexes')
  ->withIndexName('field1_bin')
  ->withRangeValue('val2', 'val4')
  ->build()
  ->execute()
  ->getResults();



bucket = client.bucket_type('indexes').bucket('people')
bucket.get_index('field1_bin', 'val2', 'val4')



var riakIndexId = new RiakIndexId("indexes", "people", "field1");
var indexRiakResult = client.GetSecondaryIndex(riakIndexId, "val2", "val4");
var indexResult = indexRiakResult.Value;



var binIdxCmd = new Riak.Commands.KV.SecondaryIndexQuery.Builder()
    .withBucketType('indexes')
    .withBucket('people')
    .withIndexName('field1_bin')
    .withRange('val2', 'val4')
    .withCallback(query_cb)
    .build();
client.execute(binIdxCmd);



{ok, Results} = riakc_pb_socket:get_index_range(
    Pid,
    {<<"indexes">>, <<"people">>}, %% bucket type and bucket name
    {binary_index, "field1"}, %% index name
    <<"val2">>, <<"val4">> %% range query for keys between "val2" and "val4"
).



curl localhost:8098/types/indexes/buckets/people/index/field1_bin/val2/val4



Or query an integer index...


Namespace myBucket = new Namespace("indexes", "people");
IntIndexQuery iiq = new IntIndexQuery.Builder(myBucket, "field2", 1002L, 1004L)
        .build();
IntIndexQuery.Response response = client.execute(iiq);



bucket = client.bucket_type('indexes').bucket('people')
bucket.get_index('field2_int', 1002..1004)



(new \Basho\Riak\Command\Builder\QueryIndex($riak))
  ->buildBucket('people', 'indexes')
  ->withIndexName('field2_int')
  ->withRangeValue(1002, 1004)
  ->build()
  ->execute()
  ->getResults();



bucket = client.bucket_type('indexes').bucket('people')
bucket.get_index('field2_int', 1002, 1004)



var riakIndexId = new RiakIndexId("indexes", "people", "field2");
var indexRiakResult = client.GetSecondaryIndex(riakIndexId, 1002, 1004);
var indexResult = indexRiakResult.Value;



var intIdxCmd = new Riak.Commands.KV.SecondaryIndexQuery.Builder()
    .withBucketType('indexes')
    .withBucket('people')
    .withIndexName('field2_int')
    .withRange(1002, 1004)
    .withCallback(query_cb)
    .build();
client.execute(intIdxCmd);



{ok, Results} = riakc_pb_socket:get_index_range(
    Pid,
    {<<"indexes">>, <<"people">>}, %% bucket type and bucket name
    {integer_index, "field2"}, %% index name
    1002, 1004 %% range query for keys between "val2" and "val4"
).



curl localhost:8098/types/indexes/buckets/people/index/field2_int/1002/1004



The following example performs a range query and pipes the results into
a MapReduce job:


curl -XPOST localhost:8098/mapred\
  -H "Content-Type: application/json" \
  -d @-<<EOF
{
  "inputs": {
    "bucket": "people",
    "index": "field2_bin",
    "start": "1002",
    "end": "1004"
  },
  "query": [
    {
      "reduce": {
        "language": "erlang",
        "module": "riak_kv_mapreduce",
        "function": "reduce_identity",
        "keep": true
      }
    }
  ]
}
EOF




Range with terms


When performing a range query, it is possible to retrieve the matched
index values alongside the Riak keys using return_terms=true. An
example from a small sampling of Twitter data with indexed hash tags:


Namespace tweetsBucket = new Namespace("indexes", "tweets");
BinIndexQuery biq = new BinIndexQuery.Builder(tweetsBucket, "hashtags", "rock", "rocl")
        .withKeyAndIndex(true)
        .build();
BinIndexQuery.Response response = client.execute(biq);



bucket = client.bucket_type('indexes').bucket('tweets')
bucket.get_index('hashtags_bin', 'rock'..'rocl', return_terms: true)



(new \Basho\Riak\Command\Builder\QueryIndex($riak))
  ->buildBucket('tweets', 'indexes')
  ->withIndexName('hashtags')
  ->withRangeValue('rock', 'rocl')
  ->withReturnTerms()
  ->build()
  ->execute()
  ->getResults();



bucket = client.bucket_type('indexes').bucket('tweets')
bucket.get_index('hashtags_bin', 'rock', 'rocl', return_terms=True)



var riakIndexId = new RiakIndexId("indexes", "tweets", "hashtags");
var options = new RiakIndexGetOptions();
options.SetReturnTerms(true);
var indexRiakResult = client.GetSecondaryIndex(riakIndexId, "rock", "rocl", options);
var indexResult = indexRiakResult.Value;



var binIdxCmd = new Riak.Commands.KV.SecondaryIndexQuery.Builder()
    .withBucketType('indexes')
    .withBucket('tweets')
    .withIndexName('hashtags_bin')
    .withRange('rock', 'rocl')
    .withReturnKeyAndIndex(true)
    .withCallback(query_cb)
    .build();
client.execute(binIdxCmd);



{ok, Results} = riakc_pb_socket:get_index_range(
    Pid,
    {<<"indexes">>, <<"people">>}, %% bucket type and bucket name
    {binary_index, "hashtags"},     %% index name
    <<"rock">>, <<"rocl">>          %% range query for keys between "val2" and "val4"
).



curl localhost:8098/types/indexes/buckets/tweets/index/hashtags_bin/rock/rocl?return_terms=true



Response:


{
  "results": [
    {
      "rock": "349224101224787968"
    },
    {
      "rocks": "349223639880699905"
    }
  ]
}








Pagination


When asking for large result sets, it is often desirable to ask the
servers to return chunks of results instead of a firehose. You can do so
using max_results=<n>, where n is the number of results you’d like
to receive.


Assuming more keys are available, a continuation value will be
included in the results to allow the client to request the next page.


Here is an example of a range query with both return_terms and
pagination against the same Twitter data set.


Namespace tweetsBucket = new Namespace("indexes", "tweets");
BinIndexQuery biq = new BinIndexQuery.Builder(tweetsBucket, "hashtags", "ri", "ru")
        .withMaxResults(5)
        .build();
BinIndexQuery.Response response = client.execute(biq);



bucket = client.bucket_type('indexes').bucket('tweets')
bucket.get_index('hashtags_bin', 'ri'..'ru', max_results: 5)



(new \Basho\Riak\Command\Builder\QueryIndex($riak))
  ->buildBucket('tweets', 'indexes')
  ->withIndexName('hashtags')
  ->withRangeValue('ri', 'ru')
  ->withMaxResults(5)
  ->build()
  ->execute()
  ->getResults();



bucket = client.bucket_type('indexes').bucket('tweets')
bucket.get_index('hashtags_bin', 'ri', 'ru', max_results=5)



var idxId = new RiakIndexId("indexes", "tweets", "hashtags");
var options = new RiakIndexGetOptions();
options.SetMaxResults(5);
var rslt = client.GetSecondaryIndex(idxId, "ri", "ru", options);

options.SetContinuation(rslt.Continuation);
rslt = client.GetSecondaryIndex(idxId, "ri", "ru", options);



function do_query(continuation) {
    var binIdxCmdBuilder = new Riak.Commands.KV.SecondaryIndexQuery.Builder()
        .withBucketType('indexes')
        .withBucket('tweets')
        .withIndexName('hashtags_bin')
        .withRange('ri', 'ru')
        .withMaxResults(5)
        .withCallback(pagination_cb);

    if (continuation) {
        binIdxCmdBuilder.withContinuation(continuation);
    }

    client.execute(binIdxCmdBuilder.build());
}

var query_keys = [];
function pagination_cb(err, rslt) {
    if (err) {
        logger.error("query_cb err: '%s'", err);
        return;
    }

    if (rslt.done) {
        query_keys.forEach(function (key) {
            logger.info("2i query key: '%s'", key);
        });
        query_keys = [];

        if (rslt.continuation) {
            do_query(rslt.continuation);
        }
    }

    if (rslt.values.length > 0) {
        Array.prototype.push.apply(query_keys,
            rslt.values.map(function (value) {
                return value.objectKey;
            }));
    }
}

do_query();



{ok, Results} = riakc_pb_socket:get_index_range(
    Pid,
    {<<"indexes">>, <<"tweets">>}, %% bucket type and bucket name
    {binary_index, "hashtags"}, %% index name
    <<"ri">>, <<"ru">>, %% range query from "ri" to "ru"
    {max_results, 5}
).



curl localhost:8098/types/indexes/buckets/tweets/index/hashtags_bin/ri/ru?max_results=5&return_terms=true



Here is an example JSON response (your client-specific response may differ):


{
  "continuation": "g2gCbQAAAAdyaXBqYWtlbQAAABIzNDkyMjA2ODcwNTcxMjk0NzM=",
  "results": [
    { "rice": "349222574510710785" },
    { "rickross": "349222868095217664" },
    { "ridelife": "349221819552763905" },
    { "ripjake": "349220649341952001" },
    { "ripjake": "349220687057129473" }
  ]
}



Take the continuation value from the previous result set and feed it
back into the query.


Namespace tweetsBucket = new Namespace("indexes", "tweets");
BinIndexQuery biq = new BinIndexQuery.Builder(tweetsBucket, "hashtags", "ri", "ru")
        .withContinuation(BinaryValue.create("g2gCbQAAAAdyaXBqYWtlbQAAABIzNDkyMjA2ODcwNTcxMjk0NzM"))
        .withMaxResults(5)
        .withKeyAndIndex(true)
        .build();
BinIndexQuery.Response response = client.execute(biq);



bucket = client.bucket_type('indexes').bucket('tweets')
bucket.get_index(
  'hashtags_bin',
  'ri'..'ru',
  continuation: 'g2gCbQAAAAdyaXBqYWtlbQAAABIzNDkyMjA2ODcwNTcxMjk0NzM',
  max_results: 5,
  return_terms: true
)



(new \Basho\Riak\Command\Builder\QueryIndex($riak))
  ->buildBucket('tweets', 'indexes')
  ->withIndexName('hashtags')
  ->withRangeValue('ri', 'ru')
  ->withMaxResults(5)
  ->withContinuation('g2gCbQAAAAdyaXBqYWtlbQAAABIzNDkyMjA2ODcwNTcxMjk0NzM')
  ->build()
  ->execute()
  ->getResults();



bucket = client.bucket_type('indexes').bucket('tweets')
bucket.get_index(
    'hashtags_bin',
    'ri', 'ru',
    continuation='g2gCbQAAAAdyaXBqYWtlbQAAABIzNDkyMjA2ODcwNTcxMjk0NzM',
    max_results=5,
    return_terms=True
)



// rslt is the previous 2i fetch result
var idxId = new RiakIndexId("indexes", "tweets", "hashtags");
var options = new RiakIndexGetOptions();
options.SetMaxResults(5);
options.SetContinuation(rslt.Continuation);
rslt = client.GetSecondaryIndex(idxId, "ri", "ru", options);



// See above example



{ok, Results} = riakc_pb_socket:get_index_range(
    Pid,
    {<<"indexes">>, <<"tweets">>}, %% bucket type and bucket name
    {binary_index, "hashtags"}, %% index name
    <<"ri">>, <<"ru">>, %% range query from "ri" to "ru"
    [
        {continuation, <<"g2gCbQAAAAdyaXBqYWtlbQAAABIzNDkyMjA2ODcwNTcxMjk0NzM">>},
        {max_results, 5},
        {return_terms, true}
    ]
).



curl localhost:8098/types/indexes/buckets/tweets/index/hashtags_bin/ri/ru?continuation=g2gCbQAAAAdyaXBqYWtlbQAAABIzNDkyMjA2ODcwNTcxMjk0NzM=&max_results=5&return_terms=true



The result:


{
  "continuation": "g2gCbQAAAAlyb2Jhc2VyaWFtAAAAEjM0OTIyMzcwMjc2NTkxMjA2NQ==",
  "results": [
    {
      "ripjake": "349221198774808579"
    },
    {
      "ripped": "349224017347100672"
    },
    {
      "roadtrip": "349221207155032066"
    },
    {
      "roastietime": "349221370724491265"
    },
    {
      "robaseria": "349223702765912065"
    }
  ]
}






Streaming


It is also possible to stream results:


/*
  It is not currently possible to stream results using the Java client
*/



bucket = client.bucket_type('indexes').bucket('people')
bucket.get_index('myindex_bin', 'foo', stream: true)



/*
  It is not currently possible to stream results using the PHP client
*/



bucket = client.bucket_type('indexes').bucket('people')
keys = []
for key in bucket.stream_index('myindex_bin', 'foo'):
    keys.append(key)



var riakIndexId = new RiakIndexId("indexes", "tweets", "hashtags");
var indexRiakResult = client.StreamGetSecondaryIndex(riakIndexId, "ri", "ru");
var indexResult = indexRiakResult.Value;
foreach (var key in indexResult.IndexKeyTerms)
{
    // Do something with key...
}



var binIdxCmd = new Riak.Commands.KV.SecondaryIndexQuery.Builder()
    .withBucketType('indexes')
    .withBucket('tweets')
    .withIndexName('hashtags_bin')
    .withRange('ri', 'ru')
    .withStreaming(true);
    .withCallback(query_cb) // See query_cb in other examples
    .build();
client.execute(binIdxCmd);



{ok, KeyStream} = riakc_pb_socket:get_index_eq(
    Pid,
    {<<"indexes">>, <<"people">>}, %% bucket type and bucket name
    {binary_index, "myindex"}, %% index name and type
    <<"foo">>, %% value of the index
    [{stream, true}] %% enable streaming
).



curl localhost:8098/types/indexes/buckets/people/index/myindex_bin/foo?stream=true



Streaming can also be combined with pagination and return_terms.





Sorting


As of Riak 1.4, the result set is sorted on index values (when executing
range queries) and object keys. See the pagination example above: hash
tags (2i keys) are returned in ascending order, and the object keys
(Twitter IDs) for the messages which contain the ripjake hash tag are
also returned in ascending order.





Retrieve all Bucket Keys via the $bucket Index


The following example retrieves the keys for all objects stored in the
bucket people using an exact match on the special $bucket index.


curl localhost:8098/types/indexes/buckets/people/index/\$bucket/_






Count Bucket Objects via $bucket Index


The following example performs a secondary index lookup on the $bucket
index like in the previous example and pipes this into a MapReduce that
counts the number of records in the people bucket. In order to
improve efficiency, the batch size has been increased from the default
size of 20.


curl -XPOST localhost:8098/mapred\
  -H "Content-Type: application/json" \
  -d @-<<EOF
{
  "inputs": {
    "bucket": "people",
    "index": "$bucket",
    "key":"people"
  },
  "query": [
    {
      "reduce": {
        "language": "erlang",
        "module": "riak_kv_mapreduce",
        "function": "reduce_count_inputs",
        "arg": {
          "reduce_phase_batch_size":1000
        }
      }
    }
  ]
}
EOF









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/data-modeling/index.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Use Cases
project: riak
version: 1.2.1+
document: cookbook
index: true
toc: false
audience: intermediate
keywords: [use-cases]
moved: {
‘1.4.0-‘: ‘/cookbooks/use-cases’
}




Riak is a flexible data storage technology capable of addressing
a wide variety of problems in a scalable way. In this guide, we’ll list
a number of use cases and data models that are a good fit for Riak. All
of these use cases are already being used in production for projects
large and small. We’ll also suggest possibilities for implementation and
provide links to videos and documentation for further exploration.


How you structure your application to run on Riak should take into
account the unique needs of your use case, including access patterns
such as read/write distribution, latency differences between various
operations, use of Riak features including [[Data Types]],
[[MapReduce|Using MapReduce]], [[Search|Using Search]],
[[secondary indexes (2i)|Using Secondary Indexes]] and more. This guide
is intended to be illustrative only.



High Read/Write, Simple Applications


The following are examples of Riak use cases that require high
read/write performance without necessarily utilizing complex data
structures:



		[[Session Storage|Use Cases#Session-Storage]]


		[[Serving Advertisements|Use Cases#Serving-Advertisements]]


		[[Log Data|Use Cases#Log-Data]]


		[[Sensor Data|Use Cases#Sensor-Data]]








Content Management, Social Applications


The following application types require more subtle relationships
between objects, e.g. one-to-many and many-to-many relationships.



		[[User Accounts|Use Cases#User-Accounts]]


		[[User Settings and Preferences|Use
Cases#User-Settings-and-Preferences]]


		[[User Events and Timelines|Use Cases#User-Events-and-Timelines]]


		[[Articles, Blog Posts, and Other
Content|Use Cases#Articles-Blog-Posts-and-Other-Content]]








Session Storage


Riak was originally created to serve as a highly scalable session store.
This is an ideal use case for Riak, which is always most performant and
predictable when used as a key/value store. Since user and session IDs
are usually stored in cookies or otherwise known at lookup time, Riak is
able to serve these requests with predictably low latency. Riak’s
content-type agnosticism also imposes no restrictions on the value, so
session data can be encoded in many ways and can evolve without
administrative changes to schemas.



Complex Session Storage Case


Riak has features that allow for more complex session storage use cases.
The [[Bitcask]] storage backend, for example, supports automatic expiry
of keys, which frees application developers from implementing manual
session expiry. Riak’s [[MapReduce|Using MapReduce]] system can also be
used to perform batch processing analysis on large bodies of session
data, for example to compute the average number of active users. If
sessions must be retrieved using multiple keys (e.g. a UUID or email
address), [[using secondary indexes]] can provide an easy solution.





Session Storage Community Examples



    
        		
           [image: ]
         
        		Scaling Riak at Kiip
        

    In this talk, recorded at the May 2012 San Francisco Riak Meetup, Armon Dadgar and Mitchell Hashimoto of Kiip give an overview of how and why they are using Riak in production, and the road they took to get there. One of the first subsystems they switched over to Riak was Sessions. You can also read the blog post and catch the slides here.
        
    









Serving Advertisements


Riak is often a good choice for serving advertising content to many
different web and mobile users simultaneously with low latency. Content
of this sort, e.g. images or text, can be stored in Riak using unique
generated either by the application or by Riak. Keys can be created
based on, for example, a campaign or company ID for easy retrieval.



Serving Advertisements Complex Case


In the advertising industry, being able to serve ads quickly to many
users and platforms is often the most important factor in selecting and
tuning a database. Riak’s tunable [[Replication Properties]] can be set
to favor fast read performance. By setting R to 1, only one of N
replicas will need to be returned to complete a read operation, yielding
lower read latency than an R value equal to the number of replicas
(i.e. R=N). This is ideal for advertising traffic, which primarily
involves serving reads.





Serving Advertisements Community Examples



  
    		[image: ]
    
    		Riak at OpenX
    

    Los Angeles-based OpenX will serves trillions of ads a year. In this
    talk, Anthony Molinaro, Engineer at OpenX, goes in depth on their
    architecture, how they've built their system, and why/how they're
    switching to Riak for data storage after using databases like
    CouchDB and Cassandra in production.
    
  









Log Data


A common use case for Riak is storing large amounts of log data, either
for analysis [[using MapReduce]] or as a storage system used in
conjunction with a secondary analytics cluster used to perform more
advanced analytics tasks. To store log data, you can use a bucket called
logs (just to give an example) and use a unique value, such as a date,
for the key. Log files would then be the values associated with each
unique key.


For storing log data from different systems, you could use unique
buckets for each system (e.g. system1_log_data, system2_log_data,
etc.) and write associated logs to the corresponding buckets. To
analyze that data, you could use Riak’s MapReduce system for aggregation
tasks, such as summing the counts of records for a date or Riak Search
for a more robust, text-based queries.



Log Data Complex Case


For storing a large amount of log data that is frequently written to
Riak, some users might consider doing primary storage of logs in a
Riak cluster and then replicating data to a secondary cluster to run
heavy analytics jobs, either over another Riak cluster or another
solution such as Hadoop. Because the access patterns of reading and
writing data to Riak is very different from the access pattern of
something like a MapReduce job, which iterates over many keys,
separating the write workload from the analytics workload will let you
maintain higher performance and yield more predictable latency.





Log Data Community Examples



  
    		[image: ]
    
    		Simon Buckle on analyzing Apache logs with Riak.
    
  









Sensor Data


Riak’s scalable design makes it useful for data sets, like sensor data,
that scale rapidly and are subject to heavy read/write loads. Many
sensors collect and send data at a given interval. One way to model
this in Riak is to use a bucket for each sensor device and use the time
interval as a unique key (i.e. a date or combination of date and time),
and then store update data as the value.


That data could then be queried on the basis of the interval.
Alternatively, a timestamp could be attached to each object as a
[[secondary index|Using Secondary Indexes]], which would allow you to
perform queries on specific time interval ranges or to perform
[[MapReduce|Using MapReduce]] queries against the indexes.



Sensor Data Complex Case


If you are dealing with thousands or millions of sensors yet with very
small data sets, storing all of a single device’s updates as unique keys
may be cumbersome when it comes to reading that device’s data.
Retrieving it all would mean calling a number of keys.


Instead, you could store all of a device’s updates in a document with a
unique key to identify the device. Stored as a JSON document, you could
read and parse all of those updates on the client side. Riak, however,
doesn’t allow you to append data to a document without reading the
object and writing it back to the key. This strategy would mean more
simplicity and performance on the read side as a tradeoff for slightly
more work at write time and on the client side.


It’s also important to keep an eye out for the total size of documents
as they grow, as we tend to recommend that Riak objects stay smaller
than 1-2 MB and preferably below 100 KB. Otherwise, performance problems
in the cluster are likely.







User Accounts


User accounts tend to rely on fairly straightforward data models. One
way of storing user account data in Riak would be store each user’s data
as a JSON object in a bucket called users (or whatever you wish). Keys
for user data objects could be constructed using application-specific
considerations. If your application involves user logins, for example,
the simplest and most read-efficient strategy would be to use the login
username as the object key. The username could be extracted upon login,
and a read request could be performed on the corresponding key.


There are, however, several drawbacks to this approach. What happens if
a user wants to change their username later on? The most common solution
would be to use a UUID-type key for the user and store the user’s
username as a [[secondary index|Using Secondary Indexes]] for efficient
lookup.



User Accounts Complex Case


For simple retrieval of a specific account, a user ID (plus perhaps a
secondary index on a username or email) is enough. If you foresee the
need to make queries on additional user attributes (e.g. creation time,
user type, or region), plan ahead and either set up additional secondary
indexes or consider using [[Riak Search|Using Search]] to index the JSON
contents of the user account.





User Accounts Community Examples



  
    		[image: ]
    
    		Riak at Braintree
    

    Ben Mills, a developer at Braintree, discusses how their backend team came to find and begin to integrate Riak into their production environment. They also cover their model and repository framework for Ruby, Curator. Check out more details and slides on the Riak blog.
    
  









User Settings and Preferences


For user account-related data that is simple and frequently read but
rarely changed (such as a privacy setting or theme preference), consider
storing it in the user object itself. Another common pattern is to
create a companion user settings-type of object, with keys based on
user ID for easy one-read retrieval.



User Settings and Preferences Complex Case


If you find your application frequently writing to the user account or
have dynamically growing user-related data such as bookmarks,
subscriptions, or multiple notifications, then a more advanced data
model may be called for.







User Events and Timelines


Sometimes you may want to do more complex or specific kinds of modeling
user data. A common example would be storing data for assembling a
social network timeline. To create a user timeline, you could use a
timeline bucket in Riak and form keys on the basis of a unique user
ID. You would store timeline information as the value, e.g. a list of
status update IDs which could then be used to retrieve the full
information from another bucket, or perhaps containing the full status
update. If you want to store additional data, such as a timestamp,
category or list of properties, you can turn the list into an array of
hashes containing this additional information.


Note than in Riak you cannot append information to an object, so adding
events in the timeline would necessarily involve reading the full object,
modifying it, and writing back the new value.



User Events and Timelines Community Examples


<tr>
    <td><a href="http://player.vimeo.com/video/44498491" target="_blank" title="Riak at Voxer">
       <img src="http://b.vimeocdn.com/ts/309/154/309154350_960.jpg"/>
     </a></td>
    <td><a href="http://player.vimeo.com/video/44498491" target="_blank" title="Riak at Voxer">Riak at Voxer</a>
    <br>
The team at Voxer has long relied on Riak as their primary data store for various production services. They have put Riak through its paces and have served as one of our more exciting customers and use cases: Riak was in place when they shot to the top of the App Store at the end of 2011. We also love them because they open-sourced their Node.js client. Read more and get the slides in the Riak blog <a href="http://basho.com/blog/technical/2012/06/27/Riak-at-Voxer/" target="_blank">here.</a>
    </td>
</tr>



  
    		
      
      [image: ]

        		Riak at Yammer
        

    This video was recorded at the March 2012 San Francisco Riak Meetup and is worth every minute of your time. Coda Hale and Ryan Kennedy of Yammer give an excellent and in depth look into how they built “Streamie”, user notifications, why Riak was the right choice, and the lessons learned in the process. Read more and get the slides in the Riak blog here.
        
    









Articles, Blog Posts, and Other Content


The simplest way to model blog posts, articles, or similar content is
to use a bucket in Riak with some unique attribute for logical division
of content, such as blogs or articles. Keys could be constructed out
of unique identifiers for posts, perhaps the title of each article, a
combination of the title and data/time, an integer that can be used as
part of a URL string, etc.


In Riak, you can store content of any kind, from HTML files to plain
text to JSON or XML or another document type entirely. Keep in mind that
data in Riak is opaque, with the exception of [[Riak Data Types|Data Types]],
and so Riak won’t “know” about the object unless it is indexed
[[using Riak Search|Using Search]] or [[using secondary indexes]].



Articles et al Complex Case


Setting up a data model for content becomes more complex based on the
querying and search requirements of your application. For example, you
may have different kinds of content that you want to generate in a view,
e.g. not just a post but also comments, user profile information, etc.


For many Riak developers, it will make sense to divide content into
different buckets, e.g. a bucket for comments that would be stored in
the Riak cluster along with the posts bucket. Comments for a given post
could be stored as a document with the same key as the content post,
though with a different bucket/key combination. Another possibility
would be to store each comment with its own ID. Loading the full view
with comments would require your application to call from the posts
and comments buckets to assemble the view.


Other possible cases may involve performing operations on content beyond
key/value pairs. [[Riak Search|Using Search]] is recommended for use cases
involving full-text search. For lighter-weight querying,
[[using secondary indexes]] (2i) enables you to add metadata to objects to
either query for exact matches or to perform range queries. 2i also
enables you to tag posts with dates, timestamps, topic areas, or other
pieces of information useful for later retrieval.





Articles et al Community Examples



  
    		[image: ]
    
    		Clipboard on storing and searching data in Riak.
  


  
    		[image: ]
    
    		Linkfluence case study on using Riak to store social web content.
  


  
    		[image: ]
    
    		ideeli case study on serving web pages with Riak.
  










          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/using/commit-hooks.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Using Commit Hooks
project: riak
version: 1.0.0+
document: tutorials
toc: true
audience: beginner
keywords: [developers, commit-hooks]
moved: {
‘1.4.0-‘: ‘/references/appendices/concepts/Commit-Hooks’
}




Pre- and post-commit hooks are functions that are invoked before or
after an object has been written to Riak. To provide a few examples,
commit hooks can:



		allow a write to occur with an unmodified object


		modify an object


		fail an update and prevent any modifications to the object





Post-commit hooks are notified after the fact and should not modify
the object directly. Updating Riak objects while post-commit hooks are
invoked can cause nasty feedback loops which will wedge the hook into an
infinite cycle unless the hook functions are carefully written to detect
and short-circuit such cycles.


Pre- and post-commit hooks are applied at the [[bucket|Buckets]] level,
[[using bucket types]]. They are run once per successful response to the
client.


Both pre- and post-commit hooks are named Erlang [http://learnyousomeerlang.com/]
functions.



Setting Commit Hooks Using Bucket Types


Because hooks are defined at the bucket level, you can create [[bucket types|Using Bucket Types]]
that associate one or more hooks with any bucket that bears that type.
Let’s create a bucket type called with_post_commit that adds a
post-commit hook to operations on any bucket that bears the
with_post_commit type.


The format for specifying commit hooks is to identify the module (mod)
and then the name of the function (fun) as a JavaScript object. The
following specifies a commit hook called my_custom_hook in the module
commit_hooks_module:


{
  "mod": "commit_hooks_module",
  "fun": "my_custom_hook"
}



When we create our with_post_commit bucket type, we add that object
to either the precommit or postcommit list in the bucket type’s
properties. Pre- and post-commit hooks are stored in lists named
precommit and postcommit, respectively. Let’s add the hook we
specified above to the postcommit property when we create our bucket
type:


riak-admin bucket-type create with_post_commit \
  '{"props":{"postcommit":["my_post_commit_hook"]}'



Once our bucket type has been created, we must activate it so that it
will be usable through our Riak cluster:


riak-admin bucket-type activate with_post_commit



If the response is with_post_commit has been activated, then the
bucket type is ready for use.





Pre-Commit Hooks


Pre-commit hook Erlang functions should take a single argument, the
Riak object being modified. Remember that deletes are also considered
“writes,” and so pre-commit hooks will be fired when a delete occurs in
the bucket as well. This means that hook functions will need to inspect
the object for the X-Riak-Deleted metadata entry (more on this in our
documentation on [[object deletion]]) to determine whether a delete is
occurring.


Erlang pre-commit functions are allowed three possible return values:



		A Riak object — This can either be the same object passed to the function or an updated version of the object. This allows hooks to modify the object before they are written.


		fail — The atom fail will cause Riak to fail the write and send a 403 Forbidden error response (in the [[HTTP API]]) along with a generic error message about why the write was blocked.


		{fail, Reason} — The tuple {fail, Reason} will cause the same behavior as in the case above, but with the addition of Reason used as the error text.





Errors that occur when processing Erlang pre-commit hooks will be
reported in the sasl-error.log file with lines that start with
problem invoking hook.



Object Size Example


This Erlang pre-commit hook will limit object values to 5 MB or smaller:


precommit_limit_size(Object) ->
  case erlang:byte_size(riak_object:get_value(Object)) of
    Size when Size > 5242880 -> {fail, "Object is larger than 5MB."};
    _ -> Object
  end.



The Erlang function precommit_limit_size takes the Riak object
(Object) as its input and runs a pattern-matching operation on the
object. If the erlang:byte_size [http://www.erlang.org/doc/man/erlang.html#byte_size-1]
function determines that the object’s size (determined by the riak_object:get_value
function) is greater than 5,242,880 (5 MB in bytes), then the commit
will return failure and the message Object size is larger than 5 MB.
This will stop the write. If the object is not larger than 5 MB, Riak
will return the object and allow the write to proceed.





Chaining


The default value of the bucket type’s precommit property is an empty
list, meaning that no pre-commit hooks are specified by default. Adding
one or more pre-commit hook functions to this list, as documented above,
will cause Riak to start evaluating those hook functions when bucket
entries are created, updated, or deleted. Riak stops evaluating
pre-commit hooks when a hook function fails the commit.



JSON Validation Example


Pre-commit hooks can be used in many ways in Riak. One such way to use
pre-commmit hooks is to validate data before it is written to Riak.
Below is an example that uses Javascript to validate a JSON object
before it is written to Riak.


Below is a sample JSON object that will be evaluated by the hook:


{
  "user_info": {
    "name": "Mark Phillips",
    "age": "25"
  },
  "session_info": {
    "id": 3254425,
    "items": [29, 37, 34]
  }
}



The following hook will validate the JSON object:


validate(Object) ->
  try
    mochijson2:decode(riak_object:get_value(Object)),
    Object
  catch
    throw:invalid_utf8 ->
      {fail, "Invalid JSON: Illegal UTF-8 character"};
    error:Error ->
      {fail, lists:flatten(io_lib:format("Invalid JSON: ~p",[Error]))}
  end.



Note: All pre-commit hook functions are executed for each create and update operation.









Post-Commit Hooks


Post-commit hooks are run after a write has completed successfully. More
specifically, the hook function is called immediately before the calling
process is notified of the successful write.


Hook functions must accept a single argument: the object instance just
written. The return value of the function is ignored. As with pre-commit
hooks, deletes are considered writes, so post-commit hook functions will
need to inspect the object’s metadata for the presence of X-Riak-Deleted
to determine whether a delete has occurred. As with pre-commit hooks,
errors that occur when processing post-commit hooks will be reported in
the sasl-error.log file with lines that start with problem invoking hook.



Example


The following post-commit hook creates a secondary index on the email
field of a JSON object:


postcommit_index_on_email(Object) ->
    %% Determine the target bucket name
    Bucket = erlang:iolist_to_binary([riak_object:bucket(Object),"_by_email"]),

    %% Decode the JSON body of the object
    {struct, Properties} = mochijson2:decode(riak_object:get_value(Object)),

    %% Extract the email field
    {<<"email">>,Key} = lists:keyfind(<<"email">>,1,Properties),

    %% Create a new object for the target bucket
    %% NOTE: This doesn't handle the case where the
    %%       index object already exists!
    IndexObj = riak_object:new(
        Bucket, Key, <<>>, %% no object contents
            dict:from_list(
                [
                    {<<"content-type">>, "text/plain"},
                    {<<"Links">>,
                        [
                            {
                                {riak_object:bucket(Object), riak_object:key(Object)},
                                <<"indexed">>
                            }]}
                        ]
            )
    ),

    %% Get a riak client
    {ok, C} = riak:local_client(),

    %% Store the object
    C:put(IndexObj).






Chaining


The default value of the bucket postcommit property is an empty list,
meaning that no post-commit hooks are specified by default. Adding one
or more post-commit hook functions to the list, as documented above,
will cause Riak to start evaluating those hook functions immediately
after data has been created, updated, or deleted. Each post-commit hook
function runs in a separate process so it’s possible for several hook
functions, triggered by the same update, to execute in parallel.


Note: All post-commit hook functions are executed for each create,
update, or delete.








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/tuning/erlang.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Erlang VM Tuning
project: riak
version: 2.0.0+
document: cookbook
audience: advanced
keywords: [erlang, operator]




Riak was written almost exclusively in Erlang [http://www.erlang.org]
and runs on an Erlang virtual machine (VM), which makes proper Erlang VM
tuning an important part of optimizing Riak performance.  The Erlang VM
itself provides a wide variety of configurable
parameters [http://erlang.org/doc/man/erl.html] that you can use to tune
its performance; Riak enables you to tune a subset of those parameters
in each node’s [[configuration files|Configuration Files#Erlang-VM]].
The table below lists some of the parameters that are available, showing
both their names as used in Erlang and their names as Riak parameters.


Erlang parameter | Riak parameter
:—————-|:————–
+A [http://erlang.org/doc/man/erl.html#async_thread_pool_size] | erlang.async_threads
+K [http://erlang.org/doc/man/erl.html#emu_flags] | erlang.K
+P [http://erlang.org/doc/man/erl.html#+P] | erlang.process_limit
+Q [http://erlang.org/doc/man/erl.html#+Q] | erlang.max_ports
+S [http://erlang.org/doc/man/erl.html#+S] | erlang.schedulers.total, erlang.schedulers.online
+W [http://erlang.org/doc/man/erl.html#emu_flags] | erlang.W
+a [http://erlang.org/doc/man/erl.html#async_thread_stack_size] | erlang.async_threads.stack_size
+e [http://www.erlang.org/doc/man/ets.html#+e] | erlang.max_ets_tables
+scl [http://www.erlang.org/doc/main/erl.html#+scl] | erlang.schedulers.compaction_of_load
+sfwi [http://www.erlang.org/doc/man/erl.html#+sfwi] | erlang.schedulers.force_wakeup_interval
-smp [http://erlang.org/doc/man/erl.html#smp] | erlang.smp
+sub [http://www.erlang.org/doc/man/erl.html#+sub] | erlang.schedulers.utilization_balancing
+zdbbl [http://erlang.org/doc/man/erl.html#+zdbbl] | erlang.distribution_buffer_size
-kernel net_ticktime [http://www.erlang.org/doc/man/kernel_app.html#net_ticktime] | erlang.distribution.net_ticktime
-env FULLSWEEP_AFTER [http://www.erlang.org/doc/man/erlang.html#system_flag-2] | erlang.fullsweep_after
-env ERL_CRASH_DUMP [http://www.erlang.org/doc/apps/erts/crash_dump.html] | erlang.crash_dump
-env ERL_MAX_ETS_TABLES [http://learnyousomeerlang.com/ets] | erlang.max_ets_tables
-name | nodename



Note on upgrading to 2.0

In versions of Riak prior to 2.0, Erlang VM-related parameters were
specified in a `vm.args` configuration file; in versions 2.0 and later,
all Erlang-VM-specific parameters are set in the `riak.conf` file. If
you're upgrading to 2.0 from an earlier version, you can still use your
old `vm.args` if you wish.  Please note, however, that if you set one or
more parameters in both `vm.args` and in `riak.conf`, the settings in
`vm.args` will override those in `riak.conf`.


SMP


Some operating systems provide Erlang VMs with Symmetric Multiprocessing
capabilities
(SMP [http://en.wikipedia.org/wiki/Symmetric_multiprocessing]) for
taking advantage of multi-processor hardware architectures. SMP support
can be turned on or off by setting the erlang.smp parameter to
enable or disable. It is enabled by default. The following would
disable SMP support:


erlang.smp = disable



Because Riak is supported on some operating systems that do not provide
SMP support. Make sure that your OS supports SMP before enabling it for
use by Riak’s Erlang VM. If it does not, you should set erlang.smp to
disable prior to starting up your cluster.


Another safe option is to set erlang.smp to auto. This will instruct
the Erlang VM to start up with SMP support enabled if (a) SMP support is
available on the current OS and (b) more than one logical processor is
detected. If neither of these conditions is met, the Erlang VM will
start up with SMP disabled.





Schedulers



Note on missing scheduler flags

We recommend that _all_ users set the `+sfwi` to `500` (milliseconds)
and the `+scl` flag to `false` if using the older, `vm.args`-based
configuration system. If you are using the new, `riak.conf`-based
configuration system, the corresponding parameters are
`erlang.schedulers.force_wakeup_interval` and
`erlang.schedulers.compaction_of_load`.Please note that you will need to uncomment the appropriate lines in
your riak.conf for this configuration to take effect.



If [[SMP support|Erlang VM Tuning#SMP]] has been enabled on your Erlang
VM, i.e. if erlang.smp is set to enable or auto on a machine
providing SMP support and more than one logical processor, you can
configure the number of logical processors, or scheduler
threads [http://www.erlang.org/doc/man/erl.html#+S], that are created
when starting Riak, as well as the number of threads that are set
online.


The total number of threads can be set using the
erlang.schedulers.total parameter, whereas the number of threads set
online can be set using erlang.schedulers.online. These parameters map
directly onto Schedulers and SchedulersOnline, both of which are
used by erl [http://www.erlang.org/doc/man/erl.html#+S].


While the maximum for both parameters is 1024, there is no universal
default for either. Instead, the Erlang VM will attempt to determine the
number of configured processors, as well as the number of available
processors, on its own. If the Erlang VM can make that determination,
schedulers.total will default to the total number of configured
processors while schedulers.online will default to the number of
processors available; if the Erlang VM can’t make that determination,
both values will default to 1.


If either parameter is set to a negative integer, that value will be
subtracted from the default number of processors that are configured or
available, depending on the parameter. For example, if there are 100
configured processors and schedulers.total is set to -50, then the
calculated value for schedulers.total will be 50. Setting either
parameter to 0, on the other hand, will reset both values to their
defaults.


If SMP support is not enabled, i.e. if erlang.smp is set to disable
(or set to auto on a machine without SMP support or with only one
logical processor), then the values of schedulers.total and
schedulers.online will be ignored.



Scheduler Wakeup Interval


Scheduler wakeup is an optional process whereby Erlang VM schedulers are
periodically scanned to determine whether they have “fallen asleep,”
i.e. whether they have an empty run
queue [http://en.wikipedia.org/wiki/Run_queue]. The interval at which
this process occurs can be set, in milliseconds, using the
erlang.schedulers.force_wakeup_interval parameter, which corresponds
to the Erlang VM’s +sfwi flag. This parameter is set to 0 by
default, which disables scheduler wakeup.


Erlang distributions like R15Bx have a tendency to put schedulers to
sleep too often. If you are using a more recent distribution, i.e. a if
you are running Riak 2.0 or later, you most likely won’t need to enable
scheduler wakeup.





Scheduler Compaction and Balancing


The Erlang scheduler offers two methods of distributing load across
schedulers: compaction of load and utilization balancing of
load.


Compaction of load is used by default. When enabled, the Erlang VM will
attempt to fully load as many scheduler threads as possible, i.e. it
will attempt to ensure that scheduler threads do not run out of work. To
that end, the VM will take into account the frequency with which
schedulers run out of work when making decisions about which schedulers
should be assigned work. You can disable compaction of load by setting
the erlang.schedulers.compaction_of_load setting to false (in the
older configuration system, set +scl to true).


The other option, utilization balancing, is disabled by default in favor
of load balancing. When utilization balancing is enabled instead, the
Erlang VM will strive to balance scheduler utilization as equally as
possible between schedulers, without taking into account the frequency
at which schedulers run out of work. You can enable utilization
balancing by setting the erlang.schedulers.utilization_balancing
setting to true (or the +scl parameter to false in the older
configuration system).


At any given time, only compaction of load or utilization balancing
can be used. If you set both parameters to false, Riak will default to
using compaction of load; if both are set to true, Riak will enable
whichever setting is listed first in riak.conf (or vm.args if you’re
using the older configuration system).







Port Settings


Riak uses epmd [http://www.erlang.org/doc/man/epmd.html], the Erlang
Port Mapper Daemon, for most inter-node communication. In this system,
other nodes in the [[cluster|Clusters]] use the Erlang identifiers
specified by the nodename parameter (or -name in vm.args), for
example riak@10.9.8.7.  On each node, the daemon resolves these node
identifiers to a TCP port. You can specify a port or range of ports for
Riak nodes to listen on as well as the maximum number of concurrent
ports/sockets.



Port Range


By default, epmd binds to TCP port 4369 and listens on the wildcard
interface. epmd uses an unpredictable port for inter-node communication
by default, binding to port 0, which means that it uses the first
available port. This can make it difficult to configure
[[firewalls|Security and Firewalls]].


To make configuring firewalls easier, you can instruct the Erlang VM to
use either a limited range of TCP ports or a single TCP port. The
minimum and maximum can be set using the
erlang.distribution.port_range.minimum and
erlang.distribution.port.maximum parameters, respectively. The
following would set the range to ports between 3000 and 5000:


erlang.distribution.port_range.minimum = 3000
erlang.distribution.port_range.maximum = 5000



%% The older, app.config-based system uses different parameter names
%% for specifying the minimum and maximum port

{kernel, [
          % ...
          {inet_dist_listen_min, 3000},
          {inet_dist_listen_min, 5000}
          % ...
         ]}



You can set the Erlang VM to use a single port by setting the minimum to
the desired port while setting no maximum. The following would set the
port to 5000:


erlang.distribution.port_range.minimum = 5000



{kernel, [
          % ...
          {inet_dist_listen_min, 5000},
          % ...
         ]}



If the minimum port is unset, the Erlang VM will listen on a random
high-numbered port.





Maximum Ports


You can set the maximum number of concurrent ports/sockets used by the
Erlang VM using the erlang.max_ports setting. Possible values range
from 1024 to 134217727. The default is 65536. In vm.args you can use
either +Q or -env ERL_MAX_PORTS.







Asynchronous Thread Pool


If thread support is available in your Erlang VM, you can set the number
of asynchronous threads in the Erlang VM’s asynchronous thread pool
using erlang.async_threads (+A in vm.args).  The valid range is 0
to 1024. If thread support is available on your OS, the default is 64.
Below is an example setting the number of async threads to 600:


erlang.async_threads = 600



+A 600




Stack Size


In addition to the number of asynchronous threads, you can determine the
memory allocated to each thread using the
erlang.async_threads.stack_size parameter, which corresponds to the
+a Erlang flag. You can determine that size in Riak using KB, MB, GB,
etc. The valid range is 16-8192 kilowords, which translates to 64-32768
KB on 32-bit architectures. While there is no default, we suggest a
stack size of 16 kilowords, which translates to 64 KB. We suggest such a
small size because the number of asynchronous threads, as determined by
erlang.async_threads might be quite large in your Erlang VM. The 64 KB
default is enough for drivers delivered with Erlang/OTP but might not be
large enough to accommodate drivers that use the driver_async()
functionality, documented
here [http://www.erlang.org/doc/man/erl_driver.html]. We recommend
setting higher values with caution, always keeping the number of
available threads in mind.







Kernel Polling


You can utilize kernel polling in your Erlang distribution if your OS
supports it. Kernel polling can improve performance if many file
descriptors are in use; the more file descriptors, the larger an effect
kernel polling may have on performance. Kernel polling is enabled by
default on Riak’s Erlang VM, i.e. the default for erlang.K is on.
This corresponds to the
+K [http://erlang.org/doc/man/erl.html#emu_flags] setting on the
Erlang VM. You can disable it by setting erlang.K to off.





Warning Messages


Erlang’s
error_logger [http://www.erlang.org/doc/man/error_logger.html] is an
event manager that registers error, warning, and info events from the
Erlang runtime. By default, events from the error_logger are mapped as
warnings, but you can also set messages to be mapped as errors or info
reports using the erlang.W parameter (or +W in vm.args). The
possible values are w (warnings), errors, or i (info reports).





Process Limit


The erlang.process_limit parameter can be used to set the maximum
number of simultaneously existing system processes (corresponding to
Erlang’s +P parameter). The valid range is 1024 to 134217727. The
default is 256000.





Distribution Buffer


You can set the size of the Erlang VM’s distribution buffer busy limit
(denoted by +zdbbl on the VM and in vm.args) using
erlang.distribution_buffer_size.  Modifying this setting can be useful
on nodes with many busy_dist_port events, i.e. instances when the
Erlang distribution is overloaded. The default is 32 MB (i.e. 32MB),
but this may be insufficient for some workloads. The maximum value is
2097151 KB.


A larger buffer limit will allow processes to buffer more outgoing
messages. When the limit is reached, sending processes will be suspended
until the the buffer size has shrunk below the limit specified by
erlang.distribution_buffer_size. Higher values will tend to produce
lower latency and higher throughput but at the expense of higher RAM
usage. You should evaluate your RAM resources prior to increasing this
setting.





Erlang Built-in Storage


Erlang uses a built-in database called
ets [http://www.erlang.org/doc/man/ets.html] (Erlang Term Storage)
for some processes that require fast access from memory in constant
access time (rather than logarithmic access time).  The maximum number
of tables can be set using the erlang.max_ets_tables setting. The
default is 256000, which is higher than the default limit of 1400 on the
Erlang VM. The corresponding setting in vm.args is +e.


Higher values for erlang.max_ets_tables will tend to provide more
quick-access data storage but at the cost of higher RAM usage. Please
note that the default values for erlang.max_ets_tables and
erlang.distribution_size (explained in the section [[above|Erlang VM
Tuning#Distribution-Buffer]]) are the same.





Crash Dumps


By default, crash dumps from Riak’s Erlang distribution are deposited in
./log/erl_crash.dump. You can change this location using
erlang.crash_dump. This is the equivalent of setting the
ERL_CRASH_DUMP [http://www.erlang.org/doc/man/erl.html#environment_variables]
environment variable for the Erlang VM.





Net Kernel Tick Time


The net kernel [http://erlang.org/doc/man/net_kernel.html] is an Erlang
system process that provides various forms of network monitoring. In a
Riak cluster, one of the functions of the net kernel is to periodically
check node liveness. Tick time is the frequency with which those
checks happen. You can determine that frequency using the
erlang.distribution.net_ticktime. The tick will occur every N seconds,
where N is the value set. Thus, setting
erlang.distribution.net_ticktime to 60 will make the tick occur once
every minute. The corresponding flag in vm.args is -kernel net_ticktime.





Shutdown Time


You can determine how long the Erlang VM spends shutting down using the
erlang.shutdown_time parameter. The default is 10s (10 seconds).
Once this duration elapses, all existing processes are killed.
Decreasing shutdown time can be useful in situations in which you are
frequently starting and stopping a cluster, e.g. in test clusters. In
vm.args you can set the -shutdown_time flag in milliseconds.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/using/libraries.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Client Libraries
project: riak
version: 0.10.0+
document: reference
toc: true
index: true
audience: intermediate
keywords: [client, drivers]
moved: {
‘1.4.0-‘: ‘/references/Client-Libraries’
}





Basho-Supported Libraries


Basho officially supports a number of open-source client libraries for a
variety of programming languages and environments.


Language | Source | Documentation | Download
:——–|:——-|:————–|:——–
Java | riak-java-client [https://github.com/basho/riak-java-client] | javadoc [http://basho.github.com/riak-java-client], wiki [https://github.com/basho/riak-java-client/wiki] | Maven Central [http://search.maven.org/?#search%7Cgav%7C1%7Cg%3A%22com.basho.riak%22%20AND%20a%3A%22riak-client%22] |
Ruby | riak-ruby-client [https://github.com/basho/riak-ruby-client] | GitHub Pages [http://basho.github.io/riak-ruby-client/] | RubyGems [https://rubygems.org/gems/riak-client]
Python | riak-python-client [https://github.com/basho/riak-python-client] | sphinx [http://basho.github.com/riak-python-client] | PyPI [http://pypi.python.org/pypi?:action=display&name=riak#downloads]
C# | riak-dotnet-client [https://github.com/basho/riak-dotnet-client] | api docs [http://basho.github.io/riak-dotnet-client-api/], wiki [https://github.com/basho/riak-dotnet-client/wiki] | NuGet package [http://www.nuget.org/List/Packages/RiakClient], GitHub Releases [https://github.com/basho/riak-dotnet-client/releases]
Node.js | riak-nodejs-client [https://github.com/basho/riak-nodejs-client] | api docs [http://basho.github.com/riak-nodejs-client/], wiki [https://github.com/basho/riak-nodejs-client/wiki] | NPM [https://www.npmjs.com/package/basho-riak-client], GitHub Releases [https://github.com/basho/riak-nodejs-client/releases]
PHP | riak-php-client [https://github.com/basho/riak-php-client] | apigen [http://basho.github.io/riak-php-client]
Erlang | riak-erlang-client (riakc) [https://github.com/basho/riak-erlang-client] | edoc [http://basho.github.com/riak-erlang-client/] | GitHub [https://github.com/basho/riak-erlang-client]


Note: All official clients use the integrated issue tracker on
GitHub for bug reporting.


In addition to the official clients, Basho provides some unofficial
client libraries, listed below. There are also many client libraries and
related [[community projects]].


Language | Source | Documentation
:——–|:——-|:————-
C | riak-c-client [https://github.com/basho/riak-c-client] | C Client Documentation [http://basho.github.io/riak-c-client/index.html]





Community Libraries


The Riak Community is developing at a break-neck pace, and the number of
community-contributed libraries and drivers is growing right along side
it. Here is a list of projects that may suit your programming needs or
curiosities. If you know of something that needs to be added or are
developing something that you wish to see added to this list, please
fork the Riak Docs repo on GitHub [https://github.com/basho/basho_docs]
and send us a pull request.



Note on community-produced libraries

All of these projects and libraries are at various stages of
completeness and may not suit your application's needs based on their
level of maturity and activity.


Client Libraries and Frameworks



C/C++



		riak-cpp [https://github.com/ajtack/riak-cpp] — A C++ Riak client
library for use with C++11 compilers


		Riak C Driver [https://github.com/fenek/riak-c-driver] — A library
to communicate with Riak using cURL and Protocol Buffers


		Riack [https://github.com/trifork/riack] — A simple C client
library


		Riack++ [https://github.com/TriKaspar/riack_cpp] — A C++ wrapper
around riack








Clojure



		knockbox [https://github.com/reiddraper/knockbox] — An eventual
consistency toolbox for Clojure


		Welle [http://clojureriak.info] — An expressive Clojure client with
batteries included


		clj-riak [http://github.com/mmcgrana/clj-riak] — Clojure bindings
to the Riak Protocol Buffers API


		sumo [https://github.com/reiddraper/sumo] — A Protocol
Buffer-specific client for Riak with KV, 2i, and MapReduce support


		kria — Riak 2.0 Asynchronous
(NIO.2) Clojure client. Callback driven, low level, Protocol Buffer
API, Java 7.








ColdFusion



		Riak-Cache-Extension [https://github.com/getrailo/Riak-Cache-Extension]
— A Riak-backed cache extension for Railo/ColdFusion








Common Lisp



		cl-riak (1) [https://github.com/whee/cl-riak]


		cl-riak (2) [https://github.com/eriknomitch/cl-riak]








Dart



		riak-dart [https://github.com/agilord/riak_dart_client] — HTTP
client for Riak written in Dart








Django (Python)



		django-riak-sessions [https://github.com/flashingpumpkin/django-riak-sessions]
— Riak-based Session Backend for Django


		Django Riak Engine [https://github.com/oubiwann/django-riak-engine]
— A Riak backend for Django








Erlang



		Uriak Pool [https://github.com/unisontech/uriak_pool] — Erlang
connection pool library from the team at
Unison [http://www.unison.com]


		Riak PBC Pool [https://github.com/snoopaloop/Riak-PBC-Pool] — Riak
Protocol Buffer Client pool application


		Pooly [https://github.com/aberman/pooly] — Riak Process Pool


		riakpool [https://github.com/dweldon/riakpool] — Application for
maintaining a dynamic pool of Protocol Buffer client connections to a
Riak database


		pooler [https://github.com/seth/pooler] — An OTP Process Pool
Application


		krc [https://github.com/klarna/krc] — A simple wrapper around the
official Riak client for Erlang


		riakc_pool [https://github.com/brb/riakc_pool] — A really simple
Riak client process pool based on poolboy








Go



		riaken [https://github.com/riaken] — A fast and extendable Riak
Protocol Buffer Client


		goriakpbc [https://github.com/tpjg/goriakpbc] — A Golang Riak
client inspired by the Ruby riak-client from Basho and riakpbc from mrb


		riakpbc [https://github.com/mrb/riakpbc] — A Riak Protocol Buffer
client in Go








Grails



		Grails ORM for Riak [http://www.grails.org/plugin/riak]








Griffon



		Riak Plugin for
Griffon [http://docs.codehaus.org/display/GRIFFON/Riak+Plugin]








Groovy



		spring-riak [https://github.com/jbrisbin/spring-riak] — Riak
support from Groovy and/or Java








Haskell



		Riak Haskell Client [https://github.com/janrain/riak-haskell-client]
— A fast Haskell client library from the team at MailRank.








Java



		Riak-Java-PB-Client [http://github.com/krestenkrab/riak-java-pb-client]
— Java Client Library for Riak based on the Protocol Buffers API


		Asynchronous Riak Java Client [https://github.com/jbrisbin/riak-async-java-client]
— Asynchronous, NIO-based Protocol Buffers client for Riak


		Riak Module for the Play
Framework [http://www.playframework.org/modules/riak-head/home]








Lisp-flavored Erlang



		Gutenberg [https://github.com/dysinger/gutenberg/] — Riak MapReduce
examples written in LFE








Node.js



		zukai [https://github.com/natural/zukai] — Riak ODM for Node.js
from Troy Melhase


		riak-pb [https://github.com/CrowdProcess/riak-pb] — Riak Protocol
Buffers client for Node.js from the team at
CrowdProcess [http://crowdprocess.com]


		node_riak [https://github.com/mranney/node_riak] — Voxer’s
production Node.js client for Riak.


		riakpbc [https://github.com/nlf/riakpbc] — A simple Riak Protocol
Buffer client library for Node.js


		nodiak [https://npmjs.org/package/nodiak] — Supports bulk
get/save/delete, sibling auto-resolution, MapReduce chaining, Search,
and 2i’s


		resourceful-riak [https://github.com/admazely/resourceful-riak] — A
Riak engine to the
resourceful [https://github.com/flatiron/resourceful/] model
framework from flatiron [https://github.com/flatiron/]


		Connect-Riak [https://github.com/frank06/connect-riak] — Riak
session store for Connect backed by [[Riak-js|http://riakjs.org/]]


		Riak-js [http://riakjs.com] — Node.js client for Riak with support
for HTTP and Protocol Buffers


		Riakjs-model [https://github.com/dandean/riakjs-model] — a model
abstraction around riak-js


		Node-Riak [http://github.com/orlandov/node-riak] — A wrapper around
Node’s HTTP facilities for communicating with Riak


		riak-dc [https://github.com/janearc/riak-dc] — A very thin, very small
http-based interface to Riak using promises intended to be used for small
tools like command-line applications; aims to have the “most-synchronous-
like” interface.


		Nori [https://github.com/sgonyea/nori] — Experimental Riak HTTP
library for Node.js modeled after Ripple


		OrionNodeRiak [http://github.com/mauritslamers/OrionNodeRiak] —
Node-based server and database-frontend for Sproutcore


		Chinood [https://npmjs.org/package/chinood] — Object data mapper
for Riak built on Nodiak


		SimpleRiak [https://npmjs.org/package/simpleriak] — A very simple
Riak HTTP client








OCaml



		Riak OCaml Client [http://metadave.github.com/riak-ocaml-client/] —
Riak OCaml client


		OCaml Riakc [https://github.com/orbitz/ocaml-riakc] — A Protocol
Buffers client for Riak








Perl



		Net::Riak [http://search.cpan.org/~franckc/Net-Riak/] — A Perl
interface to Riak


		AnyEvent-Riak adapter [http://github.com/franckcuny/anyevent-riak]
— Non-blocking Riak adapter using anyevent


		riak-tiny [https://github.com/tempire/riak-tiny] — Perl interface
to Riak without Moose


		Riak::Light [https://metacpan.org/module/Riak::Light] — Fast and
lightweight Perl client for Riak (PBC only)








PHP



		riak-client [https://github.com/php-riak/riak-client] — A Riak
2.0-compliant PHP client with support for Protocol Buffers by Fabio
Silva [https://github.com/FabioBatSilva]


		Ripple-PHP [https://github.com/KevBurnsJr/ripple-php] — A port of
Ripple to PHP


		riiak [https://bitbucket.org/intel352/riiak] — A Riak PHP client
library for the [[Yii Framework|http://www.yiiframework.com/]]


		riak-php [https://github.com/marksteele/riak-php] — A Riak PHP
client with support for Protocol Buffers


		RiakBundle [https://github.com/remialvado/RiakBundle] —
[[Symfony|http://symfony.com]] Bundle designed to ease interaction
with Riak


		php_riak [https://github.com/TriKaspar/php_riak] — A PHP extension
written in C, Both Riak client and PHP session module








Python



		Riakasaurus [https://github.com/calston/riakasaurus] — A Riak
client library for Twisted (based on txriak)


		RiakKit [http://shuhaowu.com/riakkit] — A small Python ORM that
sits on top of riak-python-client, similar to mongokit and couchdbkit


		riakalchemy [https://github.com/Linux2Go/riakalchemy] — Object
mapper for Riak written in Python


		riak_crdt [https://github.com/ericmoritz/riak_crdt] — A CRDT
(Conflict-Free Replicated Data Type) loader for Riak using the CRDT
API [https://github.com/ericmoritz/crdt]


		txriak [https://launchpad.net/txriak] — A Twisted module for
communicating with Riak via the HTTP interface


		txriakidx [https://github.com/williamsjj/txriakidx] — Riak client
for Twisted Python that implements transparent indexes








Racket



		riak.rkt [https://github.com/shofetim/riak.rkt] — Racket API to
Riak


		Racket Riak [https://github.com/dkvasnicka/racket-riak] — Racket
1.3.x API to Riak








Ruby



		Shogun [https://github.com/krainboltgreene/shogun] — A lightweight,
powerful Ruby web application framework with first class support for
Riak


		Risky [https://github.com/aphyr/risky] — A lightweight Ruby ORM for
Riak


		riak_sessions [http://github.com/igorgue/riak_sessions] —
Riak-backed session storage for Rack


		Riaktor [http://github.com/benmyles/riaktor] — Ruby client and
object mapper for Riak


		dm-riak-adapter [http://github.com/mikeric/dm-riak-adapter] —
DataMapper adapter for Riak


		Riak PB Client [https://github.com/sgonyea/riak-pbclient] — Riak
Protocol Buffer Client in Ruby


		Devise-Ripple [http://github.com/frank06/devise-ripple] — An ORM
strategy to use Devise with Riak


		ripple-anaf [http://github.com/bkaney/ripple-anaf] — Accepts nested
attributes support for Ripple


		Pabst [https://github.com/sgonyea/pabst] — Cross-platform Ruby
extension for Protocol Buffers written in both Objective-C and
Objective-C++








Scala



		Riakka [http://github.com/timperrett/riakka] — Scala library for
talking to Riak


		Ryu [http://github.com/softprops/ryu] — A Tornado Whirlwind Kick
Scala client for the Riak raw HTTP interface


		Raiku [https://github.com/gideondk/Raiku] — An Akka IO- and
Sentinel-driven Riak Scala client








Smalltalk



		Phriak [http://www.squeaksource.com/Phriak/] — A Riak client for
Pharo Smalltalk based on Runar Jordahl’s EpigentRiakInterface


		EpigentRiakInterface [http://www.squeaksource.com/EpigentRiakInterface/]
— A Pharo Smalltalk interface to Riak. There is also a blog post
with some additional info about the client
here [http://blog.epigent.com/2011/03/riak-interface-for-pharo-smalltalk.html].













          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/data-modeling/settings-preferences.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: User Settings/Preferences
project: riak
version: 1.2.0-2.0.0
document: cookbook
toc: true
audience: intermediate
keywords: [use-cases]
moved: {
‘1.4.0-‘: ‘/cookbooks/use-cases/settings-preferences’
}




This page no longer valid. We recommend taking a look at [[Use Cases]]
or [[Building Applications with Riak]] instead.




          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/using/data-types.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Using Data Types
project: riak
version: 2.0.0+
document: tutorials
toc: true
audience: intermediate
keywords: [developers, data-types]




In versions 2.0 and greater, Riak users can make use of a variety of
Riak-specific data types inspired by research on convergent replicated
data types, more commonly known as CRDTs. For a more theoretical
treatment of how CRDTs work in Riak, see our [[Data Types]] doc.


While Riak was originally built as a mostly data-agnostic key/value
store, Riak Data Types enable you to use Riak as a data-aware system
in which you can perform a variety of transactions on five CRDT-inspired
data types: flags, registers, [[counters|Data Types#Counters]],
[[sets|Data Types#Sets]], and [[maps|Data Types#Maps]].


Of those five types, counters, sets, and maps can be used as
bucket-level data types, i.e. types that you can interact with directly.
Flags and registers, however, must be embedded in maps (more on that
[[below|Using Data Types#Maps]]).



Note on counters in earlier versions of Riak

Counters are the one CRDT that was available in Riak prior to 2.0
(introduced in version 1.4). The implementation of counters in version 2.0
has been almost completely revamped, so if you are using Riak version
2.0 or later we strongly recommend that you follow the usage
documentation here rather than documentation for the older version of
counters.


Setting Up Buckets to Use Riak Data Types


In order to use Riak Data Types, you must first create a [[bucket
type|Using Bucket Types]] that sets the datatype bucket parameter to
either counter, map, or set.


The following would create a separate bucket type for each of the three
bucket-level data types:


riak-admin bucket-type create maps '{"props":{"datatype":"map"}}'
riak-admin bucket-type create sets '{"props":{"datatype":"set"}}'
riak-admin bucket-type create counters '{"props":{"datatype":"counter"}}'



Note: The names maps, sets, and counters are not reserved
terms. You are always free to name bucket types whatever you like, with
the exception of default.


Once you’ve created a Riak-Data-Type-specific bucket type, you can check
to make sure that the bucket property configuration associated with that
type is correct. This can be done through the riak-admin interface.


riak-admin bucket-type status maps



This will return a list of bucket properties and their associated values
in the form of property: value. If our maps bucket type has been set
properly, we should see the following pair in our console output:


datatype: map



If a bucket type has been properly constructed, it needs to be activated
to be usable in Riak. This can also be done using the bucket-type
command interface:


riak-admin bucket-type activate maps



To check whether activation has been successful, simply use the same
bucket-type status command shown above.





Data Types and Search


Riak Data Types can be searched just like any other object, but with the
added benefit that you Data Type is indexed as a different type by Solr,
the search platform undergirding Riak Search. In our Search
documentation we offer a [[full tutorial|Using
Search#Riak-Data-Types-and-Search]] as well as a variety of
[[examples|Using Search#Data-Types-and-Search-Examples]], including code
samples from each of our official client libraries.





Usage Examples


The examples below show you how to use Riak Data Types at the
application level using each of Basho’s officially supported Riak
clients. All examples will use the bucket type names from above
(counters, sets, and maps). You’re free to substitute your own
bucket type names if you wish.





Counters


Counters are a bucket-level Riak Data Type that can be used either by
themselves, i.e. associated with a bucket/key pair, or [[within a
map|Using Data Types#Maps]]. The examples in this section will show you
how to use counters on their own.


First, we need to point our client to the bucket type/bucket/key
location that will house our counter. We’ll keep it simple and use the
counters bucket type created and activated above and a bucket called
counters.


// In the Java client, a bucket/bucket type combination is specified
// using a Namespace object. To specify bucket, bucket type, and key,
// use a Location object that incorporates the Namespace object, as is
// done below.
Namespace countersBucket = new Namespace("counters", "counters");
Location location = new Location(countersBucket, "<insert_key_here>");



bucket = client.bucket_type('counters').bucket('counters')



$bucket = new \Basho\Riak\Bucket('counters', 'counters');



bucket = client.bucket_type('counters').bucket('counters')



// Using the Riak .NET Client, you interact with Riak Data Types on the basis of
// a RiakObjectId, which specifies the Data Type's bucket type, bucket,
// and key, in that order. Here is an example:
var id = new RiakObjectId("counters", "counters", "<insert_key_here>");



// The following can be passed as options to FetchCounter
var options = {
    bucketType: 'counters',
    bucket: 'counters',
    key: '<insert_key_here>'
};



%% Buckets are simply named binaries in the Erlang client. See the
%% examples below for more information



curl http://localhost:8098/types/counters/buckets/counters/datatypes/<key>

# Note that this differs from the URL structure for non-Data-Type
# requests, which end in /keys/<key>




Getting started with Riak clients

If you are connecting to Riak using one of Basho's official [[client
libraries]], you can find more information about getting started with
your client in our [[quickstart guide|Five-Minute
Install#setting-up-your-riak-client]].

To create a counter, you need to specify a bucket/key pair to hold that
counter. Here is the general syntax for doing so:


// Here, we'll use the Namespace object that we created above and
// incorporate it into a Location object that includes the key (as yet
// unspecified) for our counter

// Using the countersBucket Namespace object from above:
Location counter = new Location(countersBucket, "<key>");

// Or we can specify the Location all at once:
Location counter = new Location(new Namespace("counters", "counters"), "<key>");



counter = Riak::Crdt::Counter.new(bucket, key, bucket_type)

# Or you can specify a bucket and bucket type all at once and pass that
# into the constructor
bucket = client.bucket_type(bucket_type).bucket(bucket)
counter = Riak::Crdt::Counter.new(bucket, key)



# using the $bucket var created earlier
$location = new \Basho\Riak\Location('key', $bucket);



# The client detects the bucket-type's Data Type and automatically
# returns the right datatype for you, in this case a counter
counter = bucket.new(key)

# This way is also acceptable:
from riak.datatypes import Counter

counter = Counter(bucket, key)



// Using the Riak .NET Client, you fetch a counter first, even if it's empty. Once
// fetched, you can update the counter and then store it. This would
// fetch the counter:
var id = new RiakObjectId(bucketType, bucket, key);
var counter = Client.DtFetchCounter(id);



// The following can be passed as options to the *Counter methods on the
// Node.js Client object
var options = {
    bucketType: 'counters',
    bucket: 'counters',
    key: '<insert_key_here>'
};



%% Counters are not encapsulated with the bucket/key in the Erlang
%% client. See the examples below for more information.



# This will create a counter with an initial value of 0

curl -XPOST http://localhost:8098/types/counters/buckets/<bucket>/datatypes/<key> \
  -H "Content-Type: application/json" \
  -d '{"increment": 0}'



Let’s say that we want to create a counter called traffic_tickets in
our counters bucket to keep track of our legal misbehavior. We can
create this counter and ensure that the counters bucket will use our
counters bucket type like this:


// Using the countersBucket Namespace object from above:

Location trafficTickets = new Location(countersBucket, "traffic_tickets");



counter = Riak::Crdt::Counter.new(bucket, 'traffic_tickets', 'counters')

# Alternatively, the Ruby client enables you to set a bucket type as
# being globally associated with a Riak Data Type. The following would
# set all counter buckets to use the counters bucket type:

Riak::Crdt::DEFAULT_BUCKET_TYPES[:counter] = 'counters'

# This would enable us to create our counter either without specifying a
# bucket type or if the bucket type is part of the bucket definition:
counter = Riak::Crdt::Counter.new(bucket, 'traffic_tickets')



# using the $bucket var created earlier
$location = new \Basho\Riak\Location('traffic_tickets', $bucket);



bucket = client.bucket_type('counters').bucket('traffic_tickets')
counter = bucket.new('traffic_tickets')



var trafficTickets = new RiakObjectId("counters", "counters", "traffic_tickets");
var counter = Client.DtFetchCounter(trafficTickets);



// Using the options from above:

var options = {
    bucketType: 'counters',
    bucket: 'counters',
    key: 'traffic_tickets'
};



Counter = riakc_counter:new().

%% Counters in the Erlang client are opaque data structures that collect
%% operations as you mutate them. We will associate the data structure
%% with a bucket type, bucket, and key later on.



curl -XPOST http://localhost:8098/types/counters/buckets/counters/datatypes/traffic_tickets \
  -H "Content-Type: application/json" \
  -d '{"increment": 0}'



Now that our client knows which bucket/key pairing to use for our
counter, traffic_tickets will start out at 0 by default. If we happen
to get a ticket that afternoon, we would need to increment the counter:


// Using the "trafficTickets" Location from above:

CounterUpdate cu = new CounterUpdate(1);
UpdateCounter update = new UpdateCounter.Builder(trafficTickets, cu)
        .build();
client.execute(update);



counter.increment

# This will increment the counter both on the application side and in
Riak



(new \Basho\Riak\Command\Builder\IncrementCounter($riak))
    ->withIncrement(1)
    ->atLocation($location)
    ->build()
    ->execute();



counter.increment()

# Updates are staged locally and have to be explicitly sent to Riak
# using the store() method.
counter.store()



var trafficTickets = new RiakObjectId("counters", "counters", "traffic_tickets");
Client.DtUpdateCounter(trafficTickets, 1);



// Using the options from above:

var options = {
    bucketType: 'counters',
    bucket: 'counters',
    key: 'traffic_tickets',
    increment: 1
};
client.updateCounter(options,
    function (err, rslt) {
        if (err) {
            throw new Error(err);
        }
    });



Counter1 = riakc_counter:increment(Counter).



curl -XPOST http://localhost:8098/types/counters/buckets/counters/datatypes/traffic_tickets \
  -H "Content-Type: application/json" \
  -d '{"increment": 1}'



The default value of an increment operation is 1, but you can increment
by more than one if you’d like (but always by an integer). Let’s say
that we decide to spend an afternoon flaunting traffic laws and manage
to rack up five tickets:


// Using the "trafficTickets" Location from above:
CounterUpdate cu = new CounterUpdate(5);
UpdateCounter update = new UpdateCounter.Builder(trafficTickets, cu)
        .build();
client.execute(update);



counter.increment(5)



(new \Basho\Riak\Command\Builder\IncrementCounter($riak))
    ->withIncrement(5)
    ->atLocation($location)
    ->build()
    ->execute();



counter.increment(5)



// Using the "counter" object from above:
client.DtUpdateCounter(counter, 5);



var options = {
    bucketType: 'counters',
    bucket: 'counters',
    key: 'traffic_tickets',
    increment: 5
};
client.updateCounter(options,
    function (err, rslt) {
        if (err) {
            throw new Error(err);
        }
    });



Counter2 = riakc_counter:increment(5, Counter1).



curl -XPOST http://localhost:8098/types/counters/buckets/counters/datatypes/traffic_tickets \
  -H "Content-Type: application/json" \
  -d '{"increment": 5}'



If we’re curious about how many tickets we have accumulated, we can
simply retrieve the value of the counter at any time:


// Using the "trafficTickets" Location from above:
FetchCounter fetch = new FetchCounter.Builder(trafficTickets)
        .build();
FetchCounter.Response response = client.execute(fetch);
RiakCounter counter = response.getDatatype();
Long ticketsCount = counter.view();



counter.value
# Output will always be an integer



$trafficTickets = (new \Basho\Riak\Command\Builder\FetchCounter($riak))
    ->atLocation($location)
    ->build()
    ->execute()
    ->getCounter();

$trafficTickets->getData(); # returns an integer



counter.dirty_value

# The value fetched from Riak is always immutable, whereas the "dirty
# value" takes into account local modifications that have not been
# sent to the server. For example, whereas the call above would return
# 6, the call below will return 0' since we started with an empty
# counter:

counter.value

# To fetch the value stored on the server, use the call below. Note
# that this will clear any changes to the counter that have not yet been
# sent to Riak
counter.reload()



Console.WriteLine(counter.Value);



var options = {
    bucketType: 'counters',
    bucket: 'counters',
    key: 'traffic_tickets'
};
client.fetchCounter(options,
    function (err, rslt) {
        if (err) {
            throw new Error(err);
        }

        if (rslt.notFound) {
            logger.error("bt: %s, b: %s, k: %s, counter: NOT FOUND",
                options.bucketType, options.bucket, options.key);
        } else {
            logger.info("bt: %s, b: %s, k: %s, counter: %d",
                options.bucketType, options.bucket, options.key,
                rslt.counterValue);
        }
    }
);



riakc_counter:dirty_value(Counter2).

%% The value fetched from Riak is always immutable, whereas the "dirty
%% value" takes into account local modifications that have not been
%% sent to the server. For example, whereas the call above would return
%% '6', the call below will return '0' since we started with an empty
%% counter:

riakc_counter:value(Counter2).

%% To fetch the value stored on the server, use the call below:

{ok, CounterX} = riakc_pb_socket:fetch_type(Pid,
                                            {<<"counters">>, <<"counters">>},
                                            <<"traffic_tickets">>).



curl http://localhost:8098/types/counters/buckets/counters/datatypes/traffic_tickets

# Response:
{"type":"counter", "value": <value>}



For a counter to be useful, you need to be able to decrement it in
addition to incrementing it. Riak counters enable you to do precisely
that. Let’s say that we hire an expert lawyer who manages to get one of
our traffic tickets stricken from our record:


// Using the "trafficTickets" Location from above:
CounterUpdate cu = new CounterUpdate(-1);
UpdateCounter update = new UpdateCounter.Builder(trafficTickets, cu)
        .build();
client.execute(update);



counter.decrement

# Just like incrementing, you can also decrement by more than one, e.g.:
counter.decrement(3)



(new \Basho\Riak\Command\Builder\IncrementCounter($riak))
    ->withIncrement(-3)
    ->atLocation($location)
    ->build()
    ->execute();



counter.decrement()

# Just like incrementing, you can also decrement by more than one, e.g.:
counter.decrement(3)



Client.DtUpdateCounter(trafficTickets, -1);

// As with incrementing, you can also decrement by more than one, e.g.:
Client.DtUpdateCounter(trafficTickets, -3);



var options = {
    bucketType: 'counters',
    bucket: 'counter',
    key: 'traffic_tickets',
    increment: -1
};

// As with incrementing, you can also decrement by more than one, e.g.:
var options = {
    bucketType: 'counters',
    bucket: 'counter',
    key: 'traffic_tickets',
    increment: -3
};



Counter3 = riakc_counter:decrement(Counter2).

%% As with incrementing, you can also decrement by more than one:

Counter4 = riakc_counter:decrement(3, Counter3).

%% At some point, we'll want to send our local updates to the server
%% so they get recorded and are visible to others. Extract the update
%% using the to_op/1 function, then pass it to
%% riakc_pb_socket:update_type/4,5.

riakc_pb_socket:update_type(Pid, {<<"counters">>,<<"counters">>},
                            <<"traffic_tickets">>,
                            riakc_counter:to_op(Counter4)).



curl -XPOST http://localhost:8098/types/counters/buckets/counters/datatypes/traffic_tickets \
  -H "Content-Type: application/json" \
  -d '{"decrement": 3}'






Sets


As with counters (and maps, as shown below), using sets involves setting
up a bucket/key pair to house a set and running set-specific operations
on that pair.


Here is the general syntax for setting up a bucket type/bucket/key
combination to handle a set:


// In the Java client, a bucket/bucket type combination is specified
// using a Namespace object. To specify bucket, bucket type, and key,
// use a Location object that incorporates the Namespace object, as is
// done below.

Location set =
  new Location(new Namespace("<bucket_type>", "<bucket>"), "<key>");



# Note: both the Riak Ruby Client and Ruby the language have a class
# called Set. Make sure that you refer to the Ruby version as ::Set and
# the Riak client version as Riak::Crdt::Set

set = Riak::Crdt::Set.new(bucket, key, bucket_type)



$location = new \Basho\Riak\Location('key', new \Basho\Riak\Bucket('bucket_name', 'bucket_type'));



# Note: The Python standard library `collections` module has an abstract
# base class called Set, which the Riak Client version subclasses as
# `riak.datatypes.Set`. These classes are not directly interchangeable.
# In addition to the base methods, `riak.datatypes.Set` also
# implements the `add` and `discard` methods from
# `collections.MutableSet`, but does not implement the rest of its
# API. Be careful when importing, or simply use the instances returned
# by `RiakBucket.get()` and `RiakBucket.new()` instead of directly
# importing the class.

set = bucket.new(key)

# or

from riak.datatypes import Set
set = Set(bucket, key)



// As with counters, with the Riak .NET Client you interact with sets on the
// basis of the set's location in Riak, as specified by a RiakObjectId
// object. Below is an example:
var id = new RiakObjectId(bucket_type, bucket, key);



// As with counters, with the Riak Node.js Client you interact with sets on the
// basis of the set's location in Riak, as specified by an options object.
// Below is an example:
var options = {
    bucketType: 'sets',
    bucket: 'travel',
    key: 'cities'
};



%% Like counters, sets are not encapsulated in a
%% bucket/key in the Erlang client. See below for more
%% information.



curl http://localhost:8098/types/<bucket_type>/buckets/<bucket>/datatypes/<key>

# Note that this differs from the URL structure for non-Data Type requests,
# which end in /keys/<key>



Let’s say that we want to use a set to store a list of cities that we
want to visit. Let’s create a Riak set stored in the key cities in the
bucket travel (using the sets bucket type we created in the previous
section):


// In the Java client, you specify the location of Data Types
// before you perform operations on them:

Location citiesSet =
  new Location(new Namespace("sets", "travel"), "cities");



travel = client.bucket('travel')
cities_set = Riak::Crdt::Set.new(travel, 'cities', 'sets')

# Alternatively, the Ruby client enables you to set a bucket type as
# being globally associated with a Riak Data Type. The following would
# set all set buckets to use the sets bucket type:

Riak::Crdt::DEFAULT_BUCKET_TYPES[:set] = 'sets'

# This would enable us to create our set without specifying a bucket
# type:

cities_set = Riak::Crdt::Set.new(travel, 'cities')



$location = new \Basho\Riak\Location('cities', 'travel', 'sets');



travel = client.bucket_type('sets').bucket('travel')

# The client detects the bucket type's Data Type and automatically
# returns the right Data Type for you, in this case a Riak set.
cities_set = travel.new('cities')

# You can also create a reference to a set explicitly:
from riak.datatypes import Set

cities_set = Set(travel, 'cities')



// Now we'll create a reference for the set with which we want to
// interact:
var id = new RiakObjectId("sets", "travel", "cities");



// Now we'll create a options object for the set with which we want to
// interact:
var options = {
    bucketType: 'sets',
    bucket: 'travel',
    key: 'cities'
};



CitiesSet = riakc_set:new().

%% Sets in the Erlang client are opaque data structures that
%% collect operations as you mutate them. We will associate the data
%% structure with a bucket type, bucket, and key later on.



# You cannot create an empty set through the HTTP interface. Sets can
# only be created when an element is added to them, as in the examples
# below.



Upon creation, our set is empty. We can verify that it is empty at any
time:


// Using our "cities" Location from above:

FetchSet fetch = new FetchSet.Builder(citiesSet)
        .build();
FetchSet.Response response = client.execute(fetch);
RiakSet set = response.getDatatype();
boolean isEmpty = set.viewAsSet().isEmpty();



cities_set.empty?



# use $location from earlier
$set = (new \Basho\Riak\Command\Builder\FetchSet($riak))
    ->atLocation($location)
    ->build()
    ->execute()
    ->getSet();

count($set->getData());



len(cities_set) == 0



var id = new RiakObjectId("sets", "travel", "cities");
var citiesSet = client.DtFetchSet(id);
int setSize = citiesSet.Values.Count;
Console.WriteLine(setSize > 0);



var options = {
    bucketType: 'sets',
    bucket: 'travel',
    key: 'cities'
};
client.fetchSet(options, function (err, rslt) {
    if (err) {
        throw new Error(err);
    }

    if (rslt.notFound) {
        logger.info("set 'cities' is not found!");
    }
});



riakc_set:size(CitiesSet) == 0.

%% Query functions like size/1, is_element/2, and fold/3 operate over
%% the immutable value fetched from the server. In the case of a new
%% set that was not fetched, this is an empty collection, so the size
%% is 0.



curl http://localhost:8098/types/sets/buckets/travel/datatypes/cities

# Response
not found



But let’s say that we read a travel brochure saying that Toronto and
Montreal are nice places to go. Let’s add them to our cities set:


// Using our "cities" Location from above:

SetUpdate su = new SetUpdate()
        .add("Toronto")
        .add("Montreal");
UpdateSet update = new UpdateSet.Builder(citiesSet, su)
        .build();
client.execute(update);



cities_set.add('Toronto')
cities_set.add('Montreal')



# use $location from earlier
$response = (new \Basho\Riak\Command\Builder\UpdateSet($riak))
    ->add('Toronto')
    ->add('Montreal')
    ->atLocation($location)
    ->withParameter('returnbody', 'true')
    ->build()
    ->execute();



cities_set.add('Toronto')
cities_set.add('Montreal')



var id = new RiakObjectId("sets", "travel", "cities");
var citiesSet = client.DtFetchSet(id);
var adds = new List<string> { "Toronto", "Montreal" };
var result = client.DtUpdateSet(id,
    obj => Encoding.UTF8.GetBytes(obj),
    citiesSet.Context, adds);



var options = {
    bucketType: 'sets',
    bucket: 'travel',
    key: 'cities'
};
var cmd = new Riak.Commands.CRDT.UpdateSet.Builder()
    .withBucketType(options.bucketType)
    .withBucket(options.bucket)
    .withKey(options.key)
    .withAdditions(['Toronto', 'Montreal'])
    .withCallback(
        function (err, rslt) {
            if (err) {
                throw new Error(err);
            }
        }
    )
    .build();
client.execute(cmd);



CitiesSet1 = riakc_set:add_element(<<"Toronto">>, CitiesSet),
CitiesSet2 = riakc_set:add_element(<<"Montreal">>, CitiesSet1).



curl -XPOST http://localhost:8098/types/sets/buckets/travel/datatypes/cities \
  -H "Content-Type: application/json" \
  -d '{"add_all":["Toronto", "Montreal"]}'



Later on, we hear that Hamilton and Ottawa are nice cities to visit in
Canada, but if we visit them, we won’t have time to visit Montreal, so
we need to remove it from the list. It needs to be noted here that
removing an element from a set is a bit trickier than adding elements. In
order to remove an item (or multiple items), we need to first fetch the
set, which provides our client access to the set’s [[causal context]].
Once we’ve fetched the set, we can remove the element Montreal and
store the set.


// Using our "citiesSet" Location from above

// First, we get a response
FetchSet fetch = new FetchSet.Builder(citiesSet).build();
FetchSet.Response response = client.execute(fetch);

// Then we can fetch the set's causal context
Context ctx = response.getContext();

// Now we build a SetUpdate operation
SetUpdate su = new SetUpdate()
        .remove("Montreal")
        .add("Hamilton")
        .add("Ottawa");

// Finally, we update the set, specifying the context
UpdateSet update = new UpdateSet.Builder(citiesSet, su)
        .withContext(ctx)
        .build();
client.execute(update);

// More information on using causal context with the Java client can be
// found at the bottom of this document



cities_set.remove('Montreal')
cities_set.add('Hamilton')
cities_set.add('Ottawa')



# use $location & $response from earlier
(new \Basho\Riak\Command\Builder\UpdateSet($riak))
    ->add('Hamilton')
    ->add('Ottawa')
    ->remove('Montreal')
    ->atLocation($location)
    ->withContext($response->getSet()->getContext())
    ->build()
    ->execute();



cities_set.discard('Montreal')
cities_set.add('Hamilton')
cities_set.add('Ottawa')
cities_set.store()



var removes = new List<string> { "Montreal" };
var adds = new List<string> { "Hamilton", "Ottawa" };
citiesSet = client.DtUpdateSet(id,
    obj => Encoding.UTF8.GetBytes(obj),
    rslt.Context, adds, removes);



var options = {
    bucketType: 'sets',
    bucket: 'travel',
    key: 'cities'
};
client.fetchSet(options, function (err, rslt) {
    if (err) {
        throw new Error(err);
    }

    // NB: clone package https://www.npmjs.com/package/clone
    var update_opts = clone(options);
    update_opts.context = rslt.context;
    update_opts.additions = ['Hamilton', 'Ottawa'];
    update_opts.removals = ['Montreal', 'Ottawa'];

    client.updateSet(update_opts, function (err, rslt) {
        if (err) {
            throw new Error(err);
        }
    });
});



CitiesSet3 = riakc_set:del_element(<<"Montreal">>, CitiesSet2),
CitiesSet4 = riakc_set:add_element(<<"Hamilton">>, CitiesSet3),
CitiesSet5 = riakc_set:add_element(<<"Ottawa">>, CitiesSet4).



curl -XPOST http://localhost:8098/types/sets/buckets/travel/datatypes/cities \
  -H "Content-Type: application/json" \
  -d '{"remove": "Montreal","add_all":["Hamilton", "Ottawa"]}'



Now, we can check on which cities are currently in our set:


// Using our "cities" Location from above:

FetchSet fetch = new FetchSet.Builder(citiesSet)
        .build();
FetchSet.Response response = client.execute(fetch);
Set<BinaryValue> binarySet = response.getDatatype().view();
for (BinaryValue city : binarySet) {
  System.out.println(city.toStringUtf8());
}



cities_set.members

#<Set: {"Hamilton", "Ottawa", "Toronto"}>



# use $location from earlier
$set = (new \Basho\Riak\Command\Builder\FetchSet($riak))
    ->atLocation($location)
    ->build()
    ->execute()
    ->getSet();

var_dump($set->getData());



cities_set.dirty_value

# The value fetched from Riak is always immutable, whereas the "dirty
# value" takes into account local modifications that have not been
# sent to the server. For example, where the call above would return
# frozenset(['Toronto', 'Hamilton', 'Ottawa']), the call below would
# return frozenset([]).

cities_set.value

# To fetch the value stored on the server, use the call below. Note
# that this will clear any unsent additions or deletions.
cities_set.reload()



foreach (var value in citiesSet.Values)
{
    string city = Encoding.UTF8.GetString(value);
    var args = new[] { city };
    Debug.WriteLine(format: "Cities Set Value: {0}", args: args);
}

// Output:
// Cities Set Value: Hamilton
// Cities Set Value: Ottawa
// Cities Set Value: Toronto



var options = {
    bucketType: 'sets',
    bucket: 'travel',
    key: 'cities'
};
client.fetchSet(options, function(err, rslt) {
    if (err) {
        throw new Error(err);
    }

    logger.info("cities set values: '%s'",
        rslt.values.join(', '));
});

// Output:
// info: cities set values: 'Hamilton, Ottawa, Toronto'



riakc_set:dirty_value(CitiesSet5).

%% The value fetched from Riak is always immutable, whereas the "dirty
%% value" takes into account local modifications that have not been
%% sent to the server. For example, where the call above would return
%% [<<"Hamilton">>, <<"Ottawa">>, <<"Toronto">>], the call below would
%% return []. These are essentially ordsets:

riakc_set:value(CitiesSet5).

%% To fetch the value stored on the server, use the call below:

{ok, SetX} = riakc_pb_socket:fetch_type(Pid,
                                        {<<"sets">>,<<"travel">>},
                                         <<"cities">>).



curl http://localhost:8098/types/sets/buckets/travel/datatypes/cities

# Response

{"type":"set","value":["Hamilton", "Ottawa", "Toronto"],"context":"SwGDUAAAAER4ActgymFgYGDMYMoFUhxHgzZyBzMfsU9kykISZg/JL8rPK8lHEkKoZMzKAgDwJA+e"}

# You can also fetch the value of the set without the context included:
curl http://localhost:8098/types/sets/buckets/travel/datatypes/cities?include_context=false

# Response
{"type":"set","value":["Hamilton", "Ottawa", "Toronto"]}



Or we can see whether our set includes a specific member:


// Using our "citiesSet" from above:

System.out.println(citiesSet.contains(("Vancouver"));
System.out.println(citiesSet.contains("Ottawa"));



cities_set.include? 'Vancouver'
# false

cities_set.include? 'Ottawa'
# true



in_array('Vancouver', $set->getData()); # false

in_array('Ottawa', $set->getData()); # true



'Vancouver' in cities_set
# False

'Ottawa' in cities_set
# True



// Note: At this point in time there is no convienience method for
// checking if a set includes a value.



// Use standard javascript array method indexOf()

var cities_set = result.values;
cities_set.indexOf('Vancouver'); // if present, index is >= 0
cities_set.indexOf('Ottawa'); // if present, index is >= 0



%% At this point, Set5 is the most "recent" set from the standpoint
%% of our application.

riakc_set:is_element(<<"Vancouver">>, CitiesSet5).
riakc_set:is_element(<<"Ottawa">>, CitiesSet5).



# With the HTTP interface, this can be determined from the output of
# a fetch command like the one displayed in the example above



We can also determine the size of the set:


// Using our "citiesSet" from above:

int numberOfCities = citiesSet.size();



cities_set.members.length



count($set->getData());



len(cities_set)



Debug.WriteLine(format: "Cities Set Size: {0}", args: citiesSet.Values.Count);



// Use standard javascript array property length

var cities_set_size = result.values.length;



riakc_set:size(CitiesSet5).



# With the HTTP interface, this can be determined from the output of
# a fetch command like the one displayed in the example above






Maps


The map is in many ways the richest of the Riak Data Types because all
of the other Data Types can be embedded within them, including maps
themselves, to create arbitrarily complex custom Data Types out of a
few basic building blocks.


The semantics of dealing with counters, sets, and maps within maps are
usually very similar to working with those types at the bucket level,
and so usage is usually very intuitive.


The general syntax for creating a Riak map is directly analogous to the
syntax for creating other data types:


// In the Java client, a bucket/bucket type combination is specified
// using a Namespace object. To specify bucket, bucket type, and key,
// use a Location object that incorporates the Namespace object, as is
// done below.

Location map =
  new Location(new Namespace("<bucket_type>", "<bucket>"), "<key>");



map = Riak::Crdt::Map.new(bucket, key)



$location = new \Basho\Riak\Location('key', 'bucket', 'bucket_type');



# The client detects the bucket-type's datatype and automatically
# returns the right datatype for you, in this case a Map.
map = bucket.new(key)

# This way is also acceptable:
from riak.datatypes import Map
map = Map(bucket, key)



var id = new RiakObjectId("<bucket_type>", "<bucket>", "<key>");



// Options to pass to the various map methods
var options = {
    bucketType: '<bucket_type>',
    bucket: '<bucket>',
    key: '<key>'
};



%% Maps in the Erlang client are opaque data structures that
%% collect operations as you mutate them. We will associate the data
%% structure with a bucket type, bucket, and key later on.



curl http://localhost:8098/types/<bucket_type>/buckets/<bucket>/datatypes/<key>

# Note that this differs from the URL structure for non-Data Type requests,
# which end in /keys/<key>



Let’s say that we want to use Riak to store information about our
company’s customers. We’ll use the bucket customers to do so. Each
customer’s data will be contained in its own key in the customers
bucket. Let’s create a map for the user Ahmed (ahmed_info) in our
bucket and simply call it map for simplicity’s sake (we’ll use the
maps bucket type from above):


// In the Java client, you specify the location of Data Types
// before you perform operations on them:

Location ahmedMap =
  new Location(new Namespace("maps", "customers"), "ahmed_info");



customers = client.bucket('customers')
map = Riak::Crdt::Map.new(customers, 'ahmed_info', 'maps')

# Alternatively, the Ruby client enables you to set a bucket type as being
# globally associated with a Riak Data Type. The following would set all
# map buckets to use the maps bucket type:

Riak::Crdt::DEFAULT_BUCKET_TYPES[:map] = 'maps'

# This would enable us to create our map without specifying a bucket type:

map = Riak::Crdt::Map.new(customers, 'ahmed_info')



$location = new \Basho\Riak\Location('ahmed_info', 'customers', 'maps');



customers = client.bucket_type('map_bucket').bucket('customers')
map = customers.net('ahmed_info')



var id = new RiakObjectId("maps", "customers", "ahmed_info");



var options = {
    bucketType: 'maps',
    bucket: 'customers',
    key: 'ahmed_info'
};



Map = riakc_map:new().

%% Maps in the Erlang client are opaque data structures that
%% collect operations as you mutate them. We will associate the data
%% structure with a bucket type, bucket, and key later on.



# You cannot create an empty map through the HTTP interface. Maps can only
# be created when a field is added to them, as in the examples below.




Registers and Flags


Registers and flags cannot be used on their own in Riak. You cannot use
a bucket/key pair as a register or flag directly.



Registers Within Maps


The first piece of info we want to store in our map is Ahmed’s name and
phone number, both of which are best stored as registers:


// Using our "ahmedMap" location from above:

RegisterUpdate ru1 = new RegisterUpdate("Ahmed");
RegisterUpdate ru2 = new RegisterUpdate("5551234567");
MapUpdate mu = new MapUpdate()
        .update("first_name", ru1)
        .update("phone_number", ru2);
UpdateMap update = new UpdateMap.Builder(ahmedMap, mu)
          .build();
client.execute(update);



# The Ruby client enables you to batch operations together if you're
# performing them on one Data Type.

map.batch do |m|
  m.registers['first_name'] = 'Ahmed'
  m.registers['phone_number'] = '5551234567'
end

# Integers need to be stored as strings and then converted back when
# the data is retrieved. The following would work as well:
map.registers['phone_number'] = 5551234567.to_s



(new \Basho\Riak\Command\Builder\UpdateMap($riak))
    ->updateRegister('first_name', 'Ahmed')
    ->updateRegister('phone_number', '5551234567')
    ->atLocation($location)
    ->build()
    ->execute();



map.registers['first_name'].assign('Ahmed')
map.registers['phone_number'].assign('5551234567')

# Integers need to be stored as strings and then converted back when the
# data is retrieved. The following would work as well:
map.registers['phone_number'].assign(str(5551234567))

map.store()



SerializeObjectToByteArray<string> Serializer =
    s => Encoding.UTF8.GetBytes(s);

DeserializeObject<string> Deserializer =
    (b, type) => Encoding.UTF8.GetString(b);

const string firstNameRegister = "first_name";
const string phoneNumberRegister = "phone_number";

id = new RiakObjectId("maps", "customers", "ahmed_info");
var rslt = client.DtFetchMap(id);

var firstNameRegisterMapUpdate = new MapUpdate
{
    register_op = Serializer("Ahmed"),
    field = new MapField
    {
        name = Serializer(firstNameRegister),
        type = MapField.MapFieldType.REGISTER
    }
};

var phoneNumberRegisterMapUpdate = new MapUpdate
{
    register_op = Serializer("5551234567"),
    field = new MapField
    {
        name = Serializer(phoneNumberRegister),
        type = MapField.MapFieldType.REGISTER
    }
};

var updates = new List<MapUpdate> {
    firstNameRegisterMapUpdate,
    phoneNumberRegisterMapUpdate
};
rslt = client.DtUpdateMap(id, Serializer, rslt.Context, null, updates);

foreach (RiakDtMapEntry value in rslt.Values)
{
    RiakDtMapField field = value.Field;
    Debug.Assert(RiakDtMapField.RiakDtMapFieldType.Register == field.Type);
    switch (field.Name)
    {
        case "first_name":
            Debug.WriteLine(format: "First Name: {0}",
                args: Deserializer(value.RegisterValue));
            break;
        case "phone_number":
            Debug.WriteLine(format: "Phone Number: {0}",
                args: Deserializer(value.RegisterValue));
            break;
        default:
            Debug.Fail("Map Error",
                string.Format("Unexpected field name: {0}", field.Name));
            break;
    }
}



var mapOp = new Riak.Commands.CRDT.UpdateMap.MapOperation();
mapOp.setRegister('first_name', new Buffer('Ahmed'));
mapOp.setRegister('phone_number', new Buffer('5551234567'));

var options = {
    bucketType: 'maps',
    bucket: 'customers',
    key: 'ahmed_info',
    op: mapOp
};

client.updateMap(options, function (err, rslt) {
    if (err) {
        throw new Error(err);
    }
});



Map1 = riakc_map:update({<<"first_name">>, register},
                        fun(R) -> riakc_register:set(<<"Ahmed">>, R) end,
                        Map),
Map2 = riakc_map:update({<<"phone_number">>, register},
                        fun(R) -> riakc_register:set(<<"5551234567">>, R) end,
                        Map1).



# Updates can be performed all at once. The following will create two new
# registers in the map and also set the value of those registers to the
# desired values

curl -XPOST http://localhost:8098/types/maps/buckets/customers/datatypes/ahmed_info \
  -H "Content-Type: application/json" \
  -d '
  {
    "update": {
      "first_name_register": "Ahmed",
      "phone_number_register": "5551234567"
    }
  }'



This will work even though registers first_name and phone_number did
not previously exist, as Riak will create those registers for you.





Flags Within Maps


Now let’s say that we add an Enterprise plan to our pricing model. We’ll
create an enterprise_customer flag to track whether Ahmed has signed
up for the new plan. He hasn’t yet, so we’ll set it to false:


// Using our "ahmedMap" location from above:

MapUpdate mu = new MapUpdate()
        .update("enterprise_customer", new FlagUpdate(false));
UpdateMap update = new UpdateMap.Builder(ahmedMap, mu)
        .build();
client.execute(update);



map.flags['enterprise_customer'] = false



(new \Basho\Riak\Command\Builder\UpdateMap($riak))
    ->updateFlag('enterprise_customer', false)
    ->atLocation($location)
    ->build()
    ->execute();



map.flags['enterprise_customer'].disable()
map.store()



const string enterpriseCustomerFlag = "enterprise_customer";

id = new RiakObjectId("maps", "customers", "ahmed_info");
var rslt = client.DtFetchMap(id);

var enterpriseCustomerFlagUpdate = new MapUpdate
{
    flag_op = MapUpdate.FlagOp.DISABLE,
    field = new MapField
    {
        name = Serializer(enterpriseCustomerFlag),
        type = MapField.MapFieldType.FLAG
    }
};

var updates = new List<MapUpdate> {
    enterpriseCustomerFlagUpdate
};
rslt = client.DtUpdateMap(id, Serializer, rslt.Context, null, updates);



var mapOp = new Riak.Commands.CRDT.UpdateMap.MapOperation();
mapOp.setFlag('enterprise_customer', false);

var options = {
    bucketType: 'maps',
    bucket: 'customers',
    key: 'ahmed_info',
    op: mapOp
};

client.updateMap(options, function (err, rslt) {
    if (err) {
        throw new Error(err);
    }
});



Map4 = riakc_map:update({<<"enterprise_customer">>, flag},
                        fun(F) -> riakc_flag:disable(F) end,
                        Map3).



curl -XPOST http://localhost:8098/types/maps/buckets/customers/datatypes/ahmed_info \
  -H "Content-Type: application/json" \
  -d '
  {
    "update": {
      "enterprise_customer_flag": "disable"
    }
  }'



We can retrieve the value of that flag at any time:


// Using our "ahmedMap" location from above:

FetchMap fetch = new FetchMap.Builder(ahmedMap).build();
FetchMap.Response response = client.execute(fetch);
RiakMap map = response.getDatatype();
System.out.println(map.getFlag("enterprise_customer").view());



map.flags['enterprise_customer']

# false



$map = (new \Basho\Riak\Command\Builder\FetchMap($riak))
    ->atLocation($location)
    ->build()
    ->execute()
    ->getMap();

echo $map->getFlag('enterprise_customer'); // false



map.reload().flags['enterprise_customer'].value



rslt = client.DtFetchMap(id);
CheckResult(rslt);
foreach (RiakDtMapEntry value in rslt.Values)
{
    RiakDtMapField field = value.Field;
    switch (field.Type)
    {
        case RiakDtMapField.RiakDtMapFieldType.Register:
            var args = new[] {
                field.Name,
                Deserializer(value.RegisterValue)
            };
            Debug.WriteLine(format: "{0}: {1}", args: args);
            break;
        case RiakDtMapField.RiakDtMapFieldType.Flag:
            args = new[] {
                field.Name,
                value.FlagValue.Value.ToString()
            };
            Debug.WriteLine(format: "{0}: {1}", args: args);
            break;
        default:
            Debug.Fail("Map Error",
                string.Format("Unexpected field type: {0}", field.Type));
            break;
    }
}



var options = {
    bucketType: 'maps',
    bucket: 'customers',
    key: 'ahmed_info'
};

client.fetchMap(options, function (err, rslt) {
    if (err) {
        throw new Error(err);
    }

    console.log("fetched map: %s", JSON.stringify(rslt));
});



%% The value fetched from Riak is always immutable, whereas the "dirty
%% value" takes into account local modifications that have not been
%% sent to the server.

riakc_map:dirty_value(Map4).



curl http://localhost:8098/types/maps/buckets/customers/datatypes/ahmed_info






Counters Within Maps


We also want to know how many times Ahmed has visited our website. We’ll
use a page_visits counter for that and run the following operation
when Ahmed visits our page for the first time:


// Using our "ahmedMap" location from above:

MapUpdate mu = new MapUpdate()
        .update("page_visits", cu);
UpdateMap update = new UpdateMap.Builder(ahmedMap, new CounterUpdate(1))
        .build();
client.execute(update);



map.counters['page_visits'].increment

# This operation may return false even if successful



$updateCounter = (new \Basho\Riak\Command\Builder\IncrementCounter($riak))
    ->withIncrement(1);

(new \Basho\Riak\Command\Builder\UpdateMap($riak))
    ->updateCounter('page_visits', $updateCounter)
    ->atLocation($location)
    ->build()
    ->execute();



map.counters['page_visits'].increment()
map.store()



const string pageVisitsCounter = "page_visits";

id = new RiakObjectId("maps", "customers", "ahmed_info");
var rslt = client.DtFetchMap(id);

var pageVisitsCounterUpdate = new MapUpdate
{
    counter_op = new CounterOp { increment = 1 },
    field = new MapField
    {
        name = Serializer(pageVisitsCounter),
        type = MapField.MapFieldType.COUNTER
    }
};

var updates = new List<MapUpdate> {
    pageVisitsCounterUpdate
};
rslt = client.DtUpdateMap(id, Serializer, rslt.Context, null, updates);



var mapOp = new Riak.Commands.CRDT.UpdateMap.MapOperation();
mapOp.incrementCounter('page_visits', 1);

var options = {
    bucketType: 'maps',
    bucket: 'customers',
    key: 'ahmed_info',
    op: mapOp
};

client.updateMap(options, function (err, rslt) {
    if (err) {
        throw new Error(err);
    }
});



Map3 = riakc_map:update({<<"page_visits">>, counter},
                        fun(C) -> riakc_counter:increment(1, C) end,
                        Map2).



# The following will create a new counter and increment it by 1

curl -XPOST http://localhost:8098/types/maps/buckets/customers/datatypes/ahmed_info \
  -H "Content-Type: application/json" \
  -d '
  {
    "update": {
      "page_visits_counter": 1
    }
  }'



Even though the page_visits counter did not exist previously, the
above operation will create it (with a default starting point of 0) and
the increment operation will bump the counter up to 1.





Sets Within Maps


We’d also like to know what Ahmed’s interests are so that we can better
design a user experience for him. Through his purchasing decisions, we
find out that Ahmed likes robots, opera, and motorcycles. We’ll store
that information in a set inside of our map:


// Using our "ahmedMap" location from above:

SetUpdate su = new SetUpdate()
        .add("robots")
        .add("opera")
        .add("motorcycles");
MapUpdate mu = new MapUpdate()
        .update("interests", su);
UpdateMap update = new UpdateMap.Builder(ahmedMap, mu)
        .build();
client.execute(update);



map.batch do |m|
  %{ robots opera motorcycles }.each do |interest|
    m.sets['interests'].add(interest)
  end
end



$updateSet = (new \Basho\Riak\Command\Builder\UpdateSet($riak))
    ->add('robots')
    ->add('opera')
    ->add('motorcycles');

(new \Basho\Riak\Command\Builder\UpdateMap($riak))
    ->updateSet('interests', $updateSet)
    ->atLocation($location)
    ->build()
    ->execute();



for interest in ['robots', 'opera', 'motorcycles']:
    map.sets['interests'].add(interest)
map.store()



const string interestsSet = "interests";

var interestsAdds = new[] { "robots", "opera", "motorcycles" };
var setOperation = new SetOp();
setOperation.adds.AddRange(interestsAdds.Select(i => Serializer(i)));
var interestsSetUpdate = new MapUpdate
{
    set_op = setOperation,
    field = new MapField
    {
        name = Serializer(interestsSet),
        type = MapField.MapFieldType.SET
    }
};

var updates = new List<MapUpdate> {
    interestsSetUpdate
};
rslt = client.DtUpdateMap(id, Serializer, rslt.Context, null, updates);



var mapOp = new Riak.Commands.CRDT.UpdateMap.MapOperation();
mapOp.addToSet('interests', 'robots');
mapOp.addToSet('interests', 'opera');
mapOp.addToSet('interests', 'motorcycles');

var options = {
    bucketType: 'maps',
    bucket: 'customers',
    key: 'ahmed_info',
    op: mapOp
};

client.updateMap(options, function (err, rslt) {
    if (err) {
        throw new Error(err);
    }
});



Map4 = riakc_map:update({<<"interests">>, set},
                        fun(S) -> riakc_set:add_element(<<"robots">>, S) end, Map3),
Map5 = riakc_map:update({<<"interests">>, set},
                        fun(S) -> riakc_set:add_element(<<"opera">>, S) end,
                        Map4),
Map6 = riakc_map:update({<<"interests">>, set},
                        fun(S) -> riakc_set:add_element(<<"motorcycles">>, S) end,
                        Map4).



curl -XPOST http://localhost:8098/types/maps/buckets/customers/datatypes/ahmed_info \
  -H "Content-Type: application/json" \
  -d '
  {
    "update": {
      "interests_set": {
        "add_all": [
          "robots",
          "opera",
          "motorcycles"
        ]
      }
    }
  }'



We can then verify that the interests set includes these three
interests:


// Using our "ahmedMap" location from above:

FetchMap fetch = new FetchMap.Builder(ahmedMap)
        .build();
FetchMap.Response response = client.execute(fetch);
RiakMap map = response.getDatatype();
RiakSet interestSet = map.getSet("interests");
Set<BinaryValue> interests = interestSet.view();
System.out.println(interests.contains(BinaryValue.create("robots")));

// Checking for "opera" and "motorcycles" works the same way



map.batch do |m|
  %w{ robots opera motorcycles }.each do |interest|
    m.sets['interests'].include? interest
  end
end

# This will return three Boolean values



$map = (new \Basho\Riak\Command\Builder\FetchMap($riak))
    ->atLocation($location)
    ->build()
    ->execute()
    ->getMap();

$sets = $map->getSet('interests');
var_dump($sets->getData());



reloaded_map = map.reload()
for interest in ['robots', 'opera', 'motorcycles']:
    interest in reloaded_map.sets['interests'].value



var rslt = client.DtFetchMap(id);
foreach (RiakDtMapEntry value in rslt.Values)
{
    RiakDtMapField field = value.Field;
    switch (field.Type)
    {
        ...
        ...
        ...
        case RiakDtMapField.RiakDtMapFieldType.Set:
            foreach (var setValue in value.SetValue)
            {
                args = new[] {
                    field.Name,
                    Deserializer(setValue)
                };
                Debug.WriteLine(format: "{0}: {1}", args: args);
            }
            break;
        ...
        ...
        ...
    }
}



var options = {
    bucketType: 'maps',
    bucket: 'customers',
    key: 'ahmed_info'
};

client.fetchMap(options, function (err, rslt) {
    if (err) {
        throw new Error(err);
    }

    assert(rslt.map.sets['interests'].indexOf('robots') !== -1);
});



riakc_map:dirty_value(Map6).



curl http://localhost:8098/types/maps/buckets/customers/datatypes/ahmed_info?include_context=false



We learn from a recent purchasing decision that Ahmed actually doesn’t
seem to like opera. He’s much more keen on indie pop. Let’s change the
interests set to reflect that:


// Using our "ahmedMap" location from above:

SetUpdate su = new SetUpdate()
        .remove("opera")
        .add("indie pop");
MapUpdate mu = new MapUpdate()
        .update("interests", su);
UpdateMap update = new UpdateMap.Builder(ahmedMap, mu)
        .build();
client.execute(update);



map.batch do |m|
  m.sets['interests'].remove('opera')
  m.sets['interests'].add('indie pop')
end



$updateSet = (new \Basho\Riak\Command\Builder\UpdateSet($riak))
    ->add('indie pop')
    ->remove('opera');

(new \Basho\Riak\Command\Builder\UpdateMap($riak))
    ->updateSet('interests', $updateSet)
    ->atLocation($location)
    ->withContext($map->getContext())
    ->build()
    ->execute();



map.sets['interests'].discard('opera')
map.sets['interests'].add('indie pop')
map.store()



var interestsRemoves = new[] { "opera" };
var interestsAdds = new[] { "indie pop" };
var setOperation = new SetOp();
setOperation.adds.AddRange(interestsAdds.Select(i => Serializer(i)));
setOperation.removes.AddRange(interestsRemoves.Select(i => Serializer(i)));
var interestsSetUpdate = new MapUpdate
{
    set_op = setOperation,
    field = new MapField
    {
        name = Serializer(interestsSet),
        type = MapField.MapFieldType.SET
    }
};

var updates = new List<MapUpdate> {
    interestsSetUpdate
};
var rslt = client.DtUpdateMap(id, Serializer, rslt.Context, null, updates);



var options = {
    bucketType: 'maps',
    bucket: 'customers',
    key: 'ahmed_info'
};

client.fetchMap(options, function (err, rslt) {
    if (err) {
        throw new Error(err);
    }

    var mapOp = new Riak.Commands.CRDT.UpdateMap.MapOperation();
    mapOp.removeFromSet('interests', 'opera');
    mapOp.addToSet('interests', 'indie pop');

    options.context = rslt.context;
    options.op = mapOp;

    client.updateMap(options, function (err, rslt) {
        if (err) {
            throw new Error(err);
        }
    });
});



Map7 = riakc_map:update({<<"interests">>, set},
                        fun(S) -> riakc_set:del_element(<<"opera">>, S) end, Map6),
Map8 = riakc_map:update({<<"interests">>, set},
                        fun(S) -> riakc_set:add_element(<<"indie pop">>, S) end,
                        Map7).



curl -XPOST http://localhost:8098/types/maps/buckets/customers/datatypes/ahmed_info \
  -H "Content-Type: application/json" \
  -d '
  {
    "update": {
      "interests_set": {
        "remove": "opera",
        "add": "indie pop"
      }
    }
  }
  '






Maps Within Maps (Within Maps?)


We’ve stored a wide of variety of information—of a wide variety of
types—within the ahmed_info map thus far, but we have yet to explore
recursively storing maps within maps (which can be nested as deeply as
you wish).


Our company is doing well and we have lots of useful information about
Ahmed, but now we want to store information about Ahmed’s contacts as
well. We’ll start with storing some information about Ahmed’s colleague
Annika inside of a map called annika_info.


First, we’ll store Annika’s first name, last name, and phone number in
registers:


// Using our "ahmedMap" location from above:

RegisterUpdate ru1 = new RegisterUpdate("Annika");
RegisterUpdate ru2 = new RegisterUpdate("Weiss");
RegisterUpdate ru3 = new RegisterUpdate("5559876543");

MapUpdate annikaUpdate = new MapUpdate()
        .update("first_name", ru1)
        .update("last_name", ru2)
        .update("phone_number", ru3);
MapUpdate ahmedUpdate = new MapUpdate()
        .update("annika_info", annikaUpdate);
UpdateMap update = new UpdateMap.Builder(ahmedMap, ahmedUpdate)
        .build();
client.execute(update);



map.maps['annika_info'].batch do |m|
  m.registers['first_name'] = 'Annika'
  m.registers['last_name'] = 'Weiss'
  m.registers['phone_number'] = 5559876543.to_s
end



$annikaMap = (new \Basho\Riak\Command\Builder\UpdateMap($riak))
    ->updateRegister('first_name', 'Annika')
    ->updateRegister('last_name', 'Weiss')
    ->updateRegister('phone_number', '5559876543');

$response = (new \Basho\Riak\Command\Builder\UpdateMap($riak))
    ->updateMap('annika_info', $annikaMap)
    ->atLocation($location)
    ->withParameter('returnbody', 'true')
    ->build()
    ->execute();



map.maps['annika_info'].registers['first_name'].assign('Annika')
map.maps['annika_info'].registers['last_name'].assign('Weiss')
map.maps['annika_info'].registers['phone_number'].assign(str(5559876543))
map.store()



const string firstNameRegister = "first_name";
const string lastNameRegister = "last_name";
const string phoneNumberRegister = "phone_number";
const string annikaInfoMap = "annika_info";

var annikaMapUpdates = new List<MapUpdate>
{
    new MapUpdate
    {
        register_op = Serializer("Annika"),
        field = new MapField
        {
            name = Serializer(firstNameRegister),
            type = MapField.MapFieldType.REGISTER
        },
    },
    new MapUpdate
    {
        register_op = Serializer("Weiss"),
        field = new MapField
        {
            name = Serializer(lastNameRegister),
            type = MapField.MapFieldType.REGISTER
        },
    },
    new MapUpdate
    {
        register_op = Serializer("5559876543"),
        field = new MapField
        {
            name = Serializer(phoneNumberRegister),
            type = MapField.MapFieldType.REGISTER
        },
    }
};
var annikaInfoUpdateMapOp = new MapOp();
annikaInfoUpdateMapOp.updates.AddRange(annikaMapUpdates);
var annikaInfoUpdate = new MapUpdate
{
    map_op = annikaInfoUpdateMapOp,
    field = new MapField
    {
        name = Serializer(annikaInfoMap),
        type = MapField.MapFieldType.MAP
    }
};

var updates = new List<MapUpdate> {
    annikaInfoUpdate
};
var rslt = client.DtUpdateMap(id, Serializer, rslt.Context, null, updates);



var options = {
    bucketType: 'maps',
    bucket: 'customers',
    key: 'ahmed_info'
};

var mapOp = new Riak.Commands.CRDT.UpdateMap.MapOperation();
mapOp.map('annika_info')
    .setRegister('first_name', 'Annika')
    .setRegister('last_name', 'Weiss')
    .setRegister('phone_number', '5559876543');

options.op = mapOp;

client.updateMap(options, function (err, rslt) {
    if (err) {
        throw new Error(err);
    }
});



Map12 = riakc_map:update(
    {<<"annika_info">>, map},
    fun(M) -> riakc_map:update(
        {<<"first_name">>, register},
        fun(R) -> riakc_register:set(<<"Annika">>, R) end, M) end,
    Map11),
Map13 = riakc_map:update(
    {<<"annika_info">>, map},
    fun(M) -> riakc_map:update(
        {<<"last_name">>, register},
        fun(R) -> riakc_register:set(<<"Weiss">>, R) end, M) end,
    Map12),
Map14 = riakc_map:update(
    {<<"annika_info">>, map},
    fun(M) -> riakc_map:update(
        {<<"phone_number">>, register},
        fun(R) -> riakc_register:set(<<"5559876543">>, R) end, M) end,
    Map13).



curl -XPOST http://localhost:8098/types/maps/buckets/customers/datatypes/ahmed_info \
  -H "Content-Type: application/json" \
  -d '
  {
    "update": {
      "annika_info_map": {
        "update": {
          "first_name_register": "Annika",
          "last_name_register": "Weiss",
          "phone_number_register": "5559876543"
        }
      }
    }
  }
  '



The value of a register in a map can be obtained without a special
method:


// Using our "ahmedMap" location from above:

FetchMap fetch = new FetchMap.Builder(ahmedMap).build();
FetchMap.Response response = client.execute(fetch);
String annikaFirstName = response.getDatatype()
        .getMap("annika_info")
        .getRegister("first_name")
        .view()
        .toString();



map.maps['annika_info'].registers['first_name']

# "Annika"



# with param 'returnbody' = 'true', we can fetch the map from our last response
$map->getMap();

echo $map->getMap('annika_info')->getRegister('first_name'); // Annika



map.reload().maps['annika_info'].registers['first_name'].value



// Note: At this point in time there is no convienience method for
// retrieving a value from a map. Please see the RiakClientExamples
// project for code samples.
// https://github.com/basho/riak-dotnet-client/tree/develop/src/RiakClientExamples



var options = {
    bucketType: 'maps',
    bucket: 'customers',
    key: 'ahmed_info'
};

client.fetchMap(options, function (err, rslt) {
    if (err) {
        throw new Error(err);
    }

    var annikaFirstName =
        rslt.map.maps['annika_info'].registers['first_name'].toString('utf8');
});



riakc_map:dirty_value(Map14).



# Specific values for fields inside of maps (or maps within maps, for that
# matter), cannot be obtained directly through the HTTP interface.



Registers can also be removed:


// This example uses our "ahmedMap" location from above. Operations that
// remove fields from maps require that you first fetch the opaque context
// attached to the map and then include the context in the update operation:

FetchMap fetch = new FetchMap.Builder(ahmedMap)
        .build();
FetchMap.Response response = client.execute(fetch);
Context ctx = response.getContext();
MapUpdate annikaUpdate = new MapUpdate()
        .removeRegister("first_name");
MapUpdate ahmedUpdate = new MapUpdate()
        .update("annika_info", annikaUpdate);
UpdateMap update = new UpdateMap.Builder(ahmedMap, ahmedUpdate)
        .withContext(ctx)
        .build();
client.execute(update);



map.maps['annika_info'].registers.remove('phone_number')



$annikaMap = (new \Basho\Riak\Command\Builder\UpdateMap($riak))
    ->removeRegister('first_name');

(new \Basho\Riak\Command\Builder\UpdateMap($riak))
    ->updateMap('annika_info', $annikaMap)
    ->atLocation($location)
    ->withContext($map->getContext())
    ->build()
    ->execute();



del map.maps['annika_info'].registers['phone_number']
map.store()



var annikaMapRemoves = new List<MapField>
{
    new MapField
    {
        name = Serializer(firstNameRegister),
        type = MapField.MapFieldType.REGISTER
    },
};
var annikaInfoUpdateMapOp = new MapOp();
var annikaInfoUpdateMapOp.removes.AddRange(annikaMapRemoves);
var annikaInfoUpdate = new MapUpdate
{
    map_op = annikaInfoUpdateMapOp,
    field = new MapField
    {
        name = Serializer(annikaInfoMap),
        type = MapField.MapFieldType.MAP
    }
};

var updates = new List<MapUpdate> {
    annikaInfoUpdate
};
var rslt = client.DtUpdateMap(id, Serializer, rslt.Context, null, updates);



var options = {
    bucketType: 'maps',
    bucket: 'customers',
    key: 'ahmed_info'
};

client.fetchMap(options, function (err, rslt) {
    if (err) {
        throw new Error(err);
    }

    var mapOp = new Riak.Commands.CRDT.UpdateMap.MapOperation();
    mapOp.map('annika_info').removeRegister('first_name');

    var options = {
        bucketType: 'maps',
        bucket: 'customers',
        key: 'ahmed_info',
        op: mapOp,
        context: rslt.context,
    };

    client.updateMap(options, function (err, rslt) {
        if (err) {
            throw new Error(err);
        }
    });



Map15 = riakc_map:update({<<"annika_info">>, map},
                         fun(M) -> riakc_map:erase({<<"phone_number">>, register}, M) end,
                         Map14).



curl -XPOST http://localhost:8098/types/maps/buckets/customers/datatypes/ahmed_info \
  -H "Content-Type: application/json" \
  -d '
  {
    "update": {
      "annika_info_map": {
        "remove": "phone_number_register"
      }
    }
  }
  '



Now, we’ll store whether Annika is subscribed to a variety of plans
within the company as well:


// Using our "ahmedMap" location from above:

FetchMap fetch = new FetchMap.Builder(ahmedMap).build();
FetchMap.Response response = client.execute(fetch);
Context ctx = response.getContext();
MapUpdate annikaUpdate = new MapUpdate()
        .update("enterprise_plan", new FlagUpdate((false))
        .update("family_plan", new FlagUpdate(false))
        .update("free_plan", new FlagUpdate(true));
MapUpdate ahmedUpdate = new MapUpdate()
        .update("annika_info", annikaUpdate);
UpdateMap update = new UpdateMap.Builder(ahmedMap, ahmedUpdate)
        .withContext(ctx)
        .build();
client.execute(update);



map.maps['annika_info'].batch do |m|
  m.flags['enterprise_plan'] = false
  m.flags['family_plan'] = false
  m.flags['free_plan'] = true
end



$annikaMap = (new \Basho\Riak\Command\Builder\UpdateMap($riak))
    ->updateFlag('enterprise_plan', false)
    ->updateFlag('family_plan', false)
    ->updateFlag('free_plan', true);

$response = (new \Basho\Riak\Command\Builder\UpdateMap($riak))
    ->updateMap('annika_info', $annikaMap)
    ->atLocation($location)
    ->withParameter('returnbody', 'true')
    ->build()
    ->execute();



map.maps['annika_info'].flags['enterprise_plan'].disable()
map.maps['annika_info'].flags['family_plan'].disable()
map.maps['annika_info'].flags['free_plan'].enable()
map.store()



const string enterprisePlanFlag = "enterprise_plan";
const string familyPlanFlag = "family_plan";
const string freePlanFlag = "free_plan";
var annikaMapUpdates = new List<MapUpdate>
{
    new MapUpdate
    {
        flag_op = MapUpdate.FlagOp.DISABLE,
        field = new MapField
        {
            name = Serializer(enterprisePlanFlag),
            type = MapField.MapFieldType.FLAG
        },
    },
    new MapUpdate
    {
        flag_op = MapUpdate.FlagOp.DISABLE,
        field = new MapField
        {
            name = Serializer(familyPlanFlag),
            type = MapField.MapFieldType.FLAG
        },
    },
    new MapUpdate
    {
        flag_op = MapUpdate.FlagOp.DISABLE,
        field = new MapField
        {
            name = Serializer(freePlanFlag),
            type = MapField.MapFieldType.FLAG
        },
    } 
};
var annikaInfoUpdateMapOp = new MapOp();
var annikaInfoUpdateMapOp.updates.AddRange(annikaMapUpdates);
var annikaInfoUpdate = new MapUpdate
{
    map_op = annikaInfoUpdateMapOp,
    field = new MapField
    {
        name = Serializer(annikaInfoMap),
        type = MapField.MapFieldType.MAP
    }
};

var updates = new List<MapUpdate> {
    annikaInfoUpdate
};
var rslt = client.DtUpdateMap(id, Serializer, rslt.Context, null, updates);



var options = {
    bucketType: 'maps',
    bucket: 'customers',
    key: 'ahmed_info'
};

client.fetchMap(options, function (err, rslt) {
    if (err) {
        throw new Error(err);
    }

    var mapOp = new Riak.Commands.CRDT.UpdateMap.MapOperation();
    var annika_map = mapOp.map('annika_info');
    annika_map.setFlag('enterprise_plan', false);
    annika_map.setFlag('family_plan', false);
    annika_map.setFlag('free_plan', true);

    var options = {
        bucketType: 'maps',
        bucket: 'customers',
        key: 'ahmed_info',
        op: mapOp,
        context: rslt.context,
    };

    client.updateMap(options, function (err, rslt) {
        if (err) {
            throw new Error(err);
        }
    });
});



Map16 = riakc_map:update(
    {<<"annika_info">>, map},
    fun(M) -> riakc_map:update(
        {<<"enterprise_plan">>, flag},
        fun(F) -> riakc_flag:disable(F) end,
        M) end,
    Map15),
Map17 = riakc_map:update(
    {<<"annika_info">>, map},
    fun(M) -> riakc_map:update(
        {<<"family_plan">>, flag},
        fun(F) -> riakc_flag:disable(F) end,
        M) end,
    Map16),
Map18 = riakc_map:update(
    {<<"annika_info">>, map},
    fun(M) -> riakc_map:update(
        {<<"free_plan">>, flag},
        fun(F) -> riakc_flag:enable(F) end,
        M) end,
    Map17).



curl -XPOST http://localhost:8098/types/maps/buckets/customers/datatypes/ahmed_info \
  -H "Content-Type: application/json" \
  -d '
  {
    "update": {
      "annika_info_map": {
        "update": {
          "enterprise_plan_flag": "disable",
          "family_plan_flag": "disable",
          "free_plan_flag": "enable"
        }
      }
    }
  }
  '



The value of a flag can be retrieved at any time:


// Using our "ahmedMap" location from above:

FetchMap fetch = new FetchMap.Builder(ahmedMap).build();
FetchMap.Response response = client.execute(fetch);
boolean enterprisePlan = response.getDatatype()
        .getMap("annika_info")
        .getFlag("enterprise_plan")
        .view();



map.maps['annika_info'].flags['enterprise_plan']

# false



# with param 'returnbody' = 'true', we can fetch the map from our last response
$map->getMap();

echo $map->getMap('annika_info')->getFlag('enterprise_plan'); // false



map.reload().maps['annika_info'].flags['enterprise_plan'].value



// Note: At this point in time there is no convienience method for
// retrieving a value from a map. Please see the RiakClientExamples
// project for code samples
// https://github.com/basho/riak-dotnet-client/tree/develop/src/RiakClientExamples



var options = {
    bucketType: 'maps',
    bucket: 'customers',
    key: 'ahmed_info'
};

client.fetchMap(options, function (err, rslt) {
    if (err) {
        throw new Error(err);
    }

    var enterprisePlan =
        rslt.map.maps.annika_info.flags.enterprise_plan;
});



riakc_map:dirty_value(Map18).



# Specific values for fields inside of maps (or maps within maps, for that
# matter), cannot be obtained directly through the HTTP interface.



It’s also important to track the number of purchases that Annika has
made with our company. Annika just made her first widget purchase:


// Using our "ahmedMap" location from above:

MapUpdate annikaUpdate = new MapUpdate()
        .update("widget_purchases", new CounterUpdate(1));
MapUpdate ahmedUpdate = new MapUpdate()
        .update("annika_info", annikaUpdate);
UpdateMap update = new UpdateMap.Builder(ahmedMap, ahmedUpdate)
        .build();
client.execute(update);



map.maps['annika_info'].counters['widget_purchases'].increment



$updateCounter = (new \Basho\Riak\Command\Builder\IncrementCounter($riak))
    ->withIncrement(1);

$annikaMap = (new \Basho\Riak\Command\Builder\UpdateMap($riak))
    ->updateCounter('widget_purchases', $updateCounter);

(new \Basho\Riak\Command\Builder\UpdateMap($riak))
    ->updateMap('annika_info', $annikaMap)
    ->atLocation($location)
    ->build()
    ->execute();



map.maps['annika_info'].counters['widget_purchases'].increment()
map.store()



const string widgetPurchasesCounter = "widget_purchases";
var annikaMapUpdates = new List<MapUpdate>
{
    new MapUpdate
    {
        counter_op = new CounterOp { increment = 1 },
        field = new MapField
        {
            name = Serializer(widgetPurchasesCounter),
            type = MapField.MapFieldType.COUNTER
        },
    }
};
var annikaInfoUpdateMapOp = new MapOp();
var annikaInfoUpdateMapOp.updates.AddRange(annikaMapUpdates);
var annikaInfoUpdate = new MapUpdate
{
    map_op = annikaInfoUpdateMapOp,
    field = new MapField
    {
        name = Serializer(annikaInfoMap),
        type = MapField.MapFieldType.MAP
    }
};

var updates = new List<MapUpdate> {
    annikaInfoUpdate
};
var rslt = client.DtUpdateMap(id, Serializer, rslt.Context, null, updates);



var mapOp = new Riak.Commands.CRDT.UpdateMap.MapOperation();
mapOp.map('annika_info').incrementCounter('widget_purchases', 1);

var options = {
    bucketType: 'maps',
    bucket: 'customers',
    key: 'ahmed_info',
    op: mapOp
};

client.updateMap(options, function (err, rslt) {
    if (err) {
        throw new Error(err);
    }
});



Map19 = riakc_map:update(
    {<<"annika_info">>, map},
    fun(M) -> riakc_map:update(
        {<<"widget_purchases">>, counter},
        fun(C) -> riakc_counter:increment(1, C) end,
        M) end,
    Map18).



curl -XPOST http://localhost:8098/types/maps/buckets/customers/datatypes/ahmed_info \
  -H "Content-Type: application/json" \
  -d '
  {
    "update": {
      "annika_info_map": {
        "update": {
          "widget_purchases_counter": 1
        }
      }
    }
  }
  '



Now let’s store Annika’s interests in a set:


// Using our "ahmedMap" location from above:

SetUpdate su = new SetUpdate().add("tango dancing");
MapUpdate annikaUpdate = new MapUpdate()
        .update("interests", su);
MapUpdate ahmedUpdate = new MapUpdate()
        .update("annika_info", annikaUpdate);
UpdateMap update = new UpdateMap.Builder(ahmedMap, ahmedUpdate)
        .build();
client.execute(update);



map.maps['annika_info'].sets['interests'].add('tango dancing')



$updateSet = (new \Basho\Riak\Command\Builder\UpdateSet($riak))
    ->add('tango dancing');

$annikaMap = (new \Basho\Riak\Command\Builder\UpdateMap($riak))
    ->updateSet('interests', $updateSet);

$response = (new \Basho\Riak\Command\Builder\UpdateMap($riak))
    ->updateMap('annika_info', $annikaMap)
    ->atLocation($location)
    ->withParameter('returnbody', 'true')
    ->build()
    ->execute();



map.maps['annika_info'].sets['interests'].add('tango dancing')
map.store()



const string annikaInterestsSet = "annika_info";
var annikaInterestsSetOp = new SetOp();
annikaInterestsSetOp.adds.Add(Serializer("tango dancing"));
var annikaMapUpdates = new List<MapUpdate>
{
    new MapUpdate
    {
        set_op = annikaInterestsSetOp,
        field = new MapField
        {
            name = Serializer(annikaInterestsSet),
            type = MapField.MapFieldType.SET
        },
    }
};
var annikaInfoUpdateMapOp = new MapOp();
var annikaInfoUpdateMapOp.updates.AddRange(annikaMapUpdates);
var annikaInfoUpdate = new MapUpdate
{
    map_op = annikaInfoUpdateMapOp,
    field = new MapField
    {
        name = Serializer(annikaInfoMap),
        type = MapField.MapFieldType.MAP
    }
};

var updates = new List<MapUpdate> {
    annikaInfoUpdate
};
var rslt = client.DtUpdateMap(id, Serializer, rslt.Context, null, updates);



var mapOp = new Riak.Commands.CRDT.UpdateMap.MapOperation();
var annika_map = mapOp.map('annika_info');
annika_map.addToSet('interests', 'tango dancing');

var options = {
    bucketType: 'maps',
    bucket: 'customers',
    key: 'ahmed_info',
    op: mapOp
};

client.updateMap(options, function (err, rslt) {
    if (err) {
        throw new Error(err);
    }
});



Map20 = riakc_map:update(
    {<<"annika_info">>, map},
    fun(M) -> riakc_map:update(
        {<<"interests">>, set},
        fun(S) -> riakc_set:add_element(<<"tango dancing">>, S) end,
        M) end,
    Map19).



curl -XPOST http://localhost:8098/types/maps/buckets/customers/datatypes/ahmed_info \
  -H "Content-Type: application/json" \
  -d '
  {
    "update": {
      "annika_info_map": {
        "update": {
          "interests_set": {
            "add": "tango dancing"
          }
        }
      }
    }
  }
  '



We can remove that interest in just the way that we would expect:


// Using our "ahmedMap" location from above:

SetUpdate su = new SetUpdate().remove("tango dancing");
MapUpdate annikaUpdate = new MapUpdate()
        .update("interests", su);
MapUpdate ahmedUpdate = new MapUpdate()
        .update("annika_info", annikaUpdate);
UpdateMap update = new UpdateMap.Builder(ahmedMap, ahmedUpdate)
        .withUpdate(ahmedUpdate)
        .build();
client.execute(update);



map.maps['annika_info'].sets['interests'].remove('tango dancing')



$updateSet = (new \Basho\Riak\Command\Builder\UpdateSet($riak))
    ->remove('tango dancing');

$annikaMap = (new \Basho\Riak\Command\Builder\UpdateMap($riak))
    ->updateSet('interests', $updateSet);

(new \Basho\Riak\Command\Builder\UpdateMap($riak))
    ->updateMap('annika_info', $annikaMap)
    ->atLocation($location)
    ->withContext($response->getMap()->getContext())
    ->build()
    ->execute();



map.maps['annika_info'].sets['interests'].discard('tango dancing')
map.store()



var annikaInterestsSetOp = new SetOp();
var annikaInterestsSetOp.removes.Add(Serializer("tango dancing"));
var annikaMapUpdates = new List<MapUpdate>
{
    new MapUpdate
    {
        set_op = annikaInterestsSetOp,
        field = new MapField
        {
            name = Serializer(annikaInterestsSet),
            type = MapField.MapFieldType.SET
        },
    }
};
var annikaInfoUpdateMapOp = new MapOp();
var annikaInfoUpdateMapOp.updates.AddRange(annikaMapUpdates);
var annikaInfoUpdate = new MapUpdate
{
    map_op = annikaInfoUpdateMapOp,
    field = new MapField
    {
        name = Serializer(annikaInfoMap),
        type = MapField.MapFieldType.MAP
    }
};

var updates = new List<MapUpdate> {
    annikaInfoUpdate
};
var rslt = client.DtUpdateMap(id, Serializer, rslt.Context, null, updates);



var options = {
    bucketType: 'maps',
    bucket: 'customers',
    key: 'ahmed_info'
};

client.fetchMap(options, function (err, rslt) {
    var mapOp = new Riak.Commands.CRDT.UpdateMap.MapOperation();
    var annika_map = mapOp.map('annika_info');
    annika_map.removeFromSet('interests', 'tango dancing');

    options = {
        bucketType: 'maps',
        bucket: 'customers',
        key: 'ahmed_info',
        op: mapOp,
        context: rslt.context
    };

    client.updateMap(options, function (err, rslt) {
        if (err) {
            throw new Error(err);
        }
    });
});



Map21 = riakc_map:update(
    {<<"annika_info">>, map},
    fun(M) -> riakc_map:update(
        {<<"interests">>, set},
        fun(S) -> riakc_set:del_element(<<"tango dancing">>, S) end,
        M) end,
    Map20).



curl -XPOST http://localhost:8098/types/maps/buckets/customers/datatypes/ahmed_info \
  -H "Content-Type: application/json" \
  -d '
  {
    "update": {
      "annika_info_map": {
        "interests_set": {
          "remove": "tango dancing"
        }
      }
    }
  }
  '



If we wanted to add store information about one of Annika’s specific
purchases, we could do so within a map:


// Using our "ahmedMap" location from above:

MapUpdate purchaseUpdate = new MapUpdate()
        .update("first_purchase", new FlagUpdate(true)
        .update("amount", new RegisterUpdate("1271"))
        .update("items", new SetUpdate().add("large widget"));
MapUpdate annikaUpdate = new MapUpdate()
        .update("purchase", purchaseUpdate);
MapUpdate ahmedUpdate = new MapUpdate()
        .update("annika_info", annikaUpdate);
UpdateMap update = new UpdateMap.Builder(ahmedMap, ahmedUpdate)
        .withUpdate(ahmedUpdate)
        .build();
client.execute(update);



map.maps['annika_info'].maps['purchase'].batch do |m|
  m.flags['first_purchase'] = true
  m.register['amount'] = 1271.to_s
  m.sets['items'].add('large widget')
end



$updateSet = (new \Basho\Riak\Command\Builder\UpdateSet($riak))
    ->add('large widget');

$purchaseMap = (new \Basho\Riak\Command\Builder\UpdateMap($riak))
    ->updateFlag('first_purchase', true)
    ->updateRegister('amount', '1271')
    ->updateSet('items', $updateSet);

$annikaMap = (new \Basho\Riak\Command\Builder\UpdateMap($riak))
    ->updateMap('purchase', $purchaseMap);

$response = (new \Basho\Riak\Command\Builder\UpdateMap($riak))
    ->updateMap('annika_info', $annikaMap)
    ->atLocation($location)
    ->withParameter('returnbody', 'true')
    ->build()
    ->execute();



map.maps['annika_info'].maps['purchase'].flags['first_purchase'].enable()
map.maps['annika_info'].maps['purchase'].register['amount'].assign(str(1271))
map.maps['annika_info'].maps['purchase'].sets['items'].add('large widget')
# and so on
map.store()



const string annikaPurchaseMap = "purchase";
const string annikaFirstPurchaseFlag = "first_purchase";
const string annikaPurchaseAmountRegister = "amount";
const string annikaPurchaseItemsSet = "items";

var annikaItemsSetOp = new SetOp();
annikaItemsSetOp.adds.Add(Serializer("large widget"));
var annikaMapUpdates = new List<MapUpdate>
{
    new MapUpdate
    {
        flag_op = MapUpdate.FlagOp.ENABLE,
        field = new MapField
        {
            name = Serializer(annikaFirstPurchaseFlag),
            type = MapField.MapFieldType.FLAG
        }
    },
    new MapUpdate
    {
        register_op = Serializer("1271"),
        field = new MapField
        {
            name = Serializer(annikaPurchaseAmountRegister),
            type = MapField.MapFieldType.REGISTER
        }
    },
    new MapUpdate
    {
        set_op = annikaItemsSetOp,
        field = new MapField
        {
            name = Serializer(annikaPurchaseItemsSet),
            type = MapField.MapFieldType.SET
        },
    }
};

var annikaPurchaseMapOp = new MapOp();
annikaPurchaseMapOp.updates.AddRange(annikaMapUpdates);
var annikaPurchaseMapUpdate = new MapUpdate
{
    map_op = annikaPurchaseMapOp,
    field = new MapField
    {
        name = Serializer(annikaPurchaseMap),
        type = MapField.MapFieldType.MAP
    }
};

var annikaInfoUpdateMapOp = new MapOp();
annikaInfoUpdateMapOp.updates.Add(annikaPurchaseMapUpdate);
var annikaInfoUpdate = new MapUpdate
{
    map_op = annikaInfoUpdateMapOp,
    field = new MapField
    {
        name = Serializer(annikaInfoMap),
        type = MapField.MapFieldType.MAP
    }
};

var updates = new List<MapUpdate> {
    annikaInfoUpdate
};
var rslt = client.DtUpdateMap(id, Serializer, rslt.Context, null, updates);



var mapOp = new Riak.Commands.CRDT.UpdateMap.MapOperation();
var annika_map = mapOp.map('annika_info');
var annika_purchase_map = annika_map.map('purchase');
annika_purchase_map.setFlag('first_purchase', true);
annika_purchase_map.setRegister('amount', '1271');
annika_purchase_map.addToSet('items', 'large widget');

var options = {
    bucketType: 'maps',
    bucket: 'customers',
    key: 'ahmed_info',
    op: mapOp
};

client.updateMap(options, function (err, rslt) {
    if (err) {
        throw new Error(err);
    }
});



Map22 = riakc_map:update(
    {<<"annika_info">>, map},
    fun(M) -> riakc_map:update(
        {<<"purchase">>, map},
        fun(M) -> riakc_map:update(
            {<<"first_purchase">>, flag},
            fun(R) -> riakc_flag:enable(R) end,
        M) end,
    M) end,
    Map21
).



curl -XPOST http://localhost:8098/types/maps/buckets/customers/datatypes/ahmed_info \
  -H "Content-Type: application/json" \
  -d '
  {
    "update": {
      "annika_info_map": {
        "update": {
          "purchase_map": {
            "update": {
              "first_purchase_flag": "enable",
              "amount_register": "1271",
              "items_set": {
                "add": "large widget"
              }
            }
          }
        }
      }
    }
  }
  '










Data Types and Context


When performing normal key/value updates in Riak, we advise that you use
[[causal context]], which enables Riak to make intelligent decisions
behind the scenes about which object values should be considered more
causally recent than others in cases of conflict. In some of the
examples above, you saw references to context metadata included with
each Data Type stored in Riak.


Data Type contexts are similar to [[causal context]] in that they are
opaque (i.e. not readable by humans) and also perform a similar function
to that of causal context, i.e. they inform Riak which version of the
Data Type a client is attempting to modify. This information is required
by Riak when making decisions about convergence.


In the example below, we’ll fetch the context from the user data map we
created for Ahmed, just to see what it looks like:


// Using the "ahmedMap" Location from above:

FetchMap fetch = new FetchMap.Builder(ahmedMap).build();
FetchMap.Response response = client.execute(fetch);
Context ctx = response.getContext();
System.out.prinntln(ctx.getValue().toString())

// An indecipherable string of Unicode characters should then appear



bucket = client.bucket('users')
ahmed_map = Riak::Crdt::Map.new(bucket, 'ahmed_info', 'maps')
ahmed_map.instance_variable_get(:@context)

# => "\x83l\x00\x00\x00\x01h\x02m\x00\x00\x00\b#\t\xFE\xF9S\x95\xBD3a\x01j"



$map = (new \Basho\Riak\Command\Builder\FetchMap($riak))
    ->atLocation($location)
    ->build()
    ->execute()
    ->getMap();

echo $map->getContext(); // g2wAAAACaAJtAAAACLQFHUkv4m2IYQdoAm0AAAAIxVKxCy5pjMdhCWo=



bucket = client.bucket_type('maps').bucket('users')
ahmed_map = Map(bucket, 'ahmed_info')
ahmed_map.context

# g2wAAAABaAJtAAAACCMJ/vlTlb0zYQFq



var id = new RiakObjectId("maps", "customers", "ahmed_info");
var rslt = client.DtFetchMap(id);
Debug.WriteLine(format: "Context: {0}", args: Convert.ToBase64String(rslt.Context));

// Output:
// Context: g2wAAAACaAJtAAAACLQFHUkv4m2IYQdoAm0AAAAIxVKxCy5pjMdhCWo=



var options = {
    bucketType: 'maps',
    bucket: 'customers',
    key: 'ahmed_info'
};

client.fetchMap(options, function (err, rslt) {
    if (err) {
        throw new Error(err);
    }

    logger.info("context: '%s'", rslt.context.toString('base64'));
});

// Output:
// context: 'g2wAAAACaAJtAAAACLQFHUmjDf4EYTBoAm0AAAAIxVKxC6F1L2dhSWo='



%% You cannot fetch a Data Type's context directly using the Erlang
%% client. This is actually quite all right, as the client automatically
%% manages contexts when making updates.




Context with the Ruby, Python, and Erlang clients

In the Ruby, Python, and Erlang clients, you will not need to manually
handle context when making Data Type updates. The clients will do it all
for you. The one exception amongst the official clients is the Java
client. We'll explain how to use Data Type contexts with the Java client
directly below.


Context with the Java and PHP Clients


With the Java and PHP clients, you’ll need to manually fetch and return Data Type
contexts for the following operations:



		Disabling a flag within a map


		Removing an item from a set (whether the set is on its own or within a
map)


		Removing a field from a map





Without context, these operations simply will not succeed due to the
convergence logic driving Riak Data Types. The example below shows you
how to fetch a Data Type’s context and then pass it back to Riak. More
specifically, we’ll remove the paid_account flag from the map:


// This example uses our "ahmedMap" location from above:

FetchMap fetch = new FetchMap.Builder(ahmedMap)
    .build();
FetchMap.Response response = client.execute(fetch);
Context ctx = response.getContext();
MapUpdate removePaidAccountField = new MapUpdate()
        .removeFlag("paid_account");
UpdateMap update = new UpdateMap.Builder(ahmedMap, removePaidAccountField)
        .withContext(ctx)
        .build();
client.execute(update);



$map = (new \Basho\Riak\Command\Builder\FetchMap($riak))
    ->atLocation($location)
    ->build()
    ->execute()
    ->getMap();

$updateSet = (new \Basho\Riak\Command\Builder\UpdateSet($riak))
    ->remove('opera');

(new \Basho\Riak\Command\Builder\UpdateMap($riak))
    ->updateSet('interests', $updateSet)
    ->atLocation($location)
    ->withContext($map->getContext())
    ->build()
    ->execute();









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/data-modeling/conditional-summation.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Conditional Summation
project: riak
version: 1.2.0+
document: cookbook
toc: true
audience: intermediate
keywords: [use-cases, sql]




Summing all values that optionally adhere to some constraint.




          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/using/link-walking.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Link Walking
project: riak
version: 0.10.0+
document: cookbook
audience: beginner
keywords: [developers, linkwalking]
moved: {
‘1.4.0-‘: ‘/cookbooks/Link-Walking’
}




Deprecation Notice
Link walking is a deprecated feature of Riak and will eventually be removed. Please refrain from using it, and instead model your data where related data are multi-step lookups, or consider an alternative query option such as [[Riak Search|Using Search]] or [[MapReduce|Using MapReduce]].


In Riak 2.0 link walking is only supported on the default bucket type.


Link walking will not work when [[security|Authentication and Authorization]] is enabled.


What are Links?


One of the ways that we are able to extend the fairly-limited data model provided by a key/value store is with the notion “links” and a type of query known as “link walking.”


Links are metadata that establish one-way relationships between objects in Riak. Once attached, links then enable you to run queries that “walk” relations from one object to another. With links, you create lightweight pointers between your data, for example, from ‘projects’ to ‘milestones’ to ‘tasks’, and then select data along that hierarchy using simple client API commands. (In a pinch, this can substitute as a lightweight graph database, as long as the number of links attached to a given key are kept reasonably low.) Links are an incredibly powerful feature of Riak and can transform an application if used appropriately by developers.





Working with Links


Links live in the metadata of an object and are attached to it via the “Link” header. Here is what the link header looks like:


Link: </riak/people/dhh>; riaktag="friend"



So what’s actually happening here? In the angle brackets, we have the URL the link points to. The prefix “riak” is followed by the bucket name, “people,” and the key, “dhh.” Next comes the “riaktag.” Contained in the riaktag field is an identifier that describes the relationship you are wishing to capture with your link. In this case the riaktag is “friend.”


Here is what a full PUT request through CURL with the link header would look like:


$ curl -v -XPUT http://127.0.0.1:8091/riak/people/timoreilly \
  -H 'Link: </riak/people/dhh>; riaktag="friend"' \
  -H "Content-Type: text/plain" \
  -d 'I am an excellent public speaker.'



In this request we are attaching ‘Link: 

&lt;


/riak/people/dhh&gt;


; riaktag=”friend”’ to the key “timoreilly” located in the “people” bucket.


Try it. It’s easy, right? You’ve just attached a link to an object in Riak!


To remove a link from an object, it's straightforward, too: read (GET) the object, remove the link information, and write it back into Riak.
To retrieve that object to see the attached link, simply to do the following:


$ curl -v http://127.0.0.1:8091/riak/people/timoreilly



Look for the “Link” field in the response headers. This will show you your link information.


Alright. We’ve stored the “timoreilly” object with a “friend” tag pointing to the “dhh” object. Now we need to store the “dhh” object to which “timoreilly” is linked:


$ curl -v -XPUT http://127.0.0.1:8091/riak/people/dhh \
  -H "Content-Type: text/plain" \
  -d 'I drive a Zonda.'



Great. Now we have the “timoreilly” in the “people” bucket stored with a link that points to the “dhh” object that is also in the “people” bucket.


How do we connect the dots? Link Walking, that’s how.





Link Walking


Once you have tagged objects in Riak with links, you can then traverse them with an operation called “Link Walking.” You can walk any number of links with one request, and you can choose to have all the objects matching a single step returned with the end result.


To continue with the example from above, the “timoreilly” object is now pointer to the “dhh” object located in the “people” bucket. We can use a link walking query to follow the link from “timoreilly” to “dhh.” Here is what that query would look like:


$ curl -v http://127.0.0.1:8091/riak/people/timoreilly/people,friend,1



You’ll notice that at the end of that request we’ve tacked on “/people,friend,1” That is the link specification. It’s composed of three parts:



		Bucket - a bucket name to limit the links to (in the above request it’s ‘people’)


		Tag - the “riaktag” to limit the links (‘friend’ is the tag in the above request)


		Keep - 0 or 1, whether to return results from this step or phase





If all went well, the response body from the above request should include the record for the “dhh” object.


You can replace both the “bucket” and the “tag” fields in the link spec with an underscore. This will tell the query to match any bucket or tag name. For instance, the following request should return the same data as the fully-specified request above:


$ curl -v http://127.0.0.1:8091/riak/people/timoreilly/_,friend,1



Each step you walk is referred to as a phase, because under the hood a link walking request uses the same mechanism as MapReduce, where every step specified in the URL is translated into a single MapReduce phase. If you want to walk multiple steps you can use the Keep parameter to specify which steps your particularly interested in.


By default, Riak will only include the objects found by the last step. This could be interesting if you want e.g. to build a graph of how the original object (“timoreilly” in this case) relates to the ones found traversing the links. To see how this works out in practice, let’s add another object to the mix, “davethomas”, who is friends with “timoreilly”.


$ curl -v -XPUT http://127.0.0.1:8091/riak/people/davethomas \
  -H 'Link: </riak/people/timoreilly>; riaktag="friend"' \
  -H "Content-Type: text/plain" \
  -d 'I publish books'



Now we can walk from “davethomas” to “dhh” in one go, and you’ll see the last parameter in action:


$ curl -v localhost:8091/riak/people/davethomas/_,friend,_/_,friend,_/



As a result you’ll only get the “dhh” object. Leaving the last parameter for each step as “_” defaults to Riak not returning objects from intermittent steps (i.e. 0), and to 1 for the last step. So to get everything in between you set the last parameter to 1 for the steps you’re interested in.


$ curl -v localhost:8091/riak/people/davethomas/_,friend,1/_,friend,_/



When you try this out yourself you’ll notice that the output has gotten slightly more confusing, because it now consists of two parts with a bunch of objects contained in each.


As a final sugar sprinkle on top, we can make “dhh” friends with “davethomas” directly, so we have a real graph and not just a single path.


$ curl -v -XPUT http://127.0.0.1:8091/riak/people/dhh \
  -H 'Link: </riak/people/davethomas>; riaktag="friend"' \
  -H "Content-Type: text/plain" \
  -d 'I drive a Zonda.'



You can add more link phases to the request, or you can walk from “dhh” to “timoreilly” through “davethomas”, or even from “davethomas” to “davethomas”, by adding another step to Link Walking specification.


$ curl -v localhost:8091/riak/people/davethomas/_,friend,_/_,friend,_/_,friend,_/



So, let’s review what we just did:



		Stored an object with a link attached to it.


		Stored the object to which the link pointed.


		Performed a link walking query to traverse the link from one object to another, and across a whole set of objects.





This is some pretty powerful stuff! And we’ve only just scratched the surface of what links can do and what they can be used for.





A Magnificent Link Walking Screen Cast


In this screencast, Basho Hacker Sean Cribbs will take you through link walking basics and then dive into more complex and advanced usage of links in Riak.



Links and Link Walking in Riak from Basho Technologies on Vimeo.




Link Walking Scripts


In the above screencast, Sean makes use of several scripts to demonstrate some deeper relationships expressed with links in Riak. Here are these scripts:



		[[load_people.sh|https://github.com/basho/basho_docs/raw/master/source/data/load_people.sh]]


		[[people_queries.sh|https://github.com/basho/basho_docs/raw/master/source/data/people_queries.sh]]




If you watched the video, it’s apparent how these scripts are used to demonstrate link walking. For those of you who didn’t watch or who want to run and tweak the scripts themselves, check out this graphic:
[image: Circle of Friends]


load_people.sh will automatically load data into your running three node Riak Cluster that pertains to the above graphic and has the requisite links attached.


people_queries.sh is a series of link walking queries that expresses the relationships that were preloaded with the load_people.sh script.


To use load_people.sh download it to your dev directory and run


$ chmod +x load_people.sh



followed by


$ ./load_people.sh



After the several lines of output finish, do the same for “people_queries.sh”:


$ chmod +x people_queries.sh



followed by


$ ./people_queries.sh



You should then see:


Press [[Enter]] after each query description to execute.
Q: Get Sean's friends (A:Mark, Kevin)







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/data-modeling/serving-ads.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Serving Advertisements
project: riak
version: 1.2.0-2.0.0
document: cookbook
toc: true
audience: intermediate
keywords: [use-cases]
moved: {
‘1.4.0-‘: ‘/cookbooks/use-cases/serving-ads’
}




This page no longer valid. We recommend taking a look at [[Use Cases]]
or [[Building Applications with Riak]] instead.




          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/using/search.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Using Search
project: riak
version: 1.0.0+
document: tutorials
toc: true
audience: beginner
keywords: [developers, search, kv]





Note on Search 2.0 vs. Legacy Search

This document refers to the new Riak Search 2.0 with
[[Solr|http://lucene.apache.org/solr/]] integration (codenamed
Yokozuna). For information about the deprecated Riak Search, visit [[the
old Using Riak Search
docs|http://docs.basho.com/riak/1.4.10/dev/using/search/]].

Riak Search 2.0 is a new open-source project integrated with Riak. It
allows for distributed, scalable, fault-tolerant, transparent indexing
and querying of Riak values. It’s easy to use. After connecting a bucket
(or [[bucket type|Using Bucket Types]]) to a Solr index, you simply
write values (such as JSON, XML, plain text, [[Riak Data Types|Using
Data Types]], etc.) into Riak as normal, and then query those indexed
values using the Solr API.


Once you have covered some of the basics, we recommend checking out one
of the following advanced documents:



		[[Search Details]] — Implementation details behind Yokozuna, the
Riak subsystem that ties Solr to Riak and undergirds Riak Search


		[[Search Schema]] — A tutorial on creating and using your own custom
Solr schemas in Riak Search


		[[Riak Data Types and Search]] — How to index and query [[Riak Data
Types|Using Data Types]] in Riak Search


		[[Custom Search Extractors]] — How to build Solr extractors that go
beyond the default extractors that come with Riak Search by default





If you are looking for more operations-oriented documentation, see
[[Riak Search Settings]] for configuration options and more.



Note: Riak Search must be enabled

Although Riak Search comes bundled with Riak versions 2.0 and later by
default, you must first first [[enable it|Riak Search Settings]] in your
environment to use it.


Why Riak Search


Some of Riak’s core strengths lie in its scalability, fault tolerance,
and ease of operations. Because Riak is primarily a key/value store,
with one [[important exception|Data Types]], it is not always easy to
query, even when following [[key/value best practices|Key/Value
Modeling]]. The driving force behind Riak Search is to overcome this by
providing an integrated, scalable mechanism for building ad hoc queries
against any values stored in a Riak cluster, while holding true to
Riak’s core strengths.


[image: Yokozuna]





Feature List


Riak Search 2.0 is far more than a distributed search engine like
SolrCloud [https://cwiki.apache.org/confluence/display/solr/SolrCloud]
or ElasticSearch [http://www.elasticsearch.org/], because it’s directly
integrated with Riak. This greatly simplifies usage by offloading the
task of indexing values to Riak.


Riak Search’s features and enhancements are numerous.



		Support for various MIME types (JSON, XML, plain text, [[Riak Data
Types|Using Data Types]]) for automatic data extraction, along with
support for [[custom Search extractors]]


		Support for various
language [https://cwiki.apache.org/confluence/display/solr/Language+Analysis]-specific
analyzers, tokenizers, and
filters [https://cwiki.apache.org/confluence/display/solr/Understanding+Analyzers%2C+Tokenizers%2C+and+Filters]


		Robust, easy-to-use query languages [https://cwiki.apache.org/confluence/display/solr/Other+Parsers]
like Lucene (default) and DisMax


		Queries: exact match, globs, inclusive/exclusive range queries,
AND/OR/NOT, prefix matching, proximity searches, term boosting,
sorting, pagination, and more


		[[Protocol Buffer|PBC API]] interface for Riak and Solr interface via HTTP


		Scoring and ranking for most relevant results


		Query result highlighting [https://cwiki.apache.org/confluence/display/solr/Highlighting]


		[[Active anti-entropy]] for automatic index repair






Note on Solr UI tools

We do not recommend using the [Solr Administration User
Interface](https://cwiki.apache.org/confluence/display/solr/Using+the+Solr+Administration+User+Interface).
Because each running instance of Solr is connected only to a single Riak
node, the information obtained through the UI will be necessarily out of
step with what's going on cluster wide and thus of little use.




Simple Setup


Riak Search 2.0 is an integration of Solr (for indexing and querying)
and Riak (for storage and distribution). There are a few points of
interest that a user of Riak Search will have to keep in mind in order
to properly store and later query for values.



		Schemas explain to Solr how to index fields


		Indexes are named Solr indexes against which you will query


		Bucket-index association signals to Riak when to index values
(this also includes bucket type-index association)





Riak Search must first be configured with a Solr schema so that Solr
knows how to index value fields. If you don’t define one, you’re
provided with a default schema named _yz_default, which can be found
on
GitHub [https://raw.githubusercontent.com/basho/yokozuna/develop/priv/default_schema.xml].
The examples in this document will presume the default. You can read
more about creating custom schemas in [[Search Schema]], which you’ll
likely want to use in a production environment.


Next, you must create a named Solr index through Riak Search. This index
represents a collection of similar data that you connect with to perform
queries. When creating an index, you can optionally provide a schema. If
you do not, the default schema will be used. Here we’ll curl create an
index named famous with the default schema.


Both schema and index creation will be covered immediately below.



Note on index names

Note that index names may only be
[ASCII](http://en.wikipedia.org/wiki/ASCII) values from 32-127 (spaces,
standard punctuation, digits, and word characters). This may change in
the future to allow full [Unicode](http://en.wikipedia.org/wiki/Unicode)
support.

All curl examples in this document assume that you have set an
environment variable named RIAK_HOST, which points to a Riak base URL,
such as http://localhost:8098. The appropriate value for RIAK_HOST
will depend on your [[configuration|Configuration
Files#Client-Interfaces]].


Let’s start by creating an index called famous that uses the default
schema.


YokozunaIndex famousIndex = new YokozunaIndex("famous");
StoreIndex storeIndex =
    new StoreIndex.Builder(famousIndex).build();
client.execute(storeIndex);



client.create_search_index('famous')



$response = (new \Basho\Riak\Command\Builder\Search\StoreIndex($riak))
  ->withName('famouse')
  ->build()
  ->execute();



client.create_search_index('famous')



var idx = new SearchIndex("famous");
var rslt = client.PutSearchIndex(idx);



riakc_pb_socket:create_search_index(Pid, <<"famous">>).



export RIAK_HOST="http://localhost:8098"

curl -XPUT $RIAK_HOST/search/index/famous




Getting started with Riak clients

If you are connecting to Riak using one of Basho's official [[client
libraries]], you can find more information about getting started with
your client in our [[quickstart guide|Five-Minute
Install#setting-up-your-riak-client]].

Note that the above command is exactly the same as the following, which
explicitly defines the default schema.


YokozunaIndex famousIndex = new YokozunaIndex("famous", "_yz_default");
StoreIndex storeIndex = new StoreIndex.Builder(famousIndex)
        .build();
client.execute(storeIndex);



client.create_search_index("famous", "_yz_default")



$response = (new \Basho\Riak\Command\Builder\Search\StoreIndex($riak))
  ->withName('scores')
  ->usingSchema('_yz_default')
  ->build()
  ->execute();



client.create_search_index('famous', '_yz_default')



var idx = new SearchIndex("famous", "_yz_default");
var rslt = client.PutSearchIndex(idx);



riakc_pb_socket:create_search_index(Pid, <<"famous">>, <<"_yz_default">>, []).



curl -XPUT $RIAK_HOST/search/index/famous \
     -H 'Content-Type: application/json' \
     -d '{"schema":"_yz_default"}'



The last setup item that you need to perform is to associate either a
bucket or a [[bucket type|Using Bucket Types]] with a Solr index. You
only need do this once per bucket type, and all buckets within that type
will use the same Solr index. For example, to associate a bucket type
named animals with the famous index, you can set the bucket type
property search_index to animals. If a Solr index is to be used by
only one Riak bucket, you can set the search_index property on that
bucket. If more than one bucket is to share a Solr index, a bucket type
should be used. More on bucket types in the section directly below.



Bucket Types


In Riak versions 2.0 and later, Basho suggests that you [[use bucket
types|Using Bucket Types]] to namespace and configure all buckets you
use. Bucket types have a lower overhead within the cluster than the
default bucket namespace but require an additional setup step on the
command line.


When creating a new bucket type, you can create a bucket type without
any properties and set individual buckets to be indexed. The step below
creates and activates the bucket type:


riak-admin bucket-type create animals '{"props":{}}'
riak-admin bucket-type activate animals



And this step applies the index to the cats bucket, which bears the
animals bucket type we just created and activated:


curl -XPUT $RIAK_HOST/types/animals/buckets/cats/props \
     -H 'Content-Type: application/json' \
     -d '{"props":{"search_index":"famous"}}'



Another possibility is to set the search_index as a default property
of the bucket type. This means any bucket under that type will
inherit that setting and have its values indexed.


riak-admin bucket-type create animals '{"props":{"search_index":"famous"}}'
riak-admin bucket-type activate animals



If you ever need to turn off indexing for a bucket, set the
search_index property to the _dont_index_ sentinel value.





Bucket Properties


Although we recommend that you use all new buckets under a bucket type,
if you have existing data with a type-free bucket (i.e. under the
default bucket type) you can set the search_index property for a
specific bucket.


Namespace catsBucket = new Namespace("cats");
StoreBucketPropsOperation storePropsOp = new StoreBucketPropsOperation.Builder(catsBucket)
        .withSearchIndex("famous")
        .build();
client.execute(storePropsOp);



bucket = client.bucket('cats')
bucket.properties = {'search_index' => 'famous'}



(new \Basho\Riak\Command\Builder\Search\AssociateIndex($riak))
    ->withName('famous')
    ->buildBucket('cats')
    ->build()
    ->execute();



bucket = client.bucket('cats')
bucket.set_properties({'search_index': 'famous'})



var properties = new RiakBucketProperties();
properties.SetSearchIndex("famous");
var rslt = client.SetBucketProperties("cats", properties);



riakc_pb_socket:set_search_index(Pid, <<"cats">>, <<"famous">>).



curl -XPUT $RIAK_HOST/buckets/cats/props \
     -H'content-type:application/json' \
     -d'{"props":{"search_index":"famous"}}'








Riak Search Security Setup


[[Security|Authentication and Authorization]] is a new feature as of
Riak 2.0 that lets an administrator limit access to certain resources.
In the case of search, your options are to limit administration of
schemas or indexes (the search.admin permission) to certain users, and
to limit querying (the search.query permission) to any index or to a
specific index. The example below shows the various options.


riak-admin security grant search.admin on schema to username
riak-admin security grant search.admin on index to username
riak-admin security grant search.query on index to username
riak-admin security grant search.query on index famous to username



Those permissions can also be revoked:


riak-admin security revoke search.admin on schema from username
riak-admin security revoke search.admin on index from username
riak-admin security revoke search.query on index from username
riak-admin security revoke search.query on index famous from username






Indexing Values



Note on indexing and lag times

There is typically a one-second delay between storing an object in Riak
and that object being available in Search queries. You should take this
into account when writing Riak client tests, benchmarking, and so on.
More information can be found in the [Solr
documentation](http://wiki.apache.org/solr/SolrPerformanceFactors).

With a Solr schema, index, and association in place (and possibly a
security setup as well), we’re ready to start using Riak Search. First,
populate the cat bucket with values, in this case information about
four cats: Liono, Cheetara, Snarf, and Panthro.


Depending on the driver you use, you may have to specify the content
type, which for this example is application/json. In the case of Ruby
and Python the content type is automatically set for you based on the
object given.


Namespace animalsBucket = new Namespace("animals");
String json = "application/json";

RiakObject liono = new RiakObject()
        .setContentType(json)
        .setValue(BinaryValue.create("{\"name_s\":\"Lion-o\",\"age_i\":30,\"leader_b\":true}"));
RiakObject cheetara = new RiakObject()
        .setContentType(json)
        .setValue(BinaryValue.create("{\"name_s\":\"Cheetara\",\"age_i\":30,\"leader_b\":false}"));
RiakObject snarf = new RiakObject()
        .setContentType(json)
        .setValue(BinaryValue.create("{\"name_s\":\"Snarf\",\"age_i\":43,\"leader_b\":false}"));
RiakObject panthro = new RiakObject()
        .setContentType(json)
        .setValue(BinaryValue.create("{\"name_s\":\"Panthro\",\"age_i\":36,\"leader_b\":false}"));
Location lionoLoc = new Location(animalsBucket, "liono");
Location cheetaraLoc = new Location(animalsBucket, "cheetara");
Location snarfLoc = new Location(animalsBucket, "snarf");
Location panthroLoc = new Location(animalsBucket, "panthro");

StoreValue lionoStore = new StoreValue.Builder(liono).withLocation(lionoLoc).build();
// The other StoreValue operations can be built the same way

client.execute(lionoStore);
// The other storage operations can be performed the same way



bucket = client.bucket_type('animals').bucket("cats")

cat = bucket.get_or_new("liono")
cat.data = {"name_s" => "Lion-o", "age_i" => 30, "leader_b" => true}
cat.store

cat = bucket.get_or_new("cheetara")
cat.data = {"name_s" => "Cheetara", "age_i" => 28, "leader_b" => false}
cat.store

cat = bucket.get_or_new("snarf")
cat.data = {"name_s" => "Snarf", "age_i" => 43}
cat.store

cat = bucket.get_or_new("panthro")
cat.data = {"name_s" => "Panthro", "age_i" => 36}
cat.store



$bucket = new \Basho\Riak\Bucket('cats', 'animals');

$storeObjectBuilder = (new \Basho\Riak\Command\Builder\StoreObject($riak))
  ->withLocation(new \Basho\Riak\Location('liono', $bucket))
  ->buildJsonObject(['name_s' => 'Lion-o', 'age_i' => 30, 'leader_b' => true]);

$storeObjectBuilder->build()->execute();

$storeObjectBuilder->withLocation(new \Basho\Riak\Location('cheetara', $bucket))
  ->buildJsonObject(['name_s' => 'Cheetara', 'age_i' => 28, 'leader_b' => false]);

$storeObjectBuilder->build()->execute();

$storeObjectBuilder->withLocation(new \Basho\Riak\Location('snarf', $bucket))
  ->buildJsonObject(['name_s' => 'Snarf', 'age_i' => 43]);

$storeObjectBuilder->build()->execute();

$storeObjectBuilder->withLocation(new \Basho\Riak\Location('panthro', $bucket))
  ->buildJsonObject(['name_s' => 'Panthro', 'age_i' => 36]);

$storeObjectBuilder->build()->execute();



bucket = client.bucket_type('animals').bucket('cats')

cat = bucket.new('liono', {'name_s': 'Lion-o', 'age_i': 30, 'leader_b': True})
cat.store()

cat = bucket.new('cheetara', {'name_s':'Cheetara', 'age_i':28, 'leader_b': True})
cat.store()

cat = bucket.new('snarf', {'name_s':'Snarf', 'age_i':43})
cat.store()

cat = bucket.new('panthro', {'name_s':'Panthro', 'age_i':36})
cat.store()



var lionoId = new RiakObjectId("animals", "cats", "liono");
var lionoObj = new { name_s = "Lion-o", age_i = 30, leader = true };
var lionoRiakObj = new RiakObject(lionoId, lionoObj);

var cheetaraId = new RiakObjectId("animals", "cats", "cheetara");
var cheetaraObj = new { name_s = "Cheetara", age_i = 30, leader = false };
var cheetaraRiakObj = new RiakObject(cheetaraId, cheetaraObj);

var snarfId = new RiakObjectId("animals", "cats", "snarf");
var snarfObj = new { name_s = "Snarf", age_i = 43, leader = false };
var snarfRiakObj = new RiakObject(snarfId, snarfObj);

var panthroId = new RiakObjectId("animals", "cats", "panthro");
var panthroObj = new { name_s = "Panthro", age_i = 36, leader = false };
var panthroRiakObj = new RiakObject(panthroId, panthroObj);

var rslts = client.Put(new[] {
    lionoRiakObj, cheetaraRiakObj, snarfRiakObj, panthroRiakObj
});



CO = riakc_obj:new({<<"animals">>, <<"cats">>}, <<"liono">>,
    <<"{\"name_s\":\"Lion-o\", \"age_i\":30, \"leader_b\":true}">>,
    "application/json"),
riakc_pb_socket:put(Pid, CO),

C1 = riakc_obj:new({<<"animals">>, <<"cats">>}, <<"cheetara">>,
    <<"{\"name_s\":\"Cheetara\", \"age_i\":28, \"leader_b\":false}">>,
    "application/json"),
riakc_pb_socket:put(Pid, C1),

C2 = riakc_obj:new({<<"animals">>, <<"cats">>}, <<"snarf">>,
    <<"{\"name_s\":\"Snarf\", \"age_i\":43}">>,
    "application/json"),
riakc_pb_socket:put(Pid, C2),

C3 = riakc_obj:new({<<"animals">>, <<"cats">>}, <<"panthro">>,
    <<"{\"name_s\":\"Panthro\", \"age_i\":36}">>,
    "application/json"),
riakc_pb_socket:put(Pid, C3),



curl -XPUT $RIAK_HOST/types/animals/buckets/cats/keys/liono \
     -H 'Content-Type: application/json' \
     -d '{"name_s":"Lion-o", "age_i":30, "leader_b":true}'

curl -XPUT $RIAK_HOST/types/animals/buckets/cats/keys/cheetara \
     -H 'Content-Type: application/json' \
     -d '{"name_s":"Cheetara", "age_i":28, "leader_b":false}'

curl -XPUT $RIAK_HOST/types/animals/buckets/cats/keys/snarf \
     -H 'Content-Type: application/json' \
     -d '{"name_s":"Snarf", "age_i":43}'

curl -XPUT $RIAK_HOST/types/animals/buckets/cats/keys/panthro \
     -H 'Content-Type: application/json' \
     -d '{"name_s":"Panthro", "age_i":36}'



If you’ve used Riak before, you may have noticed that this is no
different from storing values without Riak Search. That’s because we
designed Riak Search with the following design goal in mind:



Write it like Riak, query it like Solr


But how does Riak Search know how to index values, given that you can
store opaque values in Riak? For that, we employ extractors.







Extractors


Extractors are modules in Riak that accept a Riak value with a certain
content type and convert it into a list of fields that can be indexed by
Solr. This is done transparently and automatically as part of the
indexing process. You can even create your own [[custom
extractors|Custom Search Extractors]].


Our current example uses the JSON extractor, but Riak Search also
extracts indexable fields from the following content types:



		JSON (application/json)


		XML (application/xml, text/xml)


		Plain text (text/plain)


		[[Riak Data Types|Using Data Types]]
		counter (application/riak_counter)


		map (application/riak_map)


		set (application/riak_set)








		noop (unknown content type)





More on Riak Data Types can be found in [[Riak Data Types and Search]].


In the examples we’ve seen, the JSON field name_s is translated to a
Solr index document field insert. Solr will index any field that it
recognizes, based on the index’s schema. The default schema
(_yz_default) uses the suffix to decide the field type (_s
represents a string, _i is an integer, _b is binary and so on).


If the content type allows for nested values (e.g. JSON and XML), the
extractors will flatten each field, separated by dots. For example, if
you have this XML:


<person>
  <pets>
    <pet>
      <name_s>Spot</name_s>
    </pet>
  </pets>
</person>



The extractor will convert it to the Solr field person.pets.pet.name_s
with value Spot. Lists of values are assumed to be Solr multi-valued
fields.


{"people_ss":["Ryan", "Eric", "Brett"]}



The above JSON will insert a list of three values into Solr to be
indexed: people_ss=Ryan, people_ss=Eric, people_ss=Brett.


You can also create your own custom extractors if your data doesn’t fit
one of the default types. A full tutorial can be found in [[Custom
Search Extractors]].



Automatic Fields


When a Riak object is indexed, Riak Search automatically inserts a few
extra fields as well. These are necessary for a variety of technical
reasons, and for the most part you don’t need to think about them.
However, there are a few fields which you may find useful:



		_yz_rk (Riak key)


		_yz_rt (Riak bucket type)


		_yz_rb (Riak bucket)


		_yz_err (extraction error)





You can query on the basis of these fields, just like any other normal
Solr fields. Most of the time, however, you’ll use _yz_rk as a query
result, which tells you the Riak key that matches the query you just
ran. Let’s see this in detail by running some queries in the next
section.







Querying


After the schema, index, association, and population/extraction/indexing
are taken care of, you can get down to the fun part of querying your
data.



Simple Query


The basic query parameter is q via HTTP, or the first parameter of
your chosen driver’s search function (there are examples from all of
our client libraries below). All distributed Solr queries are supported,
which actually includes most of the single-node Solr queries. This
example searches for all documents in which the name_s value begins
with Lion by means of a glob (wildcard) match.


SearchOperation searchOp = new SearchOperation
        .Builder(BinaryValue.create("famous"), "name_s:Lion*")
        .build();
cluster.execute(searchOp);
// This will display the actual results as a List of Maps:
List<Map<String, List<String>>> results = searchOp.get().getAllResults();
// This will display the number of results:
System.out.println(results);



results = client.search("famous", "name_s:Lion*")
p results
p results['docs']



$response = (new \Basho\Riak\Command\Builder\Search\FetchObjects($riak))
  ->withIndexName('famous')
  ->withQuery('name_s:Lion*')
  ->build()
  ->execute();

$response->getNumFound(); // 1

var_dump($response->getDocs());



results = client.fulltext_search('famous', 'name_s:Lion*')
print results
print results['docs']



var search = new RiakSearchRequest
{
    Query = new RiakFluentSearch("famous", "name_s")
        .Search("Lion*")
        .Build()
};

var rslt = client.Search(search);
RiakSearchResult searchResult = rslt.Value;
foreach (RiakSearchResultDocument doc in searchResult.Documents)
{
    var args = new[] {
        doc.BucketType,
        doc.Bucket,
        doc.Key,
        string.Join(", ", doc.Fields.Select(f => f.Value).ToArray())
    };
    Debug.WriteLine(
        format: "BucketType: {0} Bucket: {1} Key: {2} Values: {3}",
        args: args);
}



{ok, Results} = riakc_pb_socket:search(Pid, <<"famous">>, <<"name_s:Lion*">>),
io:fwrite("~p~n", [Results]),
Docs = Results#search_results.docs,
io:fwrite("~p~n", [Docs]).

%% Please note that this example relies on an Erlang record definition
%% for the search_result record found here:
%% https://github.com/basho/riak-erlang-client/blob/master/include/riakc.hrl



curl "$RIAK_HOST/search/query/famous?wt=json&q=name_s:Lion*" | jsonpp



The response to a query will be an object containing details about the
response, such as a query’s max score and a list of documents which
match the given query. It’s worth noting two things:



		The documents returned are Search documents (a set of Solr
field/values), not a Riak value


		The HTTP response is a direct Solr response, while the drivers use
Protocol Buffers and are encoded with different field names





This is a common HTTP response value:


{
  "numFound": 1,
  "start": 0,
  "maxScore": 1.0,
  "docs": [
    {
      "leader_b": true,
      "age_i": 30,
      "name_s": "Lion-o",
      "_yz_id": "default_cats_liono_37",
      "_yz_rk": "liono",
      "_yz_rt": "default",
      "_yz_rb": "cats"
    }
  ]
}



The most important field returned is docs, which is the list of
objects that each contain fields about matching index documents. The
values you’ll use most often are _yz_rt (Riak bucket type), _yz_rb
(Riak bucket), _yz_rk (Riak key), and score which represent the
similarity of the matching doc to the query via Lucene
scoring [https://lucene.apache.org/core/4_6_0/core/org/apache/lucene/search/package-summary.html#scoring].


In this example the query fields are returned because they’re stored in
Solr. This depends on your schema. If they are not stored, you’ll have
to perform a separate Riak GET operation to retrieve the value using the
_yz_rk value.


// Using the results object from above
Map<String, List<String> doc = results.get(0);
String bucketType = doc.get("_yz_rt").get(0);
String bucket = doc.get("yz_rb").get(0);
String key = doc.get("_yz_rk").get(0);
Namespace namespace = new Namespace(bucketType, bucket);
Location objectLocation = new Location(namespace, key);
FetchValue fetchOp = new FetchValue.Builder(objectLocation)
        .build();
RiakObject obj = client.execute(fetchOp).getValue(RiakObject.class);
System.out.println(obj.getValue());

// {"name_s": "Lion-o", "age_i": 30, "leader_b": true}



doc = results['docs'].first
btype = Riak::BucketType.new(client, doc["_yz_rt"]) # animals
bucket = Riak::Bucket.new(client, doc["_yz_rb"])    # cats
object = bucket.get( doc["_yz_rk"] )                # liono
p object.data

# {"name_s" => "Lion-o", "age_i" => 30, "leader_b" => true}



$doc = $response->getDocs()[0];
$btype = $doc->_yz_rt; // animals
$bucket = $doc->_yz_rb; // cats
$key = $doc->_yz_rk; // liono
$name = $doc->name_s; // Lion-o

$object = (new \Basho\Riak\Command\Builder\FetchObject($riak))
  ->buildLocation($key, $bucket, $btype)
  ->build()
  ->execute()
  ->getObject();

var_dump($object->getData());



doc = results['docs'][0]
bucket = client.bucket_type(doc['_yz_rt']).bucket(doc['_yz_rb']) # animals/cats
object = bucket.get(doc['_yz_rk'])    # liono
print object.data

# {"name_s": "Lion-o", "age_i": 30, "leader_b": true}



RiakSearchResult searchResult = searchRslt.Value;

RiakSearchResultDocument doc = searchResult.Documents.First();
var id = new RiakObjectId(doc.BucketType, doc.Bucket, doc.Key);
var rslt = client.Get(id);

RiakObject obj = rslt.Value;
Debug.WriteLine(Encoding.UTF8.GetString(obj.Value));

// {"name_s":"Lion-o","age_i":30,"leader_b":true}



[{Index,Doc}|_] = Docs,
BType  = proplists:get_value(<<"_yz_rt">>, Doc),  %% <<"animals">>
Bucket = proplists:get_value(<<"_yz_rb">>, Doc),  %% <<"cats">>
Key    = proplists:get_value(<<"_yz_rk">>, Doc),  %% <<"liono">>
{ok, Obj} = riakc_pb_socket:get(Pid, {BType, Bucket}, Key),
Val = riakc_obj:get_value(Obj),
io:fwrite("~s~n", [Val]).

%% {"name_s":"Lion-o", "age_i":30, "leader_b":true}



curl $RIAK_HOST/types/animals/buckets/cats/keys/liono

# Response:

{"name_s":"Lion-o", "age_i":30, "leader_b":true}



This was one simple glob query example. There are many query options, a
more complete list of which can be found by digging into searching
Solr [https://cwiki.apache.org/confluence/display/solr/Searching]. Let’s
look at a few others.





Range Queries


Range queries are searches within a
range [https://cwiki.apache.org/confluence/display/solr/The+Standard+Query+Parser#TheStandardQueryParser-DifferencesbetweenLuceneQueryParserandtheSolrStandardQueryParser]
of numerical or
date/datemath [http://lucene.apache.org/solr/4_6_0/solr-core/org/apache/solr/util/DateMathParser.html]
values.


To find the ages of all famous cats who are 30 or younger: age_i:[0 TO 30]. If you wanted to find all cats 30 or older, you could include a
glob as a top end of the range: age_i:[30 TO *].


String index = "famous";
String query = "age_i:[30 TO *]";
SearchOperation searchOp = new SearchOperation
        .Builder(BinaryValue.create(index), query)
        .build();
cluster.execute(searchOp);
SearchOperation.Response results = searchOp.get();



client.search("famous", "age_i:[30 TO *]")



$response = (new \Basho\Riak\Command\Builder\Search\FetchObjects($riak))
  ->withIndexName('famous')
  ->withQuery('age_i:[30 TO *]')
  ->build()
  ->execute();



client.fulltext_search('famous', 'age_i:[30 TO *]')



var search = new RiakSearchRequest("famous", "age_i:[30 TO *]");

/*
 * Fluent interface:
 * 
 * var search = new RiakSearchRequest
 * {
 *     Query = new RiakFluentSearch("famous", "age_i")
 *         .Between("30", "*")
 *         .Build()
 * };
 */
var rslt = client.Search(search);



riakc_pb_socket:search(Pid, <<"famous">>, <<"age_i:[30 TO *]">>),



curl "$RIAK_HOST/search/query/famous?wt=json&q=age_i:%5B30%20TO%20*%5D" | jsonpp






Boolean


You can perform logical conjunctive, disjunctive, and negative
operations on query elements as, respectively, AND, OR, and NOT.
Let’s say we want to see who is capable of being a US Senator (at least
30 years old, and a leader). It requires a conjunctive query:
leader_b:true AND age_i:[25 TO *].


String index = "famous";
String query = "leader_b:true AND age_i:[30 TO *]";
Search searchOp = new Search.Builder(index, query).build();
cluster.execute(searchOp);
SearchOperation.Response results = searchOp.get();



client.search("famous", "leader_b:true AND age_i:[30 TO *]")



$response = (new \Basho\Riak\Command\Builder\Search\FetchObjects($riak))
  ->withIndexName('famous')
  ->withQuery('leader_b:true AND age_i:[30 TO *]')
  ->build()
  ->execute();



client.fulltext_search('famous', 'leader_b:true AND age_i:[30 TO *]')



var search = new RiakSearchRequest
{
    Query = new RiakFluentSearch("famous", "leader_b")
        .Search("true").AndBetween("age_i", "30", "*")
        .Build()
};



riakc_pb_socket:search(Pid, <<"famous">>, <<"leader_b:true AND age_i:[30 TO *]">>),



curl "$RIAK_HOST/search/query/famous?wt=json&q=leader_b:true%20AND%20age_i:%5B25%20TO%20*%5D" | jsonpp






Deleting Indexes


Indexes may be deleted if they have no buckets associated with them:


String index = "famous";
YzDeleteIndexOperation deleteOp = new YzDeleteIndexOperation.Builder(index)
        .build();
cluster.execute(deleteOp);



client.delete_search_index('famous')



(new Command\Builder\Search\DeleteIndex($riak))
  ->withName('famous')
  ->build()
  ->execute();



client.delete_search_index('famous')



var rslt = client.DeleteSearchIndex("famous");



riakc_pb_socket:delete_search_index(Pid, <<"famous">>, []),



curl -XDELETE $RIAK_HOST/search/index/famous



If an index does have a bucket associated with it, then that index’s
search_index property must be changed to either a different index name
or to the sentinel value _dont_index_.


curl -XPUT $RIAK_HOST/types/animals/buckets/cats/props \
     -H 'Content-Type: application/json' \
     -d '{"props":{"search_index":"_dont_index_"}}'




Pagination


A common requirement you may face is paginating searches, where an
ordered set of matching documents are returned in non-overlapping
sequential subsets (in other words, pages). This is easy to do with
the start and rows parameters, where start is the number of
documents to skip over (the offset) and rows are the number of results
to return in one go.


For example, assuming we want two results per page, getting the second
page is easy, where start is calculated as (rows per page) * (page
number - 1).


int rowsPerPage = 2;
int page = 2;
int start = rowsPerPage * (page - 1);

SearchOperation searchOp = new SearchOperation
        .Builder(BinaryValue.create("famous"), "*:*")
        .withStart(start)
        .withNumRows(rowsPerPage)
        .build();
client.execute(searchOp);
StoreOperation.Response response = searchOp.get();



ROWS_PER_PAGE=2
page = 2
start = ROWS_PER_PAGE * (page - 1)

client.search("famous", "*:*", {:start => start, :rows => ROWS_PER_PAGE})



$maxRows = 2;
$page = 2;
$start = $rowsPerPAge * (page - 1);

(new \Basho\Riak\Command\Builder\Search\FetchObjects($riak))
  ->withIndexName('famous')
  ->withQuery('*:*')
  ->withMaxRows($maxRows)
  ->withStartRow($start)
  ->build()
  ->execute();



ROWS_PER_PAGE=2
page = 2
start = ROWS_PER_PAGE * (page - 1)

client.fulltext_search('famous', '*:*', start=start, rows=ROWS_PER_PAGE)



int rowsPerPage = 2;
int page = 2;
int start = rowsPerPage * (page - 1);

var search = new RiakSearchRequest
{
    Start = start,
    Rows = rowsPerPage,
    Query = new RiakFluentSearch("famous", "*")
        .Search("*")
        .Build(),
};

var rslt = client.Search(search);



-define(ROWS_PER_PAGE, 2).

Page = 2,
Start = ?ROWS_PER_PAGE * (Page - 1),

riakc_pb_socket:search(Pid, <<"famous">>, <<"*:*">>, [{start, Start},{rows, ?ROWS_PER_PAGE}]),



ROWS_PER_PAGE=2
PAGE=2
START=$(($ROWS_PER_PAGE * ($PAGE-1)))

curl
curl "$RIAK_HOST/search/query/famous?wt=json&q=*:*&start=$START&rows=$ROWS_PER_PAGE" | jsonpp








Pagination Warning


Distributed pagination in Riak Search cannot be used reliably when
sorting on fields that can have different values per replica of the same
object, namely score and _yz_id. In the case of sorting by these
fields, you may receive redundant objects. In the case of score, the
top-N can return different results over multiple runs.


If you are paginating simply to get all keys that match and don’t care
about the score, then you can sort on type-bucket-key (eg. _yz_rt asc,
_yz_rb asc, _yz_rk asc) to get consistent results.


If you want to sort by score without repeating results then you must set
rows >= numFound. This requires having some idea of how many rows
will match before running the query.


This issue [https://github.com/basho/yokozuna/issues/355] is caused by
the way Search must minimally distribute a query across multiple Solr
nodes (called a coverage plan) and then filter duplicate results to
retrieve a full result set. Since this plan is frequently recalculated,
successive page queries may use a different plan, and thus calculate
alternate scores or filter different _yz_id values. We have plans to
fix this shortcoming in a future version of Riak.





MapReduce


Riak Search allows for piping search results as inputs for
[[MapReduce|Using MapReduce]] jobs. This is a useful cross-section for
performing post-calculations of results or aggregations of ad-hoc
queries. The Riak Search MapReduce integration works similarly to
regular MapReduce, with the notable exception that your input is not a
bucket, but rather index and query arguments to the yokozuna module
and mapred_search function (an Erlang module:function pair that adds
the Riak Search hook to MapReduce).


{
  "inputs": {
    "module": "yokozuna",
    "function": "mapred_search",
    "arg": ["famous","NOT leader_b:true"]
  },
  "query": [
    {
      "map": {
        "language": "javascript",
        "keep": false,
        "source": "function(v) { return [1]; }"
      }
    },
    {
      "reduce": {
        "language": "javascript",
        "keep": true,
        "name": "Riak.reduceSum"
      }
    }
  ]
}



In this example we’re searching for all famous cats that are not
leaders and counting up the results using Javascript for both map and
reduce. It should return the reduced sum of [3].


curl -XPOST $RIAK_HOST/mapred \
     -H 'Content-Type: application/json' \
     -d '{"inputs":{"module":"yokozuna","function":"mapred_search","arg":["famous","NOT leader_b:true"]},"query":[{"map":{"language":"javascript","keep":false,"source":"function(v) { return [1]; }"}},{"reduce":{"language":"javascript","keep":true,"name":"Riak.reduceSum"}}]}'










source/languages/en/riak/dev/data-modeling/user-accounts.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: User Accounts
project: riak
version: 1.2.0-2.0.0
document: cookbook
toc: true
audience: intermediate
keywords: [use-cases]
moved: {
‘1.4.0-‘: ‘/cookbooks/use-cases/user-accounts’
}




This page no longer valid. We recommend taking a look at [[Use Cases]]
or [[Building Applications with Riak]] instead.




          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/using/keyfilters.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Using Key Filters
project: riak
version: 1.0.0+
document: tutorials
toc: true
audience: beginner
keywords: [developers, mapreduce, keyfilters]
moved: {
‘1.4.0-‘: ‘/cookbooks/Key-Filters’
}





Deprecation notice

Key filtering in Riak has been deprecated as of version 2.0. We strongly
recommend using [[Riak Search|Using Search]] for all
non-primary-key-based querying purposes instead.

Key filters are a way to pre-process [[MapReduce|Using MapReduce]] inputs from a full bucket query simply by examining the key without loading the object first. This is especially useful if your keys are composed of domain-specific information that can be analyzed at query-time.



Understanding key filters


Key filters can be thought of as a series or pipeline of [[transformations|Using Key Filters#Transform-functions]] and [[predicates|Using Key Filters#Predicate-functions]] that attempt to match keys produced by the list-keys operation.  Keys that match the predicates are fed into the MapReduce query as if they had been specified manually.


To illustrate this, let’s contrive an example.  Let’s say we’re storing customer invoices with a key constructed from the customer name and the date, in a bucket called “invoices”.  Here are some sample keys:




basho-20101215
google-20110103
yahoo-20090613




Given that key scheme, here are some queries we will be able to do simply with key filters:



		Find all invoices from a given customer.


		Find all invoices from a range of dates.


		Find invoices from customers who have names containing the word “solutions”.


		Find invoices that were sent on the 3rd of June.





Solutions to these queries are shown in the [[examples|Using Key Filters#Example-query-solutions]] below.


Once the keys are filtered to only the items we care about, the normal MapReduce pipeline can further filter, transform, extract, and aggregate all the data we are interested in.





Constructing key filters


Key filters change the structure of the “inputs” portion of the MapReduce query.


When submitting a query in JSON format, this makes the inputs a JSON object containing two entries, “bucket” and “key_filters”. All filters are specified as arrays, even if the filter takes no arguments. Example:


{
  "inputs":{
     "bucket":"invoices",
     "key_filters":[["ends_with", "0603"]]
  }
  /* ...rest of mapreduce job */
}



When submitting a query from the Erlang local or Protocol Buffers client, the inputs become a two-tuple where the first element is the bucket as a binary, and the second element is a list of filters. Like the JSON format, the filters are specified as lists, even for filters with no arguments, and the filter names are binaries.


riakc_pb_socket:mapred(Pid, {<<"invoices">>, [[<<"ends_with">>,<<"0603">>]]}, Query).






Key Filter Functions


Riak Key Filter provides two kinds of function manipulators: transform and predicate.


Transform key-filter functions manipulate the key so that it can be turned into a format suitable for testing by the [[predicate functions|Key Filters Reference#Predicate-functions]].  Each function description is followed by a sample usage in JSON notation.


Predicate key-filter functions perform a test on their inputs and return true or false. As such, they should be specified last in a sequence of key-filters and are often preceded by [[transform functions|Key Filters Reference#Transform-functions]].


A full list of keyfilter functions can be found in the [[Key Filters Reference]].





Example query solutions


Find all invoices for a given customer


{
  "inputs":{
     "bucket":"invoices"
     "key_filters":[["tokenize", "-", 1],["eq", "basho"]]
   },
   /* ... */
}



Find all invoices from a range of dates


{
  "inputs":{
     "bucket":"invoices"
     "key_filters":[["tokenize", "-", 2],
                    ["between", "20100101", "20101231"]]
   },
   /* ... */
}



Find invoices from customers who have names containing the word “solutions”


{
  "inputs":{
     "bucket":"invoices"
     "key_filters":[["tokenize", "-", 1],
                    ["to_lower"],
                    ["matches", "solutions"]]
   },
   /* ... */
}



Find invoices that were sent on the 3rd of June


{
  "inputs":{
     "bucket":"invoices"
     "key_filters":[["ends_with", "0603"]]
   },
   /* ... */
}







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/data-modeling/sensor-data.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Sensor Data
project: riak
version: 1.2.0-2.0.0
document: cookbook
toc: true
audience: intermediate
keywords: [use-cases]
moved: {
‘1.4.0-‘: ‘/cookbooks/use-cases/sensor-data’
}




This page no longer valid. We recommend taking a look at [[Use Cases]]
or [[Building Applications with Riak]] instead.




          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/references/apis/storage/s3/RiakCS-PUT-Bucket.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: RiakCS PUT Bucket
project: riakcs
version: 1.2.0+
document: api
toc: true
index: false
audience: advanced
keywords: [api, http]
moved: {
‘1.4.0-‘: ‘/references/apis/storage/RiakCS-PUT-Bucket’
}




The PUT Bucket operation creates a new bucket. The user who sends the request to create the bucket becomes the bucket owner. Anonymous requests can’t create buckets.


Note: To create a bucket, you must have a valid Key ID, which is used to authenticate requests.



Bucket Naming


A best practice is to use DNS-compliant bucket names. DNS-compliant bucket names ensure that virtual hosted-style requests can locate buckets.


A bucket name must obey the following rules, which produces a DNS-compliant bucket name:



		Must be from 3 to 63 characters.


		Must be one or more labels, each separated by a period (.). Each label:


		Must start with a lowercase letter or a number. Must end with a lowercase letter or a number. Can contain lowercase letters, numbers and dashes.


		Must not be formatted as an IP address (e.g., 192.168.9.2).








Access Permissions


PUT Bucket offers the option to specify the permissions you want to grant to specific accounts or groups for the bucket. You can grant permissions to accounts or groups with request headers, using one of the following two methods:



		Specify a predefined ACL using the x-amz-acl request header. More information about predefined ACLs is available [[here|http://docs.amazonwebservices.com/AmazonS3/latest/dev/ACLOverview.html#CannedACL]].


		Specify access permissions explicitly using the x-amz-grant-read, x-amz-grant-write, x-amz-grant-read-acp, x-amz-grant-write-acp, x-amz-grant-full-control headers, which map to the set of ACL permissions supported by Amazon S3.





Note: You can use either a predefined ACL or specify access permissions explicitly, not both.





Requests



Request Syntax


PUT / HTTP/1.1
Host: bucketname.data.basho.com
Content-Length: length
Date: date
Authorization: signature_value

    <CreateBucketConfiguration xmlns="http://data.basho.com/doc/2012-06-01/">
      <LocationConstraint>BucketRegion</LocationConstraint>
    </CreateBucketConfiguration>



Note
This example includes some request headers. The Request Headers section contains the complete list of headers.



Request Parameters


This operation does not use request parameters.





Request Headers


PUT Bucket offers the following request headers in addition to the request headers common to all operations.


x-amz-acl - This request header specifies a predefined ACL to apply to the bucket being created. A predefined ACL grants specific permissions to individual accounts or predefined groups.



		Type: String


		Valid Values: private | public-read | public-read-write | authenticated-read | bucket-owner-read | bucket-owner-full-control








Response Elements


PUT Bucket does not return response elements.







Examples



Sample Request


A request that creates a bucket named basho_docs.


PUT / HTTP/1.1
Host: basho_docs.data.basho.com
Content-Length: 0
Date: Fri, 01 Jun  2012 12:00:00 GMT
Authorization: AWS AKIAIOSFODNN7EXAMPLE:xQE0diMbLRepdf3YB+FIEXAMPLE=






Sample Response


HTTP/1.1 200 OK
Date: Fri, 01 Jun  2012 12:00:00 GMT
Content-Length: 0
Connection: close
Server: MochiWeb/1.1 WebMachine/1.9.0 (someone had painted it blue)






Sample Request to Configure Access Permission Using Predefined ACL


This request creates a bucket named basho_docs and sets the ACL to private.


PUT / HTTP/1.1
Host: basho_docs.data.basho.com
Content-Length: 0
x-amz-acl: private
Date: Fri, 01 Jun  2012 12:00:00 GMT
Authorization: AWS AKIAIOSFODNN7EXAMPLE:xQE0diMbLRepdf3YB+FIEXAMPLE=






Sample Response For Bucket with Predefined ACL


HTTP/1.1 200 OK
Date: Fri, 01 Jun  2012 12:00:00 GMT

Location: /basho_docs
Content-Length: 0
Connection: close
Server: MochiWeb/1.1 WebMachine/1.9.0 (someone had painted it blue)









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/references/apis/storage/s3/RiakCS-Complete-Multipart-Upload.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: RiakCS Complete Multipart Upload
project: riakcs
version: 1.3.0+
document: api
toc: true
audience: advanced
keywords: [api, http]
moved: {
‘1.4.0-‘: ‘/references/apis/storage/RiakCS-Complete-Multipart-Upload’
}




Completes a multipart upload by assembling previously uploaded parts. Upon
receiving this request, Riak CS concatenates all the parts in ascending order by
part number to create a new object. The parts list (part number and ETag header
value)must be provided in the Complete Multipart Upload request.


Processing of a Complete Multipart Upload request could take several minutes to
complete. An HTTP response header that specifies a 200 OK response is sent
while processing is in progress. After that, Riak CS periodically sends
whitespace characters to keep the connection from timing out. Because a request
could fail after the initial 200 OK response has been sent, it is important
that you check the response body to determine whether the request succeeded.



Requests



Request Syntax


This example shows the syntax for completing a multipart upload.


POST /ObjectName?uploadId=UploadId HTTP/1.1
Host: bucketname.data.basho.com
Date: date
Content-Length: size
Authorization: signatureValue

<CompleteMultipartUpload>
  <Part>
    <PartNumber>PartNumber</PartNumber>
    <ETag>ETag</ETag>
  </Part>
  ...
</CompleteMultipartUpload>






Request Headers


This implementation of the operation uses only response headers that are common to most responses. For more information, see [[Common RiakCS Response Headers]].





Request Elements


CompleteMultipartUpload - Container for the request.



		Type: Container


		Children: One or more Part elements


		Ancestors: None





Part - Container for elements related to a particular previously uploaded part.



		Type: Container


		Children: PartNumber, ETag


		Ancestors: CompleteMultipartUpload





PartNumber - Part number that identifies the part.



		Type: Integer


		Ancestors: Part





ETag - Entity tag returned when the part was uploaded.



		Type: String


		Ancestors: Part










Response



Response Headers


This implementation of the operation uses only response headers that are common to most responses. For more information, see [[Common RiakCS Response Headers]].





Response Elements


CompleteMultipartUploadResult - Container for the response.



		Type: Container


		Children: Location, Bucket, Key, ETag


		Ancestors: None





Location - The URI that identifies the newly created object.



		Type: URI


		Ancestors: CompleteMultipartUploadResult





Bucket - The name of the bucket that contains the newly created object.



		Type: String


		Ancestors: CompleteMultipartUploadResult





Key - The object key of the newly created object.



		Type: String


		Ancestors: CompleteMultipartUploadResult





ETag - Entity tag that identifies the newly created object’s data.



		Type: String


		Ancestors: CompleteMultipartUploadResult








Special Errors


EntityTooSmall - Your proposed upload is smaller than the minimum allowed object size. Each part must be at least 5 MB in size, except the last part.


InvalidPart - One or more of the specified parts could not be found. The part might not have been uploaded, or the specified entity tag might not have matched the part’s entity tag.


InvalidPartOrder - The list of parts was not in ascending order. Parts list must specified in order by part number.


NoSuchUpload - The specified multipart upload does not exist. The upload ID might be invalid, or the multipart upload might have been aborted or completed.







Examples



Sample Request


The following Complete Multipart Upload request specifies three parts in the CompleteMultipartUpload element.


POST /large.iso?uploadId=VXBsb2FkIElEIGZvciA2aWWpbmcncyBteS1tb3ZpZS5tMnRzIHVwbG9hZA HTTP/1.1
Host: os.data.basho.com
Date:  Mon, 1 Nov 2010 20:34:56 GMT
Content-Length: 391
Authorization: AWS AKIAIOSFODNN7EXAMPLE:0RQf4/cRonhpaBX5sCYVf1bNRuU=

<CompleteMultipartUpload>
  <Part>
    <PartNumber>1</PartNumber>
    <ETag>"a54357aff0632cce46d942af68356b38"</ETag>
  </Part>
  <Part>
    <PartNumber>2</PartNumber>
    <ETag>"0c78aef83f66abc1fa1e8477f296d394"</ETag>
  </Part>
  <Part>
    <PartNumber>3</PartNumber>
    <ETag>"acbd18db4cc2f85cedef654fccc4a4d8"</ETag>
  </Part>
</CompleteMultipartUpload>






Sample Response


HTTP/1.1 200 OK
Date: Mon, 1 Nov 2010 20:34:56 GMT
Connection: close
Server: MochiWeb/1.1 WebMachine/1.9.0 (someone had painted it blue)

<?xml version="1.0" encoding="UTF-8"?>
<CompleteMultipartUploadResult xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
  <Location>http://os.data.basho.com/large.iso</Location>
  <Bucket>os</Bucket>
  <Key>large.iso</Key>
  <ETag>"3858f62230ac3c915f300c664312c11f-9"</ETag>
</CompleteMultipartUploadResult>









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/references/apis/storage/s3/RiakCS-GET-Object-ACL.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: RiakCS GET Object ACL
project: riakcs
version: 1.2.0+
document: api
toc: true
index: false
audience: advanced
keywords: [api, http]
moved: {
‘1.4.0-‘: ‘/references/apis/storage/RiakCS-GET-Object-ACL’
}




The GET Object acl operation uses the acl subresource to return the access control list (ACL) of an object.


Note: You must have READ_ACP access to the object to use this operation.



Requests



Request Syntax


GET /ObjectName?acl HTTP/1.1
Host: bucketname.data.basho.com
Date: date
Authorization: signature_value






Request Parameters


The GET Object acl operation doesn’t use request parameters.







Response Elements


AccessControlList - Container for ACL information (Grant, Grantee, and Permission).



		Type: Container


		Ancestors: AccessControlPolicy





AccessControlPolicy - Contains the elements that set the ACL permissions for each grantee.



		Type: String


		Ancestors: None





DisplayName - Bucket owner’s display name.



		Type: String


		Ancestors: AccessControlPolicy.Owner





Grant - Container for Grantee and Permission.



		Type: Container


		Ancestors: AccessControlPolicy.AccessControlList





Grantee - The ID, Emailaddress, or uri of the subject who is being granted permissions.



		Type: String


		Ancestors: AccessControlPolicy.AccessControlList.Grant





ID - Bucket owner’s ID.



		Type: String


		Ancestors: AccessControlPolicy.Owner|AccessControlPolicy.AccessControlList.Grant





Owner - Container for bucket owner information.



		Type: Container


		Ancestors: AccessControlPolicy





Permission - Permission granted to the Grantee for bucket.



		Type: String


		Valid Values: FULL_CONTROL|WRITE|READ_ACP


		Ancestors: AccessControlPolicy.AccessControlList.Grant








Examples



Sample Request


This request returns the ACL of the object, basho-process.jpg.


GET /basho-process.jpg?acl HTTP/1.1
Host:bucket.data.basho.com
Date: Wed, 06 Jun 2012 20:47:15 +0000
Authorization: AWS QMUG3D7KP5OQZRDSQWB6:4Pb+A0YT4FhZYeqMdDhYls9f9AM=






Sample Response


HTTP/1.1 200 OK
Date: Wed, 06 Jun 2012 20:47:15 GMT
Last-Modified: Mon, 04 Jun 2012 12:00:00 GMT
Content-Length: 124
Content-Type: text/plain
Connection: close
Server: MochiWeb/1.1 WebMachine/1.9.0 (someone had painted it blue)

  <AccessControlPolicy>
    <Owner>
      <ID>24ef09aa099d10f75aa57c8caeab4f8c8e7faeebf76c078efc7c6caea54ba06a</ID>
      <DisplayName>UserName@basho.com</DisplayName>
    </Owner>
    <AccessControlList>
      <Grant>
        <Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
                          xsi:type="CanonicalUser">
          <ID>24ef09aa099d10f75aa57c8caeab4f8c8e7faeebf76c078efc7c6caea54ba06a</ID>
          <DisplayName>UserName@basho.com</DisplayName>
        </Grantee>
        <Permission>FULL_CONTROL</Permission>
      </Grant>
    </AccessControlList>
  </AccessControlPolicy>









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/references/apis/storage/s3/RiakCS-DELETE-Multi.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: RiakCS DELETE Multiple Objects
project: riakcs
version: 1.5.0+
document: api
index: false
audience: advanced
keywords: [api, http]




Multi-object DELETE enables you to delete multiple objects from a
bucket at the same time if those objects exist. Multi-object DELETEs
require you to POST an XML object to Riak CS specifying object key
and version information, as in the example below.



Requests



Request Syntax


POST /?delete HTTP/1.1
Host: bucketname.data.basho.com
Date: date
Content-Length: length
Authorization: signature_value

<?xml version="1.0" encoding="UTF-8"?>
<Delete>
    <Quiet>true</Quiet>
    <Object>
         <Key>Key</Key>
    </Object>
    <Object>
         <Key>Key</Key>
    </Object>
    ...
</Delete>








Example



Sample Request


POST /?delete HTTP/1.1
Host: bucketname.data.basho.com
Date: date
Content-Length: length
Authorization: signature_value

<Delete>
  <Object>
    <Key>sample1.txt</Key>
  </Object>
  <Object>
    <Key>sample2.txt</Key>
  </Object>
</Delete>






Sample Response


HTTP/1.1 200 OK
Date: Wed, 06 Jun 2012 20:47:15 GMT
Connection: close
Server: MochiWeb/1.1 WebMachine/1.9.0 (someone had painted it blue)

<?xml version="1.0" encoding="UTF-8"?>
<DeleteResult>
  <Deleted>
    <Key>sample1.txt</Key>
  </Deleted>
  <Error>
    <Key>sample2.txt</Key>
    <Code>AccessDenied</Code>
    <Message>Access Denied</Message>
  </Error>
</DeleteResult>









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/references/apis/storage/s3/RiakCS-DELETE-Bucket.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: RiakCS DELETE Bucket
project: riakcs
version: 1.2.0+
document: api
toc: true
index: false
audience: advanced
keywords: [api, http]
moved: {
‘1.4.0-‘: ‘/references/apis/storage/RiakCS-DELETE-Bucket’
}




The DELETE Bucket operation deletes the bucket specified in the URI.


Note
All objects in the bucket must be deleted before you can delete the bucket.

Requests



Request Syntax


DELETE / HTTP/1.1
Host: bucketname.data.basho.com
Date: date
Authorization: signature_value








Responses


DELETE Bucket uses only common response headers and doesn’t return any response elements.





Examples



Sample Request


The DELETE Bucket operation deletes the bucket name “projects”.


DELETE / HTTP/1.1
Host: projects.data.basho.com
Date: Wed, 06 Jun 2012 20:47:15 +0000
Authorization: AWS QMUG3D7KP5OQZRDSQWB6:4Pb+A0YT4FhZYeqMdDhYls9f9AM=






Sample Response


HTTP/1.1 204 No Content
Date: Wed, 06 Jun 2012 20:47:15 +0000
Connection: close
Server: MochiWeb/1.1 WebMachine/1.9.0 (someone had painted it blue)









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/references/apis/storage/s3/RiakCS-Upload-Part.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: RiakCS Upload Part
project: riakcs
version: 1.3.0+
document: api
toc: true
audience: advanced
keywords: [api, http]
moved: {
‘1.4.0-‘: ‘/references/apis/storage/RiakCS-Upload-Part’
}




This operation uploads a part in a multipart upload. You must [[initiate a multipart upload|RiakCS Initiate Multipart Upload]] before you can upload any part. In this operation you provide part data in your request.



Requests



Request Syntax


This example shows the syntax for uploading a part in a multipart upload.


PUT /ObjectName?partNumber=PartNumber&uploadId=UploadId HTTP/1.1
Host: bucketname.data.basho.com
Date: date
Content-Length: size
Authorization: signatureValue






Request Headers


Content-Length - The size of the object in bytes. This header is required.



		Type: String


		Default: None


		Constraints: None





Content-MD5 - The base64-encoded 128-bit MD5 digest of the message without the headers according to RFC 1864. Although this header is optional, the Content-MD5 header can be used to confirm that the data is the same as what was originally sent.



		Type: String


		Default: None


		Constraints: None





Expect - When you use 100-continue in your application, it doesn’t send the request body until it receives an acknowledgment. That way, the body of the message isn’t sent if the message is rejected based on the headers.



		Type: String


		Default: None


		Valid Values: 100-continue


		Constraints: None








Request Elements


This operation does not use request elements.







Response



Response Headers


This implementation of the operation uses only response headers that are common to most responses. For more information, see [[Common RiakCS Response Headers]].





Response Elements


This operation does not use response elements.







Examples



Sample Request


The following PUT request uploads part number 1 in a multipart upload. This request includes the upload ID from an [[Initiate Multipart Upload|RiakCS Initiate Multipart Upload]] request.


PUT /large.iso?partNumber=1&uploadId=VXBsb2FkIElEIGZvciA2aWWpbmcncyBteS1tb3ZpZS5tMnRzIHVwbG9hZA HTTP/1.1
Host: os.data.basho.com
Date:  Mon, 1 Nov 2010 20:34:56 GMT
Content-Length: 10485760
Content-MD5: pUNXr/BjKK5G2UKvaRRrOA==
Authorization: AWS AKIAIOSFODNN7EXAMPLE:VGhpcyBtZXNzYWdlIHNpZ25lZGGieSRlbHZpbmc=

[10485760 bytes of object data]






Sample Response


The response includes the ETag header. This value must be retained for when you send the [[Complete Multipart Upload|RiakCS Complete Multipart Upload]] request.


HTTP/1.1 200 OK
Date:  Mon, 1 Nov 2010 20:34:56 GMT
ETag: "b54357faf0632cce46e942fa68356b38"
Content-Length: 0
Connection: keep-alive
Server: MochiWeb/1.1 WebMachine/1.9.0 (someone had painted it blue)









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/references/apis/storage/s3/Common-RiakCS-Response-Headers.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Common RiakCS Response Headers
project: riakcs
version: 1.2.0+
document: api
toc: true
index: false
audience: advanced
keywords: [api, http]
moved: {
‘1.4.0-‘: ‘/references/apis/storage/Common-RiakCS-Response-Headers’
}




These are the headers that are common to all Riak CS REST responses.


Header | Description | Data type
:——|:————|:———
Content-Length | The length in bytes of the response body. | string |
Connection | Whether the connection to the server is open or closed. | enum (open or close) |
Date | The date and time that Riak CS responded, e.g. Fri, 01 Jun 2012 12:00:00 GMT | string |
Etag | The entity tag is an MD5 hash of the object and reflects only changes to the object contents, not the object’s metadata. The ETag is set when an object is created. | string |
Server | The name of the server that created the response. | string |




          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/references/apis/storage/s3/RiakCS-PUT-Bucket-ACL.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: RiakCS PUT Bucket ACL
project: riakcs
version: 1.2.0+
document: api
toc: true
index: false
audience: advanced
keywords: [api, http]
moved: {
‘1.4.0-‘: ‘/references/apis/storage/RiakCS-PUT-Bucket-ACL’
}




The PUT Bucket acl operation uses the acl subresource to set the permissions on an existing bucket using an access control list (ACL).


Note: You must have WRITE_ACP access to the bucket to use this operation.


PUT Bucket acl offers two methods for setting a bucket’s permissions:



		Specify the ACL in the request body


		Specify permissions using request headers





Note: You can specify an ACL in the request body or with request headers, not both.



Requests



Request Syntax


This example shows the syntax for setting the ACL in the request body. The Request Headers section contain a list of headers you can use instead.


PUT /?acl HTTP/1.1
Host: bucketname.data.basho.com
Date: date
Authorization: signatureValue

  <AccessControlPolicy>
    <Owner>
      <ID>ID</ID>
      <DisplayName>EmailAddress</DisplayName>
    </Owner>
    <AccessControlList>
      <Grant>
        <Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="CanonicalUser">
          <ID>ID</ID>
          <DisplayName>EmailAddress</DisplayName>
        </Grantee>
        <Permission>Permission</Permission>
      </Grant>
      ...
    </AccessControlList>
  </AccessControlPolicy>






Request Parameters


This operation does not use request parameters.





Request Headers


PUT Bucket acl offers the following request headers in addition to the request headers common to all operations.


x-amz-acl - This request header specifies a predefined ACL to apply to the bucket being created. A predefined ACL grants specific permissions to individual accounts or predefined groups.



		Type: String


		Valid Values: private | public-read | public-read-write | authenticated-read | bucket-owner-read | bucket-owner-full-control


		Default: private








Request Elements


If you specify the ACL using the request body, you must use the following elements:


AccessControlList - Container for ACL information (Grant, Grantee, and Permission).



		Type: Container


		Ancestors: AccessControlPolicy





AccessControlPolicy - Contains the elements that set the ACL permissions for each grantee.



		Type: Container


		Ancestors: None





DisplayName - Bucket owner’s display name.



		Type: String


		Ancestors: AccessControlPolicy.Owner





Grant - Container for Grantee and Permission.



		Type: Container


		Ancestors: AccessControlPolicy.AccessControlList





Grantee - The ID, Emailaddress, or uri of the subject who is being granted permissions.



		Type: String


		Ancestors: AccessControlPolicy.AccessControlList.Grant





ID - Bucket owner’s ID.



		Type: String


		Ancestors: AccessControlPolicy.Owner|AccessControlPolicy.AccessControlList.Grant





Owner - Container for bucket owner information.



		Type: Container


		Ancestors: AccessControlPolicy





Permission - Permission granted to the Grantee for bucket.



		Type: String


		Valid Values: FULL_CONTROL|WRITE|WRITE_ACP|READ|READ_ACP


		Ancestors: AccessControlPolicy.AccessControlList.Grant





In request elements, you can specify the grantee to whom you are granting permissions in the following ways:



		emailAddress: The email address of an account





  <Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="CustomerByEmail">
    <EmailAddress>user1@basho.com</EmailAddress>
  </Grantee>



From the email address, the grantee is resolved to the CanonicalUser. The response to a GET Object acl request displays the grantee as the CanonicalUser.



		id: The user ID of an account





  <Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="CanonicalUser">
    <ID>ID</ID>
    <DisplayName>GranteesEmail</DisplayName>
  </Grantee>



For the id method, DisplayName is optional and ignored in the request.



		uri: The uri that defines a group





  <Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="Group">
    <URI>http://data.basho.com/groups/AuthenticatedUsers<URI>
  </Grantee>






Response Elements


PUT Bucket acl does not return response elements.







Examples



Sample Request with Access Permission Specified in the Request Body


This sample request grants access permission to an existing bucket, named basho_docs, by specifying the ACL in the request body. In addition to granting full control to the bucket owner, the request specifies the following grants:



		Grant AllUsers group READ permission on the bucket.


		Grant the Dev group WRITE permission on the bucket.


		Grant an account, which is identified by email address, WRITE_ACP permission.


		Grant an account, which is identified by canonical user ID, READ_ACP permission.





PUT /?acl HTTP/1.1
Host: basho_docs.data.basho.com
Content-Length: 1660202
x-amz-date: Fri, 01 Jun  2012 12:00:00 GMT
Authorization: AWS AKIAIOSFODNN7EXAMPLE:xQE0diMbLRepdf3YB+FIEXAMPLE=

  <AccessControlPolicy xmlns="http://data.basho.com/doc/2012-04-05/">
    <Owner>
      <ID>BucketOwnerCanonicalUserID</ID>
      <DisplayName>OwnerDisplayName</DisplayName>
    </Owner>
    <AccessControlList>
      <Grant>
        <Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="CanonicalUser">
          <ID>852b113e7a2f25102679df27bb0ae12b3f85be6BucketOwnerCanonicalUserID</ID>
          <DisplayName>OwnerDisplayName</DisplayName>
        </Grantee>
        <Permission>FULL_CONTROL</Permission>
      </Grant>
      <Grant>
        <Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="Group">
          <URI xmlns="">http://acs.data.basho.com/groups/global/AllUsers</URI>
        </Grantee>
        <Permission xmlns="">READ</Permission>
      </Grant>
      <Grant>
        <Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="Group">
          <URI xmlns="">http://acs.data.basho.com/groups/global/Dev</URI>
        </Grantee>
        <Permission xmlns="">WRITE</Permission>
      </Grant>
      <Grant>
        <Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="AmazonCustomerByEmail">
          <EmailAddress xmlns="">user1@basho.com</EmailAddress>
        </Grantee>
        <Permission xmlns="">WRITE_ACP</Permission>
      </Grant>
      <Grant>
        <Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="CanonicalUser">
          <ID xmlns="">f30716ab7115dcb44a5ef76e9d74b8e20567f63TestAccountCanonicalUserID</ID>
        </Grantee>
        <Permission xmlns="">READ_ACP</Permission>
      </Grant>
    </AccessControlList>
  </AccessControlPolicy>






Sample Response


HTTP/1.1 200 OK
Date: Fri, 01 Jun  2012 12:00:00 GMT
Content-Length: 0
Server: MochiWeb/1.1 WebMachine/1.9.0 (someone had painted it blue)









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/references/apis/storage/s3/RiakCS-List-Parts.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: RiakCS List Parts
project: riakcs
version: 1.3.0+
document: api
toc: true
audience: advanced
keywords: [api, http]
moved: {
‘1.4.0-‘: ‘/references/apis/storage/RiakCS-List-Parts’
}




Lists the parts that have been uploaded for a specific multipart upload.



Requests



Request Syntax


This example shows the syntax for listing parts of a multipart upload.


GET /ObjectName?uploadId=UploadId HTTP/1.1
Host: bucketname.data.basho.com
Date: date
Authorization: signatureValue






Request Parameters


uploadId - Upload ID identifying the multipart upload whose parts are being listed.



		Type: String


		Default: None





max-parts - Sets the maximum number of parts to return in the response body.



		Type: String


		Default: 1,000





part-number​-marker - Specifies the part after which listing should begin. Only parts with higher part numbers will be listed.



		Type: String


		Default: None








Request Headers


This implementation of the operation uses only response headers that are common to most responses. For more information, see [[Common RiakCS Response Headers]].





Request Elements


This operation does not use request elements.







Response



Response Headers


This implementation of the operation uses only response headers that are common to most responses. For more information, see [[Common RiakCS Response Headers]].





Response Elements


ListPartsResult - Container for the response.



		Type: Container


		Children: Bucket, Key, UploadId, Initiator, Owner, StorageClass, PartNumberMarker, NextPartNumberMarker, MaxParts, IsTruncated, Part





Bucket - Name of the bucket to which the multipart upload was initiated.



		Type: String


		Ancestors: ListPartsResult





Key - Object key for which the multipart upload was initiated.



		Type: String


		Ancestors: ListPartsResult





UploadId - Upload ID identifying the multipart upload whose parts are being listed.



		Type: String


		Ancestors: ListPartsResult





Initiator - Container element that identifies who initiated the multipart upload.



		Type: Container


		Children: ID, DisplayName


		Ancestors: ListPartsResult





ID - Canonical User ID.



		Type: String


		Ancestors: Initiator





DisplayName - Principal’s name.



		Type: String


		Ancestors: Initiator





Owner - Container element that identifies the object owner, after the object is created.



		Type: Container


		Children: ID, DisplayName


		Ancestors: ListPartsResult





PartNumberMarker - Part number after which listing begins.



		Type: Integer


		Ancestors: ListPartsResult





NextPartNumberMarker - When a list is truncated, this element specifies the last part in the list, as well as the value to use for the part-number-marker request parameter in a subsequent request.



		Type: Integer


		Ancestors: ListPartsResult





MaxParts - Maximum number of parts that were allowed in the response.



		Type: Integer


		Ancestors: ListPartsResult





IsTruncated - Indicates whether the returned list of parts is truncated.



		Type: Boolean


		Ancestors: ListPartsResult





Part - Container for elements related to a particular part.



		Type: String


		Children: PartNumber, LastModified, ETag, Size


		Ancestors: ListPartsResult





PartNumber - Part number identifying the part.



		Type: Integer


		Ancestors: Part





LastModified - Date and time at which the part was uploaded.



		Type: Date


		Ancestors: Part





ETag - Entity tag returned when the part was uploaded.



		Type: String


		Ancestors: Part





Size - Size of the uploaded part data.



		Type: Integer


		Ancestors: Part










Examples



Sample Request


The following request lists multipart upload parts.


GET /large.iso?uploadId=VXBsb2FkIElEIGZvciA2aWWpbmcncyBteS1tb3ZpZS5tMnRzIHVwbG9hZA HTTP/1.1
Host: os.data.basho.com
Date: Mon, 1 Nov 2010 20:34:56 GMT
Authorization: AWS AKIAIOSFODNN7EXAMPLE:0RQf4/cRonhpaBX5sCYVf1bNRuU=






Sample Response


HTTP/1.1 200 OK
Date: Mon, 1 Nov 2010 20:34:56 GMT
Content-Length: 985
Connection: keep-alive
Server: MochiWeb/1.1 WebMachine/1.9.0 (someone had painted it blue)

<?xml version="1.0" encoding="UTF-8"?>
<ListPartsResult xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
  <Bucket>os</Bucket>
  <Key>large.iso</Key>
  <UploadId>VXBsb2FkIElEIGZvciA2aWWpbmcncyBteS1tb3ZpZS5tMnRzIHVwbG9hZA</UploadId>
  <Initiator>
      <ID>arn:aws:iam::111122223333:user/some-user-11116a31-17b5-4fb7-9df5-b288870f11xx</ID>
      <DisplayName>umat-user-11116a31-17b5-4fb7-9df5-b288870f11xx</DisplayName>
  </Initiator>
  <Owner>
    <ID>75aa57f09aa0c8caeab4f8c24e99d10f8e7faeebf76c078efc7c6caea54ba06a</ID>
    <DisplayName>someName</DisplayName>
  </Owner>
  <StorageClass>STANDARD</StorageClass>
  <Part>
    <PartNumber>1</PartNumber>
    <LastModified>2010-11-10T20:48:34.000Z</LastModified>
    <ETag>"7778aef83f66abc1fa1e8477f296d394"</ETag>
    <Size>10485760</Size>
  </Part>
  ...
</ListPartsResult>









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riakcs/references/apis/storage/s3/RiakCS-PUT-Bucket-policy.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: RiakCS PUT Bucket policy
project: riakcs
version: 1.3.0+
document: api
toc: true
index: false
audience: advanced
keywords: [api, http]
moved: {
‘1.4.0-‘: ‘/references/apis/storage/RiakCS-PUT-Bucket-policy’
}




The PUT Bucket policy operation uses the policy subresource to add or replace the policy on an existing bucket. If the bucket already has a policy, the one in this request completely replaces it. To perform this operation, you must be the bucket owner.


Note
Currently only the `aws:SourceIp` and `aws:SecureTransport` policy conditions are supported.

Requests



Request Syntax


This example shows the syntax for setting the policy in the request body.


PUT /?policy HTTP/1.1
Host: bucketname.data.basho.com
Date: date
Authorization: signatureValue

Policy written in JSON






Request Parameters


This operation does not use request parameters.





Request Headers


This operation uses only request headers that are common to all operations. For more information, see [[Common RiakCS Request Headers]].





Request Elements


The body is a JSON string containing the policy elements. The supported policy elements are detailed below.



Version


The Version element specifies the policy language version. If a version is not specified, this defaults to 2008-10-17.





ID


The Id element specifies an optional identifier for the policy.





Statement


The Statement element is the main element for a policy. This element is required. It can include multiple elements. The Statement element contains an array of individual statements. Each individual statement is a JSON block enclosed in braces, i.e. { ... }. Below is a list of currently supported statements.


SID : The Sid (statement ID) is an optional identifier that you provide for the policy statement. You can assign a Sid value to each statement in a statement array.


Effect : The Effect element is required and specifies whether the statement will result in an allow or an explicit deny. Valid values for Effect are Allow and Deny.


Principal : The Principal element specifies the user, account, service, or other entity that is allowed or denied access to a resource. Currently, Riak CS only supports the * principal type.


Action : The Action element describes the type of access that should be allowed or denied.


Supported actions are:



		s3:GetObject, s3:PutObject, s3:DeleteObject,


		s3:GetObjectAcl, s3:PutObjectAcl,


		s3:ListMultipartUploadParts, s3:AbortMultipartUpload,


		s3:CreateBucket, s3:DeleteBucket, s3:ListBucket, s3:ListAllMyBuckets,


		s3:GetBucketAcl, s3:PutBucketAcl,


		s3:GetBucketPolicy, s3:DeleteBucketPolicy, s3:PutBucketPolicy,


		s3:ListBucketMultipartUploads .





Resource : The Resource element specifies the object or objects that the statement covers. Currently, Riak only supports buckets as resources, specified as: "arn:aws:s3:::<BUCKET_NAME>/*".


Condition : The Condition element (or Condition block) lets you specify conditions for when a policy is in effect. The Condition element is optional.Riak CS supports 3 Condition Types: Bool, IpAddress, and NotIpAddress.


Riak CS supports two keys to be used with these conditions: aws:SecureTransport and aws:SourceIp. aws:SecureTransport is used with the Bool condition to check whether the request was sent with SSL. Accepted values for this key are true and false. aws:SourceIp is used with the IpAddress and NotIpAddress conditions, and represents the requester’s IP address. IPv4 IP addresses in CIDR notation are supported.


The IP address to be compared with IpAddress or NotIpAddress is taken from the source IP address of the TCP connection. If Riak CS is behind a load balancer that does not preserve source IP address and bucket policies related to IP addresses, Riak CS can be configured to adopt IP address described in the X-Forwarded-For request header, which is added by the load balancer. Set trust_x_forwarded_for to true in app.config when the header can be trusted and secure. The default is false, where Riak CS uses the source IP address of the TCP connection.


More information on S3 Policies can be found in Amazon’s Permissions And Policies [http://docs.aws.amazon.com/IAM/latest/UserGuide/PermissionsAndPolicies.html] documentation.









Response



Response Headers


This implementation of the operation uses only response headers that are common to most responses. For more information, see [[Common RiakCS Response Headers]].





Response Elements


PUT response elements return whether the operation succeeded or not.







Examples



Sample Request


The following request shows the PUT individual policy request for the bucket.


PUT /?policy HTTP/1.1
Host: bucketname.data.basho.com
Date: Tue, 04 Apr 2010 20:34:56 GMT
Authorization: AWS AKIAIOSFODNN7EXAMPLE:xQE0diMbLRepdf3YB+FIEXAMPLE=

{
  "Version": "2008-10-17",
  "Statement": [
    {
      "Sid": "0xDEADBEEF",
      "Effect": "Allow",
      "Principal": "*",
      "Action": ["s3:GetObjectAcl","s3:GetObject"],
      "Resource": "arn:aws:s3:::bucketname/*",
      "Condition": {
        "IpAddress": {
          "aws:SourceIp": "192.0.72.1/24"
        }
      }
    }
  ]
}






Sample Response


HTTP/1.1 204 No Content
Date: Tue, 04 Apr 2010 12:00:01 GMT
Connection: keep-alive
Server: MochiWeb/1.1 WebMachine/1.9.0 (someone had painted it blue)









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/tuning/linux.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: System Performance Tuning
project: riak
version: 1.0.0+
document: cookbook
toc: true
audience: advanced
keywords: [operator, performance, os]
moved: {
‘1.4.0-‘: ‘/cookbooks/File-System-Tuning’,
}




Many Unix-like operating systems and distributions are tuned for desktop
or light use out of the box and not for a production database. This
guide describes recommended system performance tunings for operators of
new and existing Riak clusters. The tunings present in this guide should
be considered as a starting point. It is important to make note of what
changes are made and when in order to measure the impact of those
changes.


For performance and tuning recommendations specific to running Riak
clusters on the Amazon Web Services EC2 environment, see [[AWS
Performance Tuning]].



Note on other operating systems

Unless otherwise specified, the tunings recommended below are for Linux
distributions. Users implementing Riak on BSD and Solaris distributions
can use these tuning recommendations to make analogous changes in those
operating systems.


Storage and File System Tuning



Virtual Memory


Due to the heavily I/O-focused profile of Riak, swap usage can result in
the entire server becoming unresponsive. We recommend setting
vm.swappiness to 0 in /etc/sysctl.conf to prevent swapping as much
as possible:


vm.swappiness = 0



Ideally, you should disable swap to ensure that Riak’s process pages are
not swapped. Disabling swap will allow Riak to crash in situations where
it runs out of memory. This will leave a crash dump file, named
erl_crash.dump, in the /var/log/riak directory which can be used to
determine the cause of the memory usage.





Mounts


Riak makes heavy use of disk I/O for its storage operations. It is
important that you mount volumes that Riak will be using for data
storage with the noatime flag, meaning that filesystem
inodes [http://en.wikipedia.org/wiki/Inode] on the volume will not be
touched when read. This flag can be set temporarily using the following
command:


mount -o remount,noatime <riak_data_volume>



Replace <riak_data_volume> in the above example with your actual Riak
data volume. The noatime can be set in /etc/fstab to mount
permanently.





Schedulers


I/O or disk scheduling is a blanket term used to describe the method by
which an operating system chooses how to order input and output
operations to and from storage.


The default I/O scheduler (elevator) on Linux is completely fair queuing
or cfq, which is designed for desktop use. While a good
general-purpose scheduler, is not designed to provide the kind of
throughput expected in production database deployments.


Scheduler recommendations:



		The noop scheduler when deploying on iSCSI over HBAs, or any
hardware-based RAID.


		The deadline scheduler when using SSD-based storage.





To check the scheduler in use for block device sda, for example, use
the following command:


cat /sys/block/sda/queue/scheduler



To set the scheduler to deadline, use the following command:


echo deadline > /sys/block/sda/queue/scheduler



The default I/O scheduler queue size is 128. The scheduler queue sorts
writes in an attempt to optimize for sequential I/O and reduce seek
time. Changing the depth of the scheduler queue to 1024 can increase the
proportion of sequential I/O that disks perform and improve overall
throughput.


To check the scheduler depth for block device sda, use the following
command:


cat /sys/block/sda/queue/nr_requests



To increase the scheduler depth to 1024, use the following command:


echo 1024 > /sys/block/sda/queue/nr_requests






Filesystem


Advanced journaling filesystems like ZFS [http://zfsonlinux.org/] and
XFS [http://xfs.org/index.php/Main_Page] are recommended on some
operating systems for greater reliability and recoverability.


At this time, Basho can recommend using ZFS on Solaris, SmartOS, and
OmniOS. ZFS may work well with Riak on direct Solaris clones like
IllumOS, but we cannot yet recommend this. ZFS on
Linux [http://zfsonlinux.org] is still too early in its project lifetime
to be recommendable for production use due to concerns that have been
raised about excessive memory use. ZFS on FreeBSD is more mature than
ZFS on Linux, but Basho has not yet performed sufficient performance and
reliability testing to recommend using ZFS and Riak on FreeBSD.


In the meantime, the ext3 [http://en.wikipedia.org/wiki/Ext3] and
ext4 [http://en.wikipedia.org/wiki/Ext4] filesystems are sufficient on
operating systems on which ZFS or XFS are not available or recommended.


The ext4 file system defaults include two options that increase
integrity but slow performance. Because Riak’s integrity is based on
multiple nodes holding the same data, these two options can be changed
to boost I/O performance. We recommend setting barrier=0 and
data=writeback when using the ext4 filesystem.


Similarly, the XFS file system defaults can be optimized to improve
performance.  We recommend setting nobarrier, logbufs=8,
logbsize=256k, and allocsize=2M when using the XFS filesystem.


As with the noatime setting, these settings should be added to
/etc/fstab so that they are persisted across server restarts.







Kernel and Network Tuning


The following settings are minimally sufficient to improve many aspects
of Riak usage on Linux, and should be added or updated in
/etc/sysctl.conf:


net.ipv4.tcp_max_syn_backlog = 40000
net.core.somaxconn = 40000
net.core.wmem_default = 8388608
net.core.rmem_default = 8388608
net.ipv4.tcp_sack = 1
net.ipv4.tcp_window_scaling = 1
net.ipv4.tcp_fin_timeout = 15
net.ipv4.tcp_keepalive_intvl = 30
net.ipv4.tcp_tw_reuse = 1
net.ipv4.tcp_moderate_rcvbuf = 1




Note on system default

In general, these recommended values should be compared with the system
defaults and only changed if benchmarks or other performance metrics
indicate that networking is the bottleneck.

The following settings are optional, but may improve performance on a
10Gb network:


net.core.rmem_max = 134217728
net.core.wmem_max = 134217728
net.ipv4.tcp_mem  = 134217728 134217728 134217728
net.ipv4.tcp_rmem = 4096 277750 134217728
net.ipv4.tcp_wmem = 4096 277750 134217728
net.core.netdev_max_backlog = 300000



Certain network interfaces ship with on-board features that have been
shown to hinder Riak network performance. These features can be disabled
via ethtool.


For an Intel chipset NIC using the
ixgbe [http://www.intel.com/support/network/adapter/pro100/sb/CS-032530.htm]
driver running as eth0, for example, run the following command:


ethtool -K eth0 lro off



For a Broadcom chipset NIC using the bnx or bnx2 driver, run:


ethtool -K eth0 tso off



ethtool settings can be persisted across reboots by adding the above
command to the /etc/rc.local script.



Pro tip

Tuning these values will be required if they are changed, as they affect
all network operations.




Optional I/O Settings


If your cluster is experiencing excessive I/O blocking, the following
settings may help prevent disks from being overwhelmed during periods of
high write activity at the expense of peak performance for spiky
workloads:


vm.dirty_background_ratio = 0
vm.dirty_background_bytes = 209715200
vm.dirty_ratio = 40
vm.dirty_bytes = 0
vm.dirty_writeback_centisecs = 100
vm.dirty_expire_centisecs = 200



These settings have been tested and benchmarked by Basho in nodes with
16 GB of RAM.





Open Files Limit


Riak and supporting tools can consume a large number of open file
handles during normal operation. For stability, increasing the number of
open files limit is necessary. See [[Open Files Limit]] for more
details.





Other Tuning Docs



		[[AWS Performance Tuning]]


		[[Erlang VM Tuning]]


		[[Latency Reduction|Latency Reduction Checklist]]


		[[Open Files Limit]]









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/taste-of-riak/querying-csharp.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Taste of Riak: Querying with CSharp”
project: riak
version: 1.3.1+
document: tutorials
toc: true
audience: beginner
keywords: [developers, client, 2i, search, csharp]





C# Version Setup


For the C# version, please download the source from GitHub by either
cloning [https://github.com/basho/taste-of-riak] the source code repository or downloading the
current zip of the master branch [https://github.com/basho/taste-of-riak/archive/master.zip]. The code for this
chapter is in /csharp. Open up TasteOfRiak.sln in Visual Studio or
your IDE of choice.





A Quick Note on Querying and Schemas


Schemas? Yes, we said that correctly: S-C-H-E-M-A-S. It’s not a dirty
word. Even in a key/value store, you will still have a logical database
schema of how all the data relates to other data. This can be as simple
as using the same key across multiple buckets for different types of
data to having fields in your data that are related by name. These
querying methods will introduce you to some ways of laying out your data
in Riak, along with how to query it back.





Denormalization


If you’re coming from a relational database, the easiest way to get your
application’s feet wet with NoSQL is to denormalize your data into
related chunks. For example, with a customer database, you might have
separate tables for customers, addresses, preferences, etc. In Riak,
you can denormalize all that associated data into a single object and
store it into a Customer bucket. You can keep pulling in associated
data until you hit one of the big denormalization walls:



		Size Limits (objects greater than 1MB)


		Shared/Referential Data (data that the object doesn’t “own”)


		Differences in Access Patterns (objects that get read/written once vs.
often)





At one of these points we will have to split the model.





Same Keys, Different Buckets


The simplest way to split up data would be to use the same identity key
across different buckets. A good example of this would be a Customer
object, an Order object, and an OrderSummaries object that keeps
rolled up info about orders such as total, etc. You can find the source
for these POCOs in Customer.cs, Order.cs and
OrderSummaries.cs.  Let’s put some data into Riak so we can play
with it.


Console.WriteLine("Creating Data");
Customer customer = CreateCustomer();
IEnumerable<Order> orders = CreateOrders(customer);
OrderSummary orderSummary = CreateOrderSummary(customer, orders);

Console.WriteLine("Starting Client");
using (IRiakEndPoint endpoint = RiakCluster.FromConfig("riakConfig"))
{
    IRiakClient client = endpoint.CreateClient();

    Console.WriteLine("Storing Data");

    client.Put(ToRiakObject(customer));

    foreach (Order order in orders)
    {
        // NB: this adds secondary index data as well
        client.Put(ToRiakObject(order));
    }

    client.Put(ToRiakObject(orderSummary));

    ...
    ...
    ...
}



While individual Customer and Order objects don’t change much (or
shouldn’t change), the OrderSummaries object will likely change often.
It will do double duty by acting as an index for all a customer’s
orders, and also holding some relevant data such as the order total,
etc. If we showed this information in our application often, it’s only
one extra request to get all the info.


Console.WriteLine("Fetching related data by shared key");
string key = "1";

var result = client.Get(customersBucketName, key);
CheckResult(result);
Console.WriteLine("Customer     1: {0}\n", GetValueAsString(result));

result = client.Get(orderSummariesBucketName, key);
CheckResult(result);
Console.WriteLine("OrderSummary 1: {0}\n", GetValueAsString(result));



Which returns our amalgamated objects:


Fetching related data by shared key
Customer     1: {"CustomerId":1,"Name":"John Smith","Address":"123 Main Street","City":"Columbus","State":"Ohio","Zip":"43210","Phone":"+1-614-555-5555","CreatedDate":"2013-10-01 14:30:26"}
OrderSummary 1: {"CustomerId":1,"Summaries":[{"OrderId":1,"Total":415.98,"OrderDate":"2013-10-01 14:42:26"},{"OrderId":2,"Total":359.99,"OrderDate":"2013-10-15 16:43:16"},{"OrderId":3,"Total":74.98,"OrderDate":"2013-11-03 17:45:28"}]}



While this pattern is very easy and extremely fast with respect to
queries and complexity, it’s up to the application to know about these
intrinsic relationships.





Secondary Indexes


If you’re coming from an SQL world, Secondary Indexes (2i) are a lot
like SQL indexes. They are a way to quickly look up objects based on a
secondary key, without scanning through the whole dataset. This makes it
very easy to find groups of related data by values, or even ranges of
values. To properly show this off, we will make a note of where
secondary index data is added to our model objects.


private static RiakObject ToRiakObject(Order order)
{
    var orderRiakObjectId = new RiakObjectId(ordersBucketName, order.Id.ToString());
    var riakObject = new RiakObject(orderRiakObjectId, order);

    IntIndex salesPersonIdIndex = riakObject.IntIndex(ordersSalesPersonIdIndexName);
    salesPersonIdIndex.Add(order.SalesPersonId.ToString());

    BinIndex orderDateIndex = riakObject.BinIndex(ordersOrderDateIndexName);
    orderDateIndex.Add(order.OrderDate.ToString("yyyy-MM-dd"));

    return riakObject;
}



As you may have noticed, ordinary key/value data is opaque to 2i, so we
have to add entries to the indexes at the application level. Now let’s
find all of Jane Appleseed’s processed orders, we’ll look up the orders
by searching the SalespersonId integer index for Jane’s id of 9000.


// Query for order keys where the SalesPersonId index is set to 9000
var riakIndexId = new RiakIndexId(ordersBucketName, ordersSalesPersonIdIndexName);
RiakResult<RiakIndexResult> indexRiakResult = client.GetSecondaryIndex(riakIndexId, 9000); // NB: *must* use 9000 as integer here.
CheckResult(indexRiakResult);
RiakIndexResult indexResult = indexRiakResult.Value;
Console.WriteLine("Jane's orders (key values): {0}", string.Join(", ", indexResult.IndexKeyTerms.Select(ikt => ikt.Key)));



Which returns:


Jane's orders (key values): 1, 3



Jane processed orders 1 and 3. We used an “integer” index to reference
Jane’s ID, next let’s use a “binary” index. Now, let’s say that the VP
of Sales wants to know how many orders came in during October 2013. In
this case, we can exploit 2i’s range queries. Let’s search the
OrderDate binary index for entries between 2013-10-01 and
2013-10-31.


// Query for orders where the OrderDate index is between 2013-10-01 and 2013-10-31
riakIndexId = new RiakIndexId(ordersBucketName, ordersOrderDateIndexName);
indexRiakResult = client.GetSecondaryIndex(riakIndexId, "2013-10-01", "2013-10-31"); // NB: *must* use strings here.
CheckResult(indexRiakResult);
indexResult = indexRiakResult.Value;
Console.WriteLine("October orders (key values): {0}", string.Join(", ", indexResult.IndexKeyTerms.Select(ikt => ikt.Key)));



Which returns:


October orders (key values): 1, 2



We used 2i’s range feature to search for a range of values, and demonstrated binary indexes.


So to recap:



		You can use Secondary Indexes to quickly look up an object based on a
secondary id other than the object’s key.


		Indexes can have either Integer or Binary(String) keys


		You can search for specific values, or a range of values


		Riak will return a list of keys that match the index query









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/taste-of-riak/erlang.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Taste of Riak: Erlang”
project: riak
version: 1.4.0+
document: guide
toc: true
audience: beginner
keywords: [developers, client, erlang]




If you haven’t set up a Riak node and started it, please visit the
[[Prerequisites|Taste of Riak: Prerequisites]] first.


To try this flavor of Riak, a working installation of Erlang is
required. You can also use the erts Erlang installation that comes
with Riak.



Client Setup


Download the latest Erlang client from GitHub
(zip [https://github.com/basho/riak-erlang-client/archive/master.zip],
GitHub repository [https://github.com/basho/riak-erlang-client/]) and
extract it to your working directory.


Next, open the Erlang console with the client library paths included.


erl -pa CLIENT_LIBRARY_PATH/ebin/ CLIENT_LIBRARY_PATH/deps/*/ebin



Now let’s create a link to the Riak node. If you are using a single
local Riak node, use the following to create the link:


{ok, Pid} = riakc_pb_socket:start("127.0.0.1", 8087).



If you set up a local Riak cluster using the [[five-minute install]]
method, use this code snippet instead:


{ok, Pid} = riakc_pb_socket:start_link("127.0.0.1", 10017).



We are now ready to start interacting with Riak.





Creating Objects In Riak


First, let’s create a few Riak objects. For these examples we’ll be
using the bucket test.


MyBucket = <<"test">>.

Val1 = 1.
Obj1 = riakc_obj:new(MyBucket, <<"one">>, Val1).
riakc_pb_socket:put(Pid, Obj1).



In this first example, we have stored the integer 1 with the lookup key
of one. Next, let’s store a simple string value of two with a
matching key.


Val2 = <<"two">>.
Obj2 = riakc_obj:new(MyBucket, <<"two">>, Val2).
riakc_pb_socket:put(Pid, Obj2).



That was easy. Finally, let’s store something more complex, a tuple this
time. You will probably recognize the pattern by now.


Val3 = {value, 3}.
Obj3 = riakc_obj:new(MyBucket, <<"three">>, Val3).
riakc_pb_socket:put(Pid, Obj3).






Reading Objects From Riak


Now that we have a few objects stored, let’s retrieve them and make sure
they contain the values we expect.


{ok, Fetched1} = riakc_pb_socket:get(Pid, MyBucket, <<"one">>).
{ok, Fetched2} = riakc_pb_socket:get(Pid, MyBucket, <<"two">>).
{ok, Fetched3} = riakc_pb_socket:get(Pid, MyBucket, <<"three">>).

Val1 =:= binary_to_term(riakc_obj:get_value(Fetched1)). %% true
Val2 =:= binary_to_term(riakc_obj:get_value(Fetched2)). %% true
Val3 =:= binary_to_term(riakc_obj:get_value(Fetched3)). %% true



That was easy. We simply request the objects by bucket and key.





Updating Objects In Riak


While some data may be static, other forms of data may need to be
updated. This is also easy to do. Let’s update the value in the third
example to 42, update the Riak object, and then save it.


NewVal3 = setelement(2, Val3, 42).
UpdatedObj3 = riakc_obj:update_value(Fetched3, NewVal3).
{ok, NewestObj3} = riakc_pb_socket:put(Pid, UpdatedObj3, [return_body]).



We can verify that our new value was saved by looking at the value
returned.


rp(binary_to_term(riakc_obj:get_value(NewestObj3))).






Deleting Objects From Riak


Nothing is complete without a delete, as they say. Fortunately, that’s
easy too.


riakc_pb_socket:delete(Pid, MyBucket, <<"one">>).
riakc_pb_socket:delete(Pid, MyBucket, <<"two">>).
riakc_pb_socket:delete(Pid, MyBucket, <<"three">>).



Now we can verify that the objects have been removed from Riak.


{error,notfound} =:= riakc_pb_socket:get(Pid, MyBucket, <<"one">>).
{error,notfound} =:= riakc_pb_socket:get(Pid, MyBucket, <<"two">>).
{error,notfound} =:= riakc_pb_socket:get(Pid, MyBucket, <<"three">>).






Working With Complex Objects


Since the world is a little more complicated than simple integers and
bits of strings, let’s see how we can work with more complex objects.
Take, for example, this record that encapsulates some information about
a book.


rd(book, {title, author, body, isbn, copies_owned}).

MobyDickBook = #book{title="Moby Dick",
                     isbn="1111979723",
                     author="Herman Melville",
                     body="Call me Ishmael. Some years ago...",
                     copies_owned=3}.



So we have some information about our Moby Dick collection that we want
to save. Storing this to Riak should look familiar by now:


MobyObj = riakc_obj:new(<<"books">>,
                        list_to_binary(MobyDickBook#book.isbn),
                        MobyDickBook).

riakc_pb_socket:put(Pid, MobyObj).



Some of you may be thinking: “How does the Erlang Riak client
encode/decode my object?” If we fetch our book back and print the value,
we shall know:


{ok, FetchedBook} = riakc_pb_socket:get(Pid,
                                        <<"books">>,
                                        <<"1111979723">>).

rp(riakc_obj:get_value(FetchedBook)).



The response:


<<131,104,6,100,0,4,98,111,111,107,107,0,9,77,111,98,121,
  32,68,105,99,107,107,0,15,72,101,114,109,97,110,32,77,
  101,108,118,105,108,108,101,107,0,34,67,97,108,108,32,
  109,101,32,73,115,104,109,97,101,108,46,32,83,111,109,
  101,32,121,101,97,114,115,32,97,103,111,46,46,46,107,0,
  10,49,49,49,49,57,55,57,55,50,51,97,3>>



Erlang binaries! The Riak Erlang client library encodes everything as
binaries. If we wanted to get a book object back we could use
binary_to_term/1 to get our original object back:


rp(binary_to_term(riakc_obj:get_value(FetchedBook))).



Next let’s clean up our mess:


riakc_pb_socket:delete(Pid, <<"books">>, <<"1111979723">>).
riakc_pb_socket:stop(Pid).






Next Steps


More complex use cases can be composed from these initial create, read,
update, and delete (CRUD) operations. [[In the next chapter|Taste of
Riak: Querying]] we will look at how to store and query more complicated
and interconnected data, such as documents.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/tuning/open-files-limit.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Open Files Limit
project: riak
version: 0.10.0+
document: cookbook
toc: true
audience: advanced
keywords: [troubleshooting, os]
moved: {
‘1.4.0-‘: ‘/cookbooks/Open-Files-Limit’
}




Riak can consume a large number of open file handles during normal
operation. The [[Bitcask]] backend in particular may accumulate a high
number of data files before it has a chance to run a merge process. You
can count the number of data files in the Bitcask directory with
following command:


ls data/bitcask/*/* | wc -l



Please note that the creation of numerous data files is normal. Each
time Riak is started, Bitcask creates a new data file per partition;
once in a while, Bitcask will merge a collection of data files into a
single file to avoid accumulating file handles. It’s possible to
artificially inflate the number of file handles Bitcask uses by
repeatedly writing data and restarting Riak. The shell command below
illustrates this issue:


for i in {1..100}
  do
    riak stop
    riak start
    sleep 3
    curl http://localhost:8098/riak/test -X POST -d "x" \
      -H "Content-Type: text/plain"
    ls data/bitcask/*/* | wc -l
done




Changing the limit


Most operating systems can change the open-files limit using the ulimit -n command. Example:


ulimit -n 65536



However, this only changes the limit for the current shell session.
Changing the limit on a system-wide, permanent basis varies more between
systems.





Linux


On most Linux distributions, the total limit for open files is
controlled by sysctl.


sysctl fs.file-max
fs.file-max = 50384



As seen above, it is generally set high enough for Riak. If you have
other things running on the system, you might want to consult the
sysctl manpage [http://linux.die.net/man/8/sysctl] for how to change
that setting. However, what most needs to be changed is the per-user
open files limit. This requires editing /etc/security/limits.conf, for
which you’ll need superuser access. If you installed Riak from a binary
package, add lines for the riak user like so, substituting your
desired hard and soft limits:


riak soft nofile 4096
riak hard nofile 65536



On Ubuntu, if you’re always relying on the init scripts to start Riak,
you can create the file /etc/default/riak and specify a manual limit
like so:


ulimit -n 65536



This file is automatically sourced from the init script, and the Riak
process started by it will properly inherit this setting. As init
scripts are always run as the root user, there’s no need to specifically
set limits in /etc/security/limits.conf if you’re solely relying on
init scripts.


On CentOS/RedHat systems, make sure to set a proper limit for the user
you’re usually logging in with to do any kind of work on the machine,
including managing Riak. On CentOS, sudo properly inherits the values
from the executing user.


Reference: [[http://www.cyberciti.biz/faq/linux-increase-the-maximum-number-of-open-files/]]



Enable PAM-Based Limits for Debian & Ubuntu


It can be helpful to enable PAM user limits so that non-root users, such
as the riak user, may specify a higher value for maximum open files.
For example, follow these steps to enable PAM user limits and set the
soft and hard values for all users of the system to allow for up to
65536 open files.


Edit /etc/pam.d/common-session and append the following line:


session    required   pam_limits.so



If /etc/pam.d/common-session-noninteractive exists, append the same
line as above.


Save and close the file.


Edit /etc/security/limits.conf and append the following lines to the
file:


*               soft     nofile          65536
*               hard     nofile          65536




		Save and close the file.





		(optional) If you will be accessing the Riak nodes via secure shell
(ssh), you should also edit /etc/ssh/sshd_config and uncomment the
following line:


#UseLogin no



and set its value to yes as shown here:


UseLogin yes






		Restart the machine so that the limits to take effect and verify that
the new limits are set with the following command:


ulimit -a












Enable PAM-Based Limits for CentOS and Red Hat



		Edit /etc/security/limits.conf and append the following lines to
the file:


*               soft     nofile          65536
*               hard     nofile          65536






		Save and close the file.





		Restart the machine so that the limits to take effect and verify that
the new limits are set with the following command:


ulimit -a










Note
 In the above examples, the
open files limit is raised for all users of the system. If you prefer,
the limit can be specified for the riak user only by substituting the
two asterisks (`*`) in the examples with riak.






Solaris


In Solaris 8, there is a default limit of 1024 file descriptors per
process. In Solaris 9, the default limit was raised to 65536. To
increase the per-process limit on Solaris, add the following line to
/etc/system:


set rlim_fd_max=65536



Reference: [[http://blogs.oracle.com/elving/entry/too_many_open_files]]





Mac OS X


To check the current limits on your Mac OS X system, run:


launchctl limit maxfiles



The last two columns are the soft and hard limits, respectively.



Adjusting Open File Limits in Yosemite


To adjust open files limits on a system-wide basis in Mac OS X Yosemite,
you must create two configuration files. The first is a property list
(aka plist) file in /Library/LaunchDaemons/limit.maxfiles.plist that
contains the following XML configuration:


<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
  <plist version="1.0">
    <dict>
      <key>Label</key>
        <string>limit.maxfiles</string>
      <key>ProgramArguments</key>
        <array>
          <string>launchctl</string>
          <string>limit</string>
          <string>maxfiles</string>
          <string>65536</string>
          <string>65536</string>
        </array>
      <key>RunAtLoad</key>
        <true/>
      <key>ServiceIPC</key>
        <false/>
    </dict>
  </plist>



This will set the open files limit to 65536. The second plist
configuration file should be stored in
/Library/LaunchDaemons/limit.maxproc.plist with the following
contents:


<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple/DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
  <plist version="1.0">
    <dict>
      <key>Label</key>
        <string>limit.maxproc</string>
      <key>ProgramArguments</key>
        <array>
          <string>launchctl</string>
          <string>limit</string>
          <string>maxproc</string>
          <string>2048</string>
          <string>2048</string>
        </array>
      <key>RunAtLoad</key>
        <true />
      <key>ServiceIPC</key>
        <false />
    </dict>
  </plist>



Both plist files must be owned by root:wheel and have permissions
-rw-r--r--. This permissions should be in place by default, but you
can ensure that they are in place by running sudo chmod 644 <filename>. While the steps explained above will cause system-wide open
file limits to be correctly set upon restart, you can apply them
manually by running launchctl limit.


In addition to setting these limits at the system level, we recommend
setting the at the session level as well by appending the following
lines to your bashrc, bashprofile, or analogous file:


ulimit -n 65536
ulimit -u 2048



Like the plist files, your bashrc or similar file should have
-rw-r--r-- permissions. At this point, you can restart your computer
and enter ulimit -n into your terminal. If your system is configured
correctly, you should see that maxfiles has been set to 65536.





Adjusting Open File Limits in Older Versions of OS X


To adjust the maximum open file limits in OS X 10.7 (Lion) up to but not
including OS X Yosemite, edit /etc/launchd.conf and increase the
limits for both values as appropriate.


For example, to set the soft limit to 16384 files, and the hard limit to
32768 files, perform the following steps:



		Verify current limits:


launchctl limit



The response output should look something like this:


cpu         unlimited      unlimited
filesize    unlimited      unlimited
data        unlimited      unlimited
stack       8388608        67104768
core        0              unlimited
rss         unlimited      unlimited
memlock     unlimited      unlimited
maxproc     709            1064
maxfiles    10240          10240






		Edit (or create) /etc/launchd.conf and increase the limits. Add
lines that look like the following (using values appropriate to your
environment):


limit maxfiles 16384 32768






		Save the file, and restart the system for the new limits to take
effect. After restarting, verify the new limits with the launchctl limit
command:


launchctl limit



The response output should look something like this:


cpu         unlimited      unlimited
filesize    unlimited      unlimited
data        unlimited      unlimited
stack       8388608        67104768
core        0              unlimited
rss         unlimited      unlimited
memlock     unlimited      unlimited
maxproc     709            1064
maxfiles    16384          32768















          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/using/basics.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: The Basics
project: riak
version: 1.0.0+
document: tutorials
audience: beginner
keywords: [developers]
moved: {
‘1.4.0-‘: ‘/tutorials/fast-track/Basic-Riak-API-Operations’
}




While Riak offers a wide variety of features and querying options, from
[[Riak Data Types|Using Data Types]] to [[Riak Search|Using Search]] and
beyond, Riak almost always performs best and most predictably when you
use the basic CRUD operations—Create, Read, Update,
Delete—that you’d find in any key/value store. Learning these
operations is a great place to start when learning how to develop
applications that use Riak.



Object/Key Operations


Riak organizes data into buckets, keys, and values, with [[bucket
types|Using Bucket Types]] acting as an additional namespace in Riak
versions 2.0 and greater. Values (also referred to simply as objects in
this tutorial) are identifiable by a unique key, and each key/value pair
is stored in a bucket. Objects can be any data type you wish, e.g. JSON,
XML, binary data, plaintext, and more.


Buckets are essentially a flat namespace in Riak. You can name them
whatever you’d like, even bucket or a90bf521c or ___ or :). They
have no intrinsic significance beyond allowing you to store objects with
the same key in different buckets. The same goes for naming keys: many
objects can have the same key as long as they’re in different buckets.


[[Bucket types|Using Bucket Types]] enable you to provide common
configurations for buckets (as many buckets as you wish). This means
that you can easily enable buckets to share common configurations, i.e.
identical [[replication properties]] or [[commit hooks|Using Commit
Hooks]].


Many of the interactions you’ll have with Riak will involve setting or
retrieving the value of a key. Riak has [[supported client
libraries|Client Libraries]] for Java, Ruby, Python, .NET and Erlang. In
addition, there are [[community-supported projects|Client
Libraries#Community-Libraries]] for Node.js, Python, Perl,
Clojure, Scala, Smalltalk, and many others.





Reading Objects


You can think of reads in Riak as analogous to HTTP GET requests. You
specify a bucket type, bucket, and key, and Riak either returns the
object that’s stored there—including its [[siblings|The
Basics#Siblings]] (more on that later)—or it returns not found (the
equivalent of an HTTP 404 Object Not Found).


Here is the basic command form for retrieving a specific key from a
bucket:


GET /types/<type>/buckets/<bucket>/keys/<key>



Here is an example of a read performed on the key rufus in the bucket
dogs, which bears the [[bucket type|Using Bucket Types]] animals:


// In the Java client, it is best to specify a bucket type/bucket/key
// Location object that can be used as a reference for further
// operations, as in the example below:
Location myKey = new Location(new Namespace("animals", "dogs"), "rufus");



bucket = client.bucket_type('animals').bucket('dogs')
obj = bucket.get('rufus')



$response = (new \Basho\Riak\Command\Builder\FetchObject($riak))
  ->buildLocation('rufus', 'users', 'animals')
  ->build()
  ->execute();



bucket = client.bucket_type('animals').bucket('dogs')
obj = bucket.get('rufus')



// Using the Riak .NET Client it is best to specify a bucket type/bucket/key
// RiakObjectId object that can be used as a reference for further
// operations
var id = new RiakObjectId("animals", "dogs", "rufus");



client.fetchValue({ bucketType: 'animals', bucket: 'dogs', key: 'rufus' }, function (err, rslt) {
    assert(rslt.isNotFound);
});



{ok, Obj} = riakc_pb_socket:get(Pid,
                            {<<"animals">>, <<"dogs">>},
                            <<"rufus">>).



curl http://localhost:8098/types/animals/buckets/dogs/keys/rufus




Getting started with Riak clients

If you are connecting to Riak using one of Basho's official [[client
libraries]], you can find more information about getting started with
your client in our [[quickstart guide|Five-Minute
Install#Setting-Up-Your-Riak-Client]].

At the moment, there’s no object stored in the location where we just
attempted a read, which means that we’ll get the following response:


java.lang.NullPointerException



Riak::ProtobuffsFailedRequest: Expected success from Riak but received not_found. The requested object was not found.



$response->getStatusCode(); // 404
$response->isSuccess(); // false



riak.RiakError: 'no_type'



result.IsSuccess == false
result.ResultCode == ResultCode.NotFound



rslt.isNotFound === true;



{error,notfound}



not found






Writing Objects


Writes in Riak, i.e. storing or modifying objects, are like HTTP PUT
requests. Here is the basic form of writes:


PUT /types/<type>/buckets/<bucket>/keys/<key>

# If you're using HTTP to interact with Riak, you can also use POST



In the example above, our read was unsuccessful because our Riak cluster
is currently empty. Let’s change that by storing an object containing
information about a dog named Rufus. We’ll store that object in the
location described above, i.e. in the key rufus in the bucket dogs,
which bears the animals [[bucket type|Using Bucket Types]].


The object we’re storing will be very simple, just a basic text snippet
of something that Rufus might say. Let’s build the object and then store
it.


String quote = "WOOF!";
Namespace bucket = new Namespace("animals", "dogs");
Location rufusLocation = new Location(bucket, "rufus");
RiakObject rufusObject = new RiakObject()
        .setContentType("text/plain")
        .setValue(BinaryValue.create(quote));
StoreValue storeOp = new StoreValue.Builder(rufusObject)
        .withLocation(rufusLocation)
        .build();
client.execute(storeOp);



bucket = client.bucket_type('animals').bucket('dogs')
obj = Riak::RObject.new(bucket, 'rufus')
obj.content_type = 'text/plain'
obj.data = 'WOOF!'
obj.store



$response = (new \Basho\Riak\Command\Builder\StoreObject($riak))
  ->buildLocation('rufus', 'users', 'animals')
  ->buildObject('WOOF!', 'text/plain')
  ->build()
  ->execute();



bucket = client.bucket_type('animals').bucket('dogs')
obj = RiakObject(client, bucket, 'rufus')
obj.content_type = 'text/plain'
obj.data = 'WOOF!'
obj.store()



var id = new RiakObjectId("animals", "dogs", "rufus")
var obj = new RiakObject(id, "WOOF!", "text/plain");
var result = client.Put(obj);



var riakObj = new Riak.Commands.KV.RiakObject();
riakObj.setContentType('text/plain');
riakObj.setValue('WOOF!');
client.storeValue({
    bucketType: 'animals', bucket: 'dogs', key: 'rufus',
    value: riakObj
}, function (err, rslt) {
    if (err) {
        throw new Error(err);
    }
});



Notice that we specified both a value for the object, i.e. WOOF!, and
a content type, text/plain. We’ll learn more about content types in
the [[section below|The Basics#Content-Types]].


Now, run the same read operation we attempted in the [[section above|The
Basics#Reading-Objects]]. If the write operation was successful, you
should be able to successfully read the object. Your Riak cluster is no
longer empty!





Content Types


Riak is a fundamentally content-agnostic database. You can use it to
store anything you want, from JSON to XML to HTML to binaries to images
and beyond. You should always bear in mind that all objects stored in
Riak need to have a specified content type. If you don’t specify a
content type, the reaction will vary based on your client library:


// In the Java client, the response when storing an object without
// specifying a content type will depend on what is being stored. If you
// store a Java Map, for example, the client will automatically specify
// that the object is "application/json"; if you store a String, the
// client will specify "application/x-www-form-urlencoded"; POJOs are
// stored as JSON by default, and so on.



# In the Ruby client, you must always specify a content type. If you
# you don't, you'll see the following error:
ArgumentError: content_type is not defined!



# PHP will default to cURLs default content-type for POST & PUT requests:
#   application/x-www-form-urlencoded

# If you use the StoreObject::buildJsonObject() method when building your command, 
# it will store the item with application/json as the content-type



# In the Python client, the default content type is "application/json".
# Because of this, you should always make sure to specify the content
# type when storing other types of data.



// Using the Riak .NET Client, the response when storing an object without
// specifying a content type will depend on what is being stored.
// If you store a Dictionary, for example, the client will
// automatically specify that the object is "application/json";
// POCOs are stored as JSON by default, and so on.



// In the Node.js client, the default content type is "application/json".
// Because of this, you should always make sure to specify the content
// type when storing other types of data.



%% In the Erlang client, the response when storing an object without
%% specify8ing a content type will depend on what is being stored. If
%% you store a simple binary, for example, the client will automatically
%% specify that the object is "application/octet-stream"; if you store a
%% string, the client will specify "application/x-erlang-binary"; and so
%% on.



Because content type negotiation varies so widely from client to client,
we recommend consulting the documentation for your preferred client for
more information.





Updating Objects


When we stored an object in the [[section above|The
Basics#Writing-Objects]], we did so in a location that was empty.
Updating an already-existing object, however, is a bit trickier because
there are some best practices and other issues that you should be aware
of. Consult the [[Object Updates]] doc for more information.





Read Parameters


Parameter | Default | Description
:———|:——–|:———–
r | 2 | How many replicas need to agree when retrieving an existing object before the write
pr | 0 | How many [[vnodes]] must respond for a read to be deemed successful
notfound_ok | If set to true, if the first vnode to respond doesn’t have a copy of the object, Riak will deem the failure authoritative and immediately return a notfound error to the client


Riak also accepts many query parameters, including r for setting the
R-value for GET requests (R values describe how many replicas need to
agree when retrieving an existing object in order to return a successful
response).


Here is an example of attempting a read with r set to 3:


// Using the "myKey" location specified above:
FetchValue fetch = new FetchValue.Builder(myKey)
        .withOption(FetchOption.R, new Quorum(3))
        .build();
FetchValue.Response response = client.execute(fetch);
RiakObject obj = response.getValue(RiakObject.class);
System.out.println(obj.getValue());



bucket = client.bucket_type('animals').bucket('dogs')
obj = bucket.get('rufus', r: 3)
p obj.data



$response = (new \Basho\Riak\Command\Builder\FetchObject($riak))
  ->buildLocation('rufus', 'dogs', 'animals')
  ->build()
  ->execute();

var_dump($response->getObject()->getData());



bucket = client.bucket_type('animals').bucket('dogs')
obj = bucket.get('rufus', r=3)
print obj.data



var id = new RiakObjectId("animals", "dogs", "rufus");
var opts = new RiakGetOptions();
opts.SetR(3);
var rslt = client.Get(id, opts);
Debug.WriteLine(Encoding.UTF8.GetString(rslt.Value.Value));



var fetchOptions = {
    bucketType: 'animals', bucket: 'dogs', key: 'rufus',
    r: 3
};
client.fetchValue(fetchOptions, function (err, rslt) {
    var riakObj = rslt.values.shift();
    var rufusValue = riakObj.value.toString("utf8");
    logger.info("rufus: %s", rufusValue);
});



{ok, Obj} = riakc_pb_socket:get(Pid,
                                {<<"animals">>, <<"dogs">>},
                                <<"rufus">>,
                                [{r, 3}]).



curl http://localhost:8098/types/animals/buckets/dogs/keys/rufus?r=3



If you’re using HTTP, you will most often see the following response
codes:



		200 OK


		300 Multiple Choices


		304 Not Modified





The most common error code:



		404 Not Found






Note

If you're using a Riak client instead of HTTP, these responses will vary
a great deal, so make sure to check the documentation for your specific
client.


Store an Object


Your application will often have its own method of generating the keys
for its data, e.g. on the basis of timestamps. If so, storing that data
is easy. The basic request looks like this.


PUT /types/TYPE/buckets/BUCKET/keys/KEY

# If you're using HTTP, POST can be used instead of PUT. The only
# difference between POST and PUT is that you should POST in cases where
# you want Riak to auto-generate a key. More on this can be found in the
# examples below.



There is no need to intentionally create buckets in Riak. They pop into
existence when keys are added to them, and disappear when all keys have
been removed from them. If you don’t specify a bucket’s type, the type
[[default|Using Bucket Types]] will be applied.



Specifying Content Type


For all writes to Riak, you will need to specify a content type, for
example text/plain or application/json.


Location wildeGeniusQuote = new Location(new Namespace("quotes", "oscar_wilde"), "genius");
BinaryValue text = BinaryValue.create("I have nothing to declare but my genius");
RiakObject obj = new RiakObject()
        .setContentType("text/plain")
        .setValue(text);
StoreValue store = new StoreValue.Builder(myKey, obj)
        .build();
client.execute(store);



bucket = client.bucket_type('quotes').bucket('oscar_wilde')
obj = Riak::RObject.new(bucket, 'genius')
obj.content_type = 'text/plain'
obj.raw_data = 'I have nothing to declare but my genius'
obj.store



$response = (new \Basho\Riak\Command\Builder\StoreObject($riak))
  ->buildLocation('genius', 'oscar_wilde', 'quotes')
  ->buildObject('I have nothing to declare but my genius!', 'text/plain')
  ->build()
  ->execute();



bucket = client.bucket_type('quotes').bucket('oscar_wilde')
obj = RiakObject(client, bucket, 'genius')
obj.content_type = 'text/plain'
obj.data = 'I have nothing to declare but my genius'
obj.store()



var id = new RiakObjectId("quotes", "oscar_wilde", "genius");
var obj = new RiakObject(id, "I have nothing to declare but my genius",
    RiakConstants.ContentTypes.TextPlain);
var rslt = client.Put(obj);



var riakObj = new Riak.Commands.KV.RiakObject();
riakObj.setContentType('text/plain');
riakObj.setValue('I have nothing to declare but my genius');
client.storeValue({
    bucketType: 'quotes', bucket: 'oscar_wilde', key: 'genius',
    value: riakObj
}, function (err, rslt) {
    if (err) {
        throw new Error(err);
    }
});



Object = riakc_obj:new({<<"quotes">>, <<"oscar_wilde">>},
                       <<"genius">>,
                       <<"I have nothing to declare but my genius">>,
                       <<"text/plain">>).
riakc_pb_socket:put(Pid, Object).



curl -XPUT \
  -H "Content-Type: text/plain" \
  -d "I have nothing to declare but my genius" \
  http://localhost:8098/types/quotes/buckets/oscar_wilde/keys/genius

# Please note that POST is also a valid method for writes, for the sake
# of compatibility






Using Causal Context


If an object already exists under a certain key and you want to write a
new object to that key, Riak needs to know what to do, especially if
multiple writes are happening at the same time. Which of the objects
being written should be deemed correct? These kinds of scenarios can
arise quite frequently in distributed, [[eventually consistent|Eventual
Consistency]] systems.


Riak decides which object to choose in case of conflict using [[causal
context]]. These objects track the causal history of objects.
They are attached to all Riak objects as metadata, and they are not
readable by humans. They may sound complex—and they are fairly complex
behind the scenes—but using them in your application is very simple.


Whenever you perform updates in Riak


Using causal context in an update would involve the following steps;



		Fetch the object


		Modify the object’s value (without modifying the fetched [[context
object|Causal Context]])


		Write the new object to Riak





Step 2 is the most important here. All of Basho’s official Riak clients
enable you to modify an object’s value without modifying its [[causal
context]]. Although a more detailed tutorial on context objects and
object updates can be found in [[Conflict Resolution]], we’ll walk you
through a basic example here.


Let’s say that the current NBA champion is the Washington Generals.
We’ve stored that data in Riak under the key champion in the bucket
nba, which bears the bucket type sports. The value of the object is
a simple text snippet that says Washington Generals.


But one day the Harlem Globetrotters enter the league and dethrone the
hapless Generals (forever, as it turns out). Because we want our Riak
database to reflect this new development in the league, we want to make
a new write to the champion key. Let’s read the object stored there
and modify the value.


Location currentChampion = new Location(new Namespace("sports", "nba"), "champion");
FetchValue fetch = new FetchValue.Builder(currentChampion)
        .build();
FetchValue.Response response = client.execute(fetch);
RiakObject obj = response.getValue(RiakObject.class);
obj.setValue(BinaryValue.create("Harlem Globetrotters"))



bucket = client.bucket_type('sports').bucket('nba')
obj = bucket.get('champion')
obj.raw_data = 'Harlem Globetrotters'
obj.store



$location = new \Basho\Riak\Location('champion', new \Basho\Riak\Bucket('nba', 'sports'));
$object = (new \Basho\Riak\Command\Builder\FetchObject($riak))
  ->withLocation($location)
  ->build()
  ->execute()
  ->getObject();

$object->setData('Harlem Globetrotters');

(new \Basho\Riak\Command\Builder\StoreObject($riak))
  ->withLocation($location)
  ->withObject($object)
  ->build()
  ->execute();



bucket = client.bucket_type('sports').bucket('nba')
obj = bucket.get('champion')
obj.data = 'Harlem Globetrotters'



var id = new RiakObjectId("sports", "nba", "champion");
var obj = new RiakObject(id, "Washington Generals",
    RiakConstants.ContentTypes.TextPlain);
var rslt = client.Put(obj);

rslt = client.Get(id);
obj = rslt.Value;
obj.SetObject("Harlem Globetrotters",
    RiakConstants.ContentTypes.TextPlain);
rslt = client.Put(obj);



var riakObj = new Riak.Commands.KV.RiakObject();
riakObj.setContentType('text/plain');
riakObj.setValue('Washington Generals');

var options = {
    bucketType: 'sports', bucket: 'nba', key: 'champion',
    value: riakObj
};
client.storeValue(options, function (err, rslt) {
    if (err) {
        throw new Error(err);
    }
    delete options.value;
    client.fetchValue(options, function (err, rslt) {
        if (err) {
            throw new Error(err);
        }
        var fetchedObj = rslt.values.shift();
        fetchedObj.setValue('Harlem Globetrotters');
        options.value = fetchedObj;
        options.returnBody = true;
        client.storeValue(options, function (err, rslt) {
            if (err) {
                throw new Error(err);
            }
            var updatedObj = rslt.values.shift();
            logger.info("champion: %s", updatedObj.value.toString('utf8'));
        });
    });
});



%% In the Erlang client, you cannot view a context objectdirectly, but it
%% will be included in the output when you fetch an object:

{ok, Obj} = riakc_pb_socket:get(Pid,
                                {<<"sports">>, <<"nba">>},
                                <<"champion">>),
UpdatedObj = riakc_obj:update_value(Obj, <<"Harlem Globetrotters">>),
{ok, NewestObj} = riakc_pb_socket:put(Pid, UpdatedObj, [return_body]).



# When using curl, the context object is attached to the X-Riak-Vclock header

curl -i http://localhost:8098/types/sports/buckets/nba/keys/champion

# In the resulting output, the header will look something like this:

X-Riak-Vclock: a85hYGBgzGDKBVIcWu/1S4OVPaIymBIZ81gZbskuOMOXBQA=

# When performing a write to the same key, that same header needs to
# accompany the write for Riak to be able to use the context object



In the samples above, we didn’t need to actually interact with the
context object, as retaining and passing along the context object was
accomplished automatically by the client. If, however, you do need
access to an object’s context, the clients enable you to fetch it from
the object:


// Using the RiakObject obj from above:

Vclock vClock = obj.getVclock();
System.out.println(vClock.asString());

// The context object will look something like this:
// a85hYGBgzGDKBVIcWu/1S4OVPaIymBIZ81gZbskuOMOXBQA=



# Using the RObject obj from above:

obj.vclock

# The context object will look something like this:
# a85hYGBgzGDKBVIcWu/1S4OVPaIymBIZ81gZbskuOMOXBQA=



# Using the RObject obj from above:

echo $object->getVclock(); // a85hYGBgzGDKBVIcWu/1S4OVPaIymBIZ81gZbskuOMOXBQA=



# Using the RiakObject obj from above:

obj.vclock

# The context object will look something like this:
# a85hYGBgzGDKBVIcWu/1S4OVPaIymBIZ81gZbskuOMOXBQA=



// Using the RiakObject obj from above:
var vclock = result.Value.VectorClock;
Console.WriteLine(Convert.ToBase64String(vclock));

// The output will look something like this:
// a85hYGBgzGDKBVIcWu/1S4OVPaIymBIZ81gZbskuOMOXBQA=



// Using the RiakObject fetchedObj from above:
var fetchedObj = rslt.values.shift();
logger.info("vclock: %s", fetchedObj.getVClock().toString('base64'));

// The output will look something like this:
// vclock: a85hYGBgymDKBVIcR4M2cov1HeHKYEpkymNlsE2cfo4PKjXXjuOU+FHdWqAUM1CqECSVBQA=



%% Using the Obj object from above:

riakc_obj:vclock(Obj).

%% The context object will look something like this in the Erlang shell:
%% <<107,206,97,96,96,96,204,96,202,5,82,28,202,156,255,126,
%% 6,175,157,255,57,131,41,145,49,143,149,225,240,...>>






Write Parameters


Similar to how read requests support the r query parameter, write
requests also support the following parameters:


Parameter | Default | Description
:———|:——–|:———–
w | 2 | How many replicas to write to before returning a successful response
pw | 0 | How many primary vnodes must respond for a write to be deemed successful
dw | 0 | How many replicas to commit to durable storage before returning a successful response
returnbody | false | Whether to return the contents of the stored object


Here is an example of storing an object (another brief text snippet)
under the key viper in the bucket dodge, which bears the type
cars, with w set to 3:


Location viperKey = new Location(new Namespace("cars", "dodge"), "viper");
BinaryValue text = BinaryValue.create("vroom");
RiakObject obj = new RiakObject()
        .setContentType("text/plain")
        .setValue(text);
StoreValue store = new StoreValue.Builder(myKey, obj)
        .withOption(StoreOption.W, new Quorum(3))
        .build();
client.execute(store);



bucket = client.bucket_type('cars').bucket('dodge')
obj = Riak::RObject.new(bucket, 'viper')
obj.content_type = 'text/plain'
obj.raw_data = 'vroom'
obj.store(w: 3)



(new \Basho\Riak\Command\Builder\StoreObject($riak))
  ->buildLocation('viper', 'dodge', 'cars')
  ->buildObject('vroom', 'text/plain')
  ->withParameter('w', 3)
  ->build()
  ->execute();



bucket = client.bucket_type('cars').bucket('dodge')
obj = RiakObject(client, bucket, 'viper')
obj.content_type = 'text/plain'
obj.data = 'vroom'
obj.store(w=3)



var id = new RiakObjectId("cars", "dodge", "viper");
var obj = new RiakObject(id, "vroom", "text/plain");
var options = new RiakPutOptions();
options.SetW(new Quorum(3));
var result = client.Put(obj, options);



var riakObj = new Riak.Commands.KV.RiakObject();
riakObj.setContentType('text/plain');
riakObj.setValue('vroom');

var options = {
    bucketType: 'cars', bucket: 'dodge', key: 'viper',
    w: 3, value: riakObj
};
client.storeValue(options, function (err, rslt) {
    if (err) {
        throw new Error(err);
    }
});



Object = riakc_obj:new({<<"cars">>, <<"dodge">>},
                       <<"viper">>,
                       <<"vroom">>,
                       <<"text/plain">>,
                       [{w, 3}]).
riakc_pb_socket:put(Pid, Object).



curl -XPUT \
  -H "Content-Type: text/plain" \
  -d "vroom" \
  http://localhost:8098/types/cars/buckets/dodge/keys/viper?w=3



Normal HTTP status codes (responses will vary for client libraries):



		200 OK


		204 No Content


		300 Multiple Choices








Return Body


If returnbody is set to true, any of the response headers expected
from a read request may be present. Like a GET request, 300 Multiple Choices may be returned if siblings existed or were created as part of
the operation, and the response can be dealt with similarly.


Let’s give it a shot, using the same object from above:


Location viperKey = new Location(new Namespace("cars", "dodge"), "viper");
BinaryValue text = BinaryValue.create("vroom");
RiakObject obj = new RiakObject()
        .setContentType("text/plain")
        .setValue(text);
StoreValue store = new StoreValue.Builder(myKey, obj)
        .withOption(StoreOption.W, new Quorum(3))
        .withOption(StoreOption.RETURN_BODY, true)
        .build();
client.execute(store);



bucket = client.bucket_type('cars').bucket('dodge')
obj = Riak::RObject.new(bucket, 'viper')
obj.content_type = 'text/plain'
obj.raw_data = 'vroom'
obj.store(w: 3, returnbody: true)



(new \Basho\Riak\Command\Builder\StoreObject($riak))
  ->buildLocation('viper', 'dodge', 'cars')
  ->buildObject('vroom', 'text/plain')
  ->withParameter('w', 3)
  ->withParameter('returnbody', 'true')
  ->build()
  ->execute();



bucket = client.bucket_type('cars').bucket('dodge')
obj = RiakObject(client, bucket, 'viper')
obj.content_type = 'text/plain'
obj.data = 'vroom'
obj.store(w=3, return_body=True)



var id = new RiakObjectId("cars", "dodge", "viper");
var obj = new RiakObject(id, "vroom", "text/plain");
var options = new RiakPutOptions();
options.SetW(new Quorum(3));
options.SetReturnBody(true);
var result = client.Put(obj, options);



var riakObj = new Riak.Commands.KV.RiakObject();
riakObj.setContentType('text/plain');
riakObj.setValue('vroom');

var options = {
    bucketType: 'cars', bucket: 'dodge', key: 'viper',
    w: 3, returnBody: true, value: riakObj
};
client.storeValue(options, function (err, rslt) {
    if (err) {
        throw new Error(err);
    }
    var riakObj = rslt.values.shift();
    var viper = riakObj.value;
    logger.info("dodge viper: %s", viper.toString('utf8'));
});



Object = riakc_obj:new({<<"cars">>, <<"dodge">>},
                       <<"viper">>,
                       <<"vroom">>,
                       <<"text/plain">>).
riakc_pb_socket:put(Pid, Object, [return_body]).



curl -XPUT \
  -H "Content-Type: text/plain" \
  -d "vroom" \
  http://localhost:8098/types/cars/buckets/dodge/keys/viper?w=3&returnbody=true








Store a New Object and Assign a Random Key


If your application would rather leave key-generation up to Riak, issue
a POST request to the bucket URL instead of a PUT to a bucket/key
pair:


POST /types/TYPE/buckets/BUCKET/keys



If you don’t pass Riak a key name after the bucket, it will know to
create one for you.


Supported headers are the same as for bucket/key write requests, though
X-Riak-Vclock will never be relevant for these POST requests.
Supported query parameters are also the same as for bucket/key PUT
requests.


Normal status codes:



		201 Created





This command will store an object in the bucket random_user_keys,
which bears the bucket type users.


Namespace locationWithoutKey = new Namespace("users", "random_user_keys");
BinaryValue text = BinaryValue.create("{'user':'data'}");
RiakObject obj = new RiakObject()
        .setContentType("application/json")
        .setValue(text);
StoreValue store = new StoreValue.Builder(locationWithoutKey, obj)
        .build();
String key = client.execute(store).getLocation().getKeyAsString();

// The Java client will assign a random key along the following lines:
"ZPFF18PUqGW9efVou7EHhfE6h8a"



bucket = client.bucket_type('users').bucket('random_user_keys')
obj = Riak::RObject.new(bucket)
obj.content_type = 'application/json'
obj.raw_data = '{"user":"data"}'

obj.store

# The client will assign a key like the following:
obj.key
"GB8fW6DDZtXogK19OLmaJf247DN"



$response = (new \Basho\Riak\Command\Builder\StoreObject($riak))
  ->buildBucket('random_user_keys', 'users')
  ->buildJsonObject(['user'=>'data'])
  ->build()
  ->execute();

echo $response->getLocation()->getKey(); // GB8fW6DDZtXogK19OLmaJf247DN



bucket = client.bucket_type('users').bucket('random_user_keys')
obj = RiakObject(client, bucket)
obj.content_type = 'application/json'
obj.data = '{"user":"data"}'
obj.store()

obj.key

# The Python client will assign a random key along the following lines:
'ZPFF18PUqGW9efVou7EHhfE6h8a'



var id = new RiakObjectId("users", "random_user_keys", null);
var obj = new RiakObject(id, @"{'user':'data'}",
    RiakConstants.ContentTypes.ApplicationJson);
var rslt = client.Put(obj);
Debug.WriteLine(format: "Generated key: {0}", args: rslt.Value.Key);

// The .NET client will output a random key similar to this:
// Generated key: DWDsnpYSqOU363c0Bqe8hCwAM7Q



var user = {
    user: 'data'
};
var options = {
    bucketType: 'users', bucket: 'random_user_keys',
    returnBody: true, value: user
};
client.storeValue(options, function (err, rslt) {
    if (err) {
        throw new Error(err);
    }
    var riakObj = rslt.values.shift();
    var generatedKey = riakObj.getKey();
    logger.info("Generated key: %s", generatedKey);
});

// The Node.js client will output a random key similar to this:
// info: Generated key: VBAMoX0OOucymVCxeQEYzLzzAh2



Object = riakc_obj:new({<<"users">>, <<"random_user_keys">>}, undefined, <<"{'user':'data'}">>, <<"application/json">>).
riakc_pb_socket:put(Pid, Object).

%% The key can be retrieved from the output of the above call.
%% It will look something like this:

{ok,{riakc_obj,{<<"users">>,<<"random_user_keys">>},
               <<"EZ7pp4bpdfpZw0fPUdTUafveQjO">>,undefined,[],undefined,
               undefined}}



curl -i -XPOST \
  -H "Content-Type: text/plain" \
  -d "this is a test" \
  http://localhost:8098/types/users/buckets/random_user_keys/keys

# In the output, you should see a Location header that will give you the
# location of the object in Riak, with the key at the end:

Location: /buckets/test/keys/G7FYUXtTsEdru4NP32eijMIRK3o






Delete an Object


The delete command follows a predictable pattern and looks like this:


DELETE /types/TYPE/buckets/BUCKET/keys/KEY



The normal HTTP response codes for DELETE operations are 204 No Content and 404 Not Found. 404 responses are normal, in the sense
that DELETE operations are idempotent and not finding the resource has
the same effect as deleting it.


Let’s try to delete our genius key from the oscar_wilde bucket
(which bears the type quotes) from above.


Location geniusQuote = new Location(new Namespace("quotes", "oscar_wilde"), "genius");
DeleteValue delete = new DeleteValue.Builder(geniusQuote).build();
client.execute(delete);



bucket = client.bucket_type('quotes').bucket('oscar_wilde')
bucket.delete('genius')



(new \Basho\Riak\Command\Builder\DeleteObject($riak))
  ->buildBucket('oscar_wilde', 'quotes')
  ->build()
  ->execute();



bucket = client.bucket_type('quotes').bucket('oscar_wilde')
bucket.delete('genius')



var id = new RiakObjectId("users", "random_user_keys", null);
var obj = new RiakObject(id, @"{'user':'data'}",
    RiakConstants.ContentTypes.ApplicationJson);
var rslt = client.Put(obj);
string key = rslt.Value.Key;
id = new RiakObjectId("users", "random_user_keys", key);
var del_rslt = client.Delete(id);



// continuing from above example
options = {
    bucketType: 'users', bucket: 'random_user_keys',
    key: generatedKey
};
client.deleteValue(options, function (err, rslt) {
    if (err) {
        throw new Error(err);
    }
});



riakc_pb_socket:delete(Pid, {<<"quotes">>, <<"oscar_wilde">>}, <<"genius">>)



curl -XDELETE http://localhost:8098/types/quotes/buckets/oscar_wilde/keys/genius








Updating Objects


Updating objects tends to be a bit trickier than reading and writing
objects. We recommend checking out our documentation on [[object
updates]] for a full tutorial, including code samples from our [[client
libraries]].





Bucket Properties and Operations


Buckets are essentially a flat namespace in Riak. They allow the same
key name to exist in multiple buckets and enable you to apply
configurations across keys.



How Many Buckets Can I Have?

Buckets come with virtually no cost except for when you modify the
default bucket properties. Modified bucket properties are gossiped
around the cluster and therefore add to the amount of data sent around
the network. In other words, buckets using the default bucket
type are free. More on that in the next section.


Bucket Types


A comprehensive tutorial on bucket types can be found in the [[Using
Bucket Types]] document. Here, we’ll discuss some basic parameters that
can be managed using bucket types.


Here are some important bucket properties to be aware of:


Parameter | Description | Default
:———|:————|:——-
n_val | The number of replicas for objects in a bucket. The n_val should be an integer greater than 0 and less than or equal to the number of nodes in the cluster.

Note: If you change the n_val after keys have been added to the bucket, it may result in failed reads, as the new value may not be replicated to all of the appropriate partitions.| 3
allow_mult | With allow_mult set to false, clients will never be presented with siblings upon read. Though siblings will often be created in Riak during concurrent writes or network partitions even if allow_mult is set to false, only the most recent object as determined by timestamp will be presented to the client. If this parameter is set to true, Riak will present sibling objects to the client, which will then be responsible for resolving the confict. | true
last_write_wins | If allow_mult is set to false, setting last_write_wins to true, Riak will always overwrite existing objects and will ignore the timestamps associated with those objects. | false



Note

Setting both allow_mult and last_write_wins to
true necessarily leads to unpredictable behavior and should
always be avoided.

As an example, let’s create a bucket type called n_val_of_5 that sets
the n_val to 5:


riak-admin bucket-type create n_val_of_5 '{"props":{"n_val":5}}'



We must activate the type for those parameters to take effect:


riak-admin bucket-type activate n_val_of_5



Once the type is activated, we can see which properties are associated
with our bucket type (and, by extension, any bucket that bears that
type):


// Fetching the bucket properties of a bucket type/bucket combination
// must be done using a RiakCluster object rather than a RiakClient.
Namespace testType = new Namespace("n_val_of_5", "any_bucket_name");
FetchBucketPropsOperation fetchProps = new FetchBucketPropsOperation
        .Builder(testType)
        .build();
cluster.execute(fetchProps);
BucketProperties props = fetchProps.get().getBucketProperties();



bt = client.bucket_type('n_val_of_5')
bt.props



# Bucket type props are not directly fetchable, but bucket props are
$response = (new \Basho\Riak\Command\Builder\FetchBucketProperties($riak))
  ->buildBucket('bucket_name', 'n_val_of_5')
  ->build()
  ->execute();



bt = BucketType(client, 'n_val_of_5')
bt.get_properties()



var rslt = client.GetBucketProperties("n_val_of_5", "any_bucket_name");
RiakBucketProperties props = rslt.Value;



client.fetchBucketProps({
    bucketType: 'n_val_of_5', bucket: 'any_bucket_name'
}, function (err, rslt) {
    if (err) {
        throw new Error(err);
    }
    logger.info("props: %s", JSON.stringify(rslt));
});



riakc_pb_socket:get_bucket_type(Pid, <<"n_val_of_5">>).



curl http://localhost:8098/types/n_val_of_5/props



This should return JSON of the following form:


{
  "props": {
    "allow_mult": false,
    ...
    "n_val": 5,
    ...
  }
}



We can also view this information in our browser at the URL specified
above.


That’s the basics of how the most essential Riak key/value operations
work. In addition to this tutorial, we recommend an in-depth reading of
the [[HTTP API]] page, as it will give you details on the headers,
parameters, status, and other details that you should keep in mind even
when using a client library.








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/tuning/file-system.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: File System Tuning
project: riak
version: 0.10.0+
document: cookbook
toc: true
audience: advanced
keywords: [operator, os]
moved: {
‘1.4.0-‘: ‘/cookbooks/File-System-Tuning’
}




The following article suggests I/O Scheduler configurations to use when deploying Riak.


I/O or Disk Scheduling is a blanket term used to describe the method
by which an operating system chooses how to order input and output operations to and
from storage.


There are many I/O Scheduling techniques. Some of the most common are:



		Anticipatory


		CFQ, or Completely Fair Queuing, the default in Linux since 2006


		Deadline


		FIFO


		NOOP





CFQ, while a good general purpose scheduler, is not designed to provide the kind
of throughput expected in production database deployments. For Riak, NOOP is
considered the best choice when deploying on iSCSI over HBAs, or any hardware-based
RAID. The Deadline scheduler is an ideal choice when using SSD based storage.


All system/workload combinations are different. Consult your operating system’s
documentation for specific information about the I/O Scheduling options available to you
and the methods necessary for implementation.




          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/taste-of-riak/python.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Taste of Riak: Python”
project: riak
version: 1.4.0+
document: guide
toc: true
audience: beginner
keywords: [developers, client, python]




If you haven’t set up a Riak Node and started it, please visit the
[[Prerequisites|Taste of Riak: Prerequisites]] first.


To try this flavor of Riak, a working installation of Python is
required, with Python 2.7 preferred. One of the Python package managers,
e.g. setuptools or pip, is also required to install the client
package.


You may install setuptools on OS X through MacPorts by running sudo port install py-distribute. setuptools and pip are included in the
Homebrew formula for Python on OS X as well. Just run brew install python.



Prerequisites


First, you must install some packages needed by the Riak Python client:



		python-dev — Header files and a static library for Python


		libffi-dev — Foreign function interface library


		libssl-dev — libssl and libcrypto development libraries






Ubuntu (12.04 & 14.04)


sudo apt-get install python-dev libffi-dev libssl-dev








Client Setup


The easiest way to install the client is with easy_install or pip.
Either of the commands below will ensure that the client and all its
dependencies are installed and on the load path. Depending on where your
Python libraries are held, these may require sudo.


easy_install riak
pip install riak



To install from source, download the latest Python client from GitHub
(zip [https://github.com/basho/riak-python-client/archive/master.zip],
GitHub repository [https://github.com/basho/riak-python-client]), and
extract it to your working directory.


Now, let’s build the client.


python setup.py install






Connecting to Riak


Now, let’s start the Python REPL and get set up. Enter the following
into the Python REPL:


import riak



If you are using a single local Riak node, use the following to create a
new client instance:


myClient = riak.RiakClient(pb_port=8087, protocol='pbc')

# Because the Python client uses the Protocol Buffers interface by
# default, the following will work the same:
myClient = riak.RiakClient(pb_port=8087)



If you set up a local Riak cluster using the [[five-minute install]]
method, use this code snippet instead:


myClient = riak.RiakClient(pb_port=10017, protocol='pbc')



We are now ready to start interacting with Riak.





Creating Objects In Riak


First, let’s create a few objects and a bucket to keep them in.


myBucket = myClient.bucket('test')

val1 = 1
key1 = myBucket.new('one', data=val1)
key1.store()



In this first example, we have stored the integer 1 with the lookup key
of one.  Next let’s store a simple string value of two with a
matching key.


val2 = "two"
key2 = myBucket.new('two', data=val2)
key2.store()



That was easy. Finally, let’s store a bit of JSON. You will probably
recognize the pattern by now.


val3 = {"myValue": 3}
key3 = myBucket.new('three', data=val3)
key3.store()






Reading Objects From Riak


Now that we have a few objects stored, let’s retrieve them and make sure
they contain the values we expect.


fetched1 = myBucket.get('one')
fetched2 = myBucket.get('two')
fetched3 = myBucket.get('three')

assert val1 == fetched1.data
assert val2 == fetched2.data
assert val3 == fetched3.data



That was easy. We simply request the objects by key.





Updating Objects In Riak


While some data may be static, other forms of data may need to be
updated. This is also easy to accomplish. Let’s update the value of
myValue in the 3rd example to 42.


fetched3.data["myValue"] = 42
fetched3.store()






Deleting Objects From Riak


Nothing is complete without a delete. Fortunately, that’s easy too.


fetched1.delete()
fetched2.delete()
fetched3.delete()



Now we can verify that the objects have been removed from Riak.


assert myBucket.get('one').exists == False
assert myBucket.get('two').exists == False
assert myBucket.get('three').exists == False






Working With Complex Objects


Since the world is a little more complicated than simple integers and
bits of strings, let’s see how we can work with more complex objects.
Take for example, this object that encapsulates some knowledge about a
book.


book = {
  'isbn': "1111979723",
  'title': "Moby Dick",
  'author': "Herman Melville",
  'body': "Call me Ishmael. Some years ago...",
  'copies_owned': 3
}



All right, so we have some information about our Moby Dick collection
that we want to save. Storing this to Riak should look familiar by now:


booksBucket = myClient.bucket('books')
newBook = booksBucket.new(book['isbn'], data=book)
newBook.store()



Some of you may be thinking, “But how does the Python Riak client
encode/decode my object?” If we fetch our book back and print the raw
encoded data, we shall know:


fetchedBook = booksBucket.get(book['isbn'])

print(fetchedBook.encoded_data)



JSON! The Riak Python client library encodes things as JSON when it can.


{"body": "Call me Ishmael. Some years ago...",
"author": "Herman Melville", "isbn": "1111979723",
"copies_owned": 3, "title": "Moby Dick"}



If we wanted to get a deserialized object back we would just use the
regular fetchedBook.data method.


Finally, let’s clean up our mess:


fetchedBook.delete()






Next Steps


More complex use cases can be composed from these initial create, read,
update, and delete (CRUD) operations. [[In the next chapter|Taste of
Riak: Querying]] we will look at how to store and query more complicated
and interconnected data, such as documents.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/taste-of-riak/querying-erlang.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Taste of Riak: Querying with Erlang”
project: riak
version: 1.3.1+
document: tutorials
toc: true
audience: beginner
keywords: [developers, client, 2i, search, erlang]





A Quick Note on Querying and Schemas


Schemas? Yes, we said that correctly: S-C-H-E-M-A-S. It’s not a dirty
word. Even in a key/value store, you will still have a logical database
schema of how all the data relates to other data. This can be as simple
as using the same key across multiple buckets for different types of
data to having fields in your data that are related by name. These
querying methods will introduce you to some ways of laying out your data
in Riak, along with how to query it back.


A more comprehensive discussion can be found in [[Key/Value Modeling]].





Denormalization


If you’re coming from a relational database, the easiest way to get your
application’s feet wet with NoSQL is to denormalize your data into
related chunks. For example, with a customer database, you might have
separate tables for customers, addresses, preferences, etc. In Riak, you
can denormalize all that associated data into a single object and store
it into a Customer bucket. You can keep pulling in associated
data until you hit one of the big denormalization walls:



		Size limits (objects greater than 1MB)


		Shared/referential Data (data that the object doesn’t “own”)


		Differences in access patterns (objects that get read/written once vs.
often)





At one of these points we will have to split the model.





Same Keys, Different Buckets


The simplest way to split up data would be to use the same identity key
across different buckets. A good example of this would be a Customer
object, an Order object, and an OrderSummaries object that keeps
rolled up info about orders such as total, etc.


Let’s put some data into Riak so we can play with it. Fire up your
Erlang REPL with the client library in the path, and enter in the
following:


rd(customer, {customer_id, name, address, city, state, zip, phone, created_date}).
rd(item, {item_id, title, price}).
rd(order, {order_id, customer_id, salesperson_id, items, total, order_date}).
rd(order_summary_entry, {order_id, total, order_date}).
rd(order_summary, {customer_id, summaries}).


Customer = #customer{ customer_id= 1,
                      name= "John Smith",
                      address= "123 Main Street",
                      city= "Columbus",
                      state= "Ohio",
                      zip= "43210",
                      phone= "+1-614-555-5555",
                      created_date= {{2013,10,1},{14,30,26}}}.

Orders =  [ #order{
              order_id= 1,
              customer_id= 1,
              salesperson_id= 9000,
              items= [
                #item{
                  item_id= "TCV37GIT4NJ",
                  title= "USB 3.0 Coffee Warmer",
                  price= 15.99 },
                #item{
                  item_id= "PEG10BBF2PP",
                  title= "eTablet Pro, 24GB, Grey",
                  price= 399.99 }],
              total= 415.98,
              order_date= {{2013,10,1},{14,42,26}}},

            #order{
              order_id= 2,
              customer_id= 1,
              salesperson_id= 9001,
              items= [
                #item{
                  item_id= "OAX19XWN0QP",
                  title= "GoSlo Digital Camera",
                  price= 359.99 }],
              total= 359.99,
              order_date= {{2013,10,15},{16,43,16}}},

            #order {
              order_id= 3,
              customer_id= 1,
              salesperson_id= 9000,
              items= [
                #item{
                  item_id= "WYK12EPU5EZ",
                  title= "Call of Battle= Goats - Gamesphere 4",
                  price= 69.99 },
                #item{
                  item_id= "TJB84HAA8OA",
                  title= "Bricko Building Blocks",
                  price= 4.99 }],
              total= 74.98,
              order_date= {{2013,11,3},{17,45,28}}}
          ].

OrderSummary =  #order_summary{
                  customer_id= 1,
                  summaries= [
                    #order_summary_entry{
                      order_id= 1,
                      total= 415.98,
                      order_date= {{2013,10,1},{14,42,26}}
                    },
                    #order_summary_entry{
                      order_id= 2,
                      total= 359.99,
                      order_date= {{2013,10,15},{16,43,16}}
                    },
                    #order_summary_entry{
                      order_id= 3,
                      total= 74.98,
                      order_date= {{2013,11,3},{17,45,28}}}]}.

## Remember to replace the ip and port parameters with those that match your cluster.
{ok, Pid} = riakc_pb_socket:start_link("127.0.0.1", 10017).

CustomerBucket = <<"Customers">>.
OrderBucket = <<"Orders">>.
OrderSummariesBucket = <<"OrderSummaries">>.

CustObj = riakc_obj:new(CustomerBucket,
                        list_to_binary(
                          integer_to_list(
                            Customer#customer.customer_id)),
                        Customer).

riakc_pb_socket:put(Pid, CustObj).

StoreOrder = fun(Order) ->
  OrderObj = riakc_obj:new(OrderBucket,
                           list_to_binary(
                             integer_to_list(
                               Order#order.order_id)),
                           Order),
  riakc_pb_socket:put(Pid, OrderObj)
end.

lists:foreach(StoreOrder, Orders).


OrderSummaryObj = riakc_obj:new(OrderSummariesBucket,
                                list_to_binary(
                                  integer_to_list(
                                    OrderSummary#order_summary.customer_id)),
                                OrderSummary).

riakc_pb_socket:put(Pid, OrderSummaryObj).




While individual Customer and Order objects don’t change much (or
shouldn’t change), the OrderSummaries object will likely change often.
It will do double duty by acting as an index for all a customer’s
orders, and also holding some relevant data such as the order total,
etc. If we showed this information in our application often, it’s only
one extra request to get all the info.


{ok, FetchedCustomer} = riakc_pb_socket:get(Pid,
                                            CustomerBucket,
                                            <<"1">>).
{ok, FetchedSummary} = riakc_pb_socket:get(Pid,
                                           OrderSummariesBucket,
                                           <<"1">>).
rp({binary_to_term(riakc_obj:get_value(FetchedCustomer)),
    binary_to_term(riakc_obj:get_value(FetchedSummary))}).



Which returns our amalgamated objects:


{#customer{customer_id = 1,name = "John Smith",
           address = "123 Main Street",city = "Columbus",
           state = "Ohio",zip = "43210",phone = "+1-614-555-5555",
           created_date = {{2013,10,1},{14,30,26}}},
 #order_summary{customer_id = 1,
                summaries = [#order_summary_entry{order_id = 1,
                                                  total = 415.98,
                                                  order_date = {{2013,10,1},{14,42,26}}},
                             #order_summary_entry{order_id = 2,total = 359.99,
                                                  order_date = {{2013,10,15},{16,43,16}}},
                             #order_summary_entry{order_id = 3,total = 74.98,
                                                  order_date = {{2013,11,3},{17,45,28}}}]}}



While this pattern is very easy and extremely fast with respect to
queries and complexity, it’s up to the application to know about these
intrinsic relationships.





Secondary Indexes


If you’re coming from an SQL world, Secondary Indexes (2i) are a lot
like SQL indexes. They are a way to quickly look up objects based on a
secondary key, without scanning through the whole dataset. This makes it
very easy to find groups of related data by values, or even ranges of
values. To properly show this off, we will now add some more data to our
application, and add some secondary index entries at the same time.


FormatDate = fun(DateTime) ->
  {{Year, Month, Day}, {Hour, Min, Sec}} = DateTime,
  lists:concat([Year,Month,Day,Hour,Min,Sec])
end.

AddIndicesToOrder = fun(OrderKey) ->
  {ok, Order} = riakc_pb_socket:get(Pid, OrderBucket,
                                    list_to_binary(integer_to_list(OrderKey))),

  OrderData = binary_to_term(riakc_obj:get_value(Order)),
  OrderMetadata = riakc_obj:get_update_metadata(Order),

  MD1 = riakc_obj:set_secondary_index(OrderMetadata,
                                      [{{binary_index, "order_date"},
                                        [FormatDate(OrderData#order.order_date)]}]),

  MD2 = riakc_obj:set_secondary_index(MD1,
                                      [{{integer_index, "salesperson_id"},
                                        [OrderData#order.salesperson_id]}]),

  Order2 = riakc_obj:update_metadata(Order,MD2),
  riakc_pb_socket:put(Pid,Order2)
end.

lists:foreach(AddIndicesToOrder, [1,2,3]).




As you may have noticed, ordinary Key/Value data is opaque to 2i, so we
have to add entries to the indices at the application level. Now let’s
find all of Jane Appleseed’s processed orders, we’ll lookup the orders
by searching the saleperson_id_int index for Jane’s id of 9000.


riakc_pb_socket:get_index_eq(Pid, OrderBucket, {integer_index, "salesperson_id"}, 9000).



Which returns:


{ok,{index_results_v1,[<<"1">>,<<"3">>],
                      undefined,undefined}}



Jane processed orders 1 and 3. We used an “integer” index to reference
Jane’s id, next let’s use a “binary” index. Now, let’s say that the VP
of Sales wants to know how many orders came in during October 2013. In
this case, we can exploit 2i’s range queries. Let’s search the
order_date_bin index for entries between 20131001 and 20131031.


riakc_pb_socket:get_index_range(Pid, OrderBucket,
                                {binary_index, "order_date"},
                                <<"20131001">>, <<"20131031">>).



Which returns:


{ok,{index_results_v1,[<<"1">>,<<"2">>],
                      undefined,undefined}}



Boom! Easy-peasy. We used 2i’s range feature to search for a range of
values, and demonstrated binary indexes.


So, to recap:



		You can use Secondary Indexes to quickly lookup an object based on a
secondary id other than the object’s key.


		Indices can have either Integer or Binary(String) keys


		You can search for specific values, or a range of values


		Riak will return a list of keys that match the index query









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/taste-of-riak/c.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Taste of Riak: C”
project: riak
version: 1.4.0+
document: guide
audience: beginner
keywords: [developers, client, c]




This Taste of Riak will show you some simple synchronous operations against Riak. The Riak C client also has an asynchronous mode, but that won’t be covered here.



Riak C Client status
The Riak C Client is currently under development and is NOT ready to use in a production environment. Expect significant changes to the API.



If you haven’t set up a Riak node and started it, please visit the [[Prerequisites|Taste of Riak: Prerequisites]] first.


###Client Setup


Download and install the riak-c-client [https://github.com/basho/riak-c-client] by following these [https://github.com/basho/riak-c-client#building] directions.


Next, download taste_of_riak.c [https://raw.github.com/basho/taste-of-riak/master/c/taste_of_riak.c] and Makefile [https://raw.github.com/basho/taste-of-riak/master/c/Makefile] for this tutorial, and save it to your working directory.



Configuring for a local cluster
If you set up a local Riak cluster using the [[five minute install]] method, open up the taste_of_riak.c file in an editor, and change the value of riak_port to 10017.  This code section should now look like:


const char* riak_host = "localhost";
const char* riak_port = "10017";




You can now compile and run this via the command line.


make
./taste_of_riak



Running it should return:


-------------------------------
Test Riak PUT
-------------------------------
V-Clock: 6bce61606060cc60ca05521c4783367207f39ce3cf604a64cc636590f16a3cc3970500
Objects: 1
Bucket:
Value:
Last Mod: 2014-02-25 12:08:44
Last Mod uSecs: 592348
VTag: 7RZlcD77ja2udGZnKqcTbE

Ok
-------------------------------
Test Riak GET
-------------------------------
Bucket: TestBucket
Key: TestKey
Value: TestData
Last Mod: 2014-02-25 12:08:44
Last Mod uSecs: 592348
VTag: 7RZlcD77ja2udGZnKqcTbE

Ok
-------------------------------
Test Riak UPDATE
-------------------------------
Ok
-------------------------------
Test Riak GET
-------------------------------
V-Clock: 6bce61606060cc60ca05521c4783367207f39ce3cf604a64ca636590f16a3cc3970500
Unmodified: false
Deleted: false
Objects: 1
Bucket: TestBucket
Key: TestKey
Value: MyValue
Last Mod: 2014-02-25 12:08:44
Last Mod uSecs: 636704
VTag: 1bYXYmbn2zfs3YXt2Yd36T

Ok
-------------------------------
Test Riak DELETE
-------------------------------
Ok



Since C doesn’t have a REPL environment, we shall now walk through the code to see what it actually did at each step.


###Connecting to Riak


The first thing we do in our code is initialize a Riak configuration and connection:


riak_config *cfg;
riak_connection *cxn = NULL;
riak_error err;

err = riak_config_new_default(&cfg);
if(err)
  …
  
const char* riak_host = "localhost";
const char* riak_port = "8087";
err = riak_connection_new(cfg, &cxn, riak_host, riak_port, NULL);
if(err) 
  …
 



In many cases, the default riak_config should work fine, as it allows you to configure logging, custom memory allocators, and custom protocol buffers allocators. A riak_config is passed to most calls in the C client.


A riak_connection establishes a TCP connection to the specified host and port.


Next, we store some data in Riak via the put function.


###Storing Objects In Riak


// this allocates a riak_object in memory, but it's not stored in Riak
// until we call riak_put()
riak_object *obj = riak_object_new(cfg);

// setting bucket, key, and value on a riak_object is done via
// riak_binary structs. A riak_binary is a charset-agnostic byte array.
// You must free any riak_binary structs that you allocate
riak_binary *bucket_bin   = riak_binary_copy_from_string(cfg, "TestBucket");
riak_binary *key_bin      = riak_binary_copy_from_string(cfg, "TestKey");
riak_binary *value_bin    = riak_binary_copy_from_string(cfg, "TestData");

// set bucket, key, and value on the in-memory object
riak_object_set_bucket(cfg, obj, bucket_bin);
riak_object_set_key(cfg, obj, key_bin);
riak_object_set_value(cfg, obj, value_bin);

riak_put_response *put_response = NULL;
riak_put_options *put_options = riak_put_options_new(cfg);
// do the PUT against Riak.
// at this point, your object will be stored in Riak
err = riak_put(cxn, obj, put_options, &put_response);
if(err == ERIAK_OK) {
  …



In this first example we have stored the string TestData with the lookup key of TestKey in bucket TestBucket.


###Reading Objects From Riak
Now that we have a few objects stored, let’s retrieve them and make sure they contain the values we expect.


riak_binary *bucket_bin   = riak_binary_copy_from_string(cfg, "TestBucket");
riak_binary *key_bin      = riak_binary_copy_from_string(cfg, "TestKey");

// a buffer to write results into
char output[10240];
// check this for errors after performing an operation
riak_error err;

// allocate a struct to set GET options, specifically
// to set the basic_quorum & r options
riak_get_options *get_options = riak_get_options_new(cfg);
riak_get_options_set_basic_quorum(get_options, RIAK_TRUE);
riak_get_options_set_r(get_options, 2);

riak_get_response *get_response = NULL;
err = riak_get(cxn, bucket_bin, key_bin, get_options, &get_response);
if(err == ERIAK_OK) {
    riak_print_get_response(get_response, output, sizeof(output));
    printf("%s\n", output);
}

// see the taste_of_riak.c file for memory cleanup, etc



###Updating Objects In Riak


To perform an update, we store the new value with the same key using the riak_object instance that’s returned from riak_get.


riak_binary *new_value_bin = riak_binary_copy_from_string(cfg, "MyValue");
  …
riak_get_response *get_response = NULL;
err = riak_get(cxn, bucket_bin, key_bin, get_options, &get_response);
if(err) {
  …
}

// access the raw object
riak_object *obj = riak_get_get_content(get_response)[0];
// change it's value to "MyValue"
riak_object_set_value(cfg, obj, new_value_bin);

riak_put_response *put_response = NULL;
riak_put_options *put_options = riak_put_options_new(cfg);
// store the object with new value
err = riak_put(cxn, obj, put_options, &put_response);
if(err) {
  …
}




###Deleting Objects From Riak


To delete, the bucket and key of an object are specified along with any delete options.


riak_delete_options *delete_options = riak_delete_options_new(cfg);
riak_delete_options_set_w(delete_options, 1);
riak_delete_options_set_dw(delete_options, 1);
err = riak_delete(cxn, bucket_bin, key_bin, delete_options);
if(err) {
  …
}





          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/taste-of-riak/object-modeling-ruby.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Taste of Riak: Object Modeling with Ruby”
project: riak
version: 1.4.8+
document: tutorials
toc: true
audience: beginner
keywords: [developers, client, 2i, search, ruby, modeling]




To get started, let’s create the models that we’ll be using. Since the
Ruby Riak Client [https://github.com/basho/riak-ruby-client] uses
hashes when converting to and from JSON, we’ll use the library
Hashie [http://rdoc.info/github/intridea/hashie] to help automatically
coerce class properties to and from hashes. You can install this library
with gem install hashie.


# Encoding: utf-8

require 'riak'
require 'hashie'
require 'time'

class User < Hashie::Dash
  property :user_name
  property :full_name
  property :email
end

class Msg < Hashie::Dash
  property :from
  property :to
  property :created
  property :text
end

class Timeline < Hashie::Dash
  property :owner
  property :type
  property :msgs
end



To use these classes to store data, we will first have to create a user.
Then, when a user creates a message, we will append that message to one
or more timelines. If it’s a private message, we’ll append it to the
Recipient’s Inbox timeline and the User’s own Sent timeline. If it’s
a group message, we’ll append it to the Group’s timeline, as well as to
the User’s Sent timeline.



Buckets and Keys Revisited


Now that we’ve worked out how we will differentiate data in the system,
let’s figure out our bucket and key names.


The bucket names are straightforward. We can use Users, Msgs, and
Timelines. The key names, however, are a little more tricky. In past
examples we’ve used sequential integers, but this presents a problem: we
would need a secondary service to hand out these IDs. This service could
easily be a future bottleneck in the system, so let’s use a natural key.
Natural keys are a great fit for key/value systems because both humans
and computers can easily construct them when needed, and most of the
time they can be made unique enough for a KV store.


Bucket | Key Pattern | Example Key
:——|:————|:———–
Users | <user_name> | joeuser
Msgs | <username>_<datetime> | joeuser_2014-03-06T02:05:13.223556Z
Timelines | <username>_<type>_<date> | joeuser_Sent_2014-03-06Z
 marketing_group_Inbox_2014-03-06Z |


For the Users bucket, we can be certain that we will want each
username to be unique, so let’s use the username as the key.  For the
Msgs bucket, let’s use a combination of the username and the posting
datetime in an ISO 8601 Long [http://en.wikipedia.org/wiki/ISO_8601]
format. This combination gives us the pattern <username>_<datetime>,
which produces keys like joeuser_2014-03-05T23:20:28.


Now for Timelines, we need to differentiate between Inbox and Sent
timelines, so we can simply add that type into the key name. We will
also want to partition each collection object into some time period,
that way the object doesn’t grow too large (see note below).


For Timelines, let’s use the pattern <username>_<type>_<date> for
users, and <groupname>_Inbox_<date> for groups, which will look like
joeuser_Sent_2014-03-06Z or marketing_group_Inbox_2014-03-05Z,
respectively.



Note

Riak performs best with objects under 1-2MB. Objects larger than that
can hurt performance, especially many siblings are being created. We
will cover siblings, sibling resolution, and sibling explosions in the
next chapter.




Keeping our story straight with repositories


Now that we’ve figured out our object models, let’s write some
repositories to help create and work with these objects in Riak:


class UserRepository
  BUCKET = 'Users'

  def initialize(client)
    @client = client
  end

  def save(user)
    users = @client.bucket(BUCKET)
    key = user.user_name

    riak_obj = users.get_or_new(key)
    riak_obj.data = user
    riak_obj.content_type = 'application/json'
    riak_obj.store
  end

  def get(user_name)
    riak_obj = @client.bucket(BUCKET)[user_name]
    User.new(riak_obj.data)
  end
end

class MsgRepository
  BUCKET = 'Msgs'

  def initialize(client)
    @client = client
  end

  def save(msg)
    msgs = @client.bucket(BUCKET)
    key = generate_key(msg)

    return msgs.get(key) if msgs.exists?(key)
    riak_obj = msgs.new(key)
    riak_obj.data = msg
    riak_obj.content_type = 'application/json'
    riak_obj.prevent_stale_writes = true
    riak_obj.store(returnbody: true)
  end

  def get(key)
    riak_obj = @client.bucket(BUCKET).get(key)
    Msg.new(riak_obj.data)
  end

  def generate_key(msg)
    msg.from + '_' + msg.created.utc.iso8601(6)
  end
end

class TimelineRepository
  BUCKET = 'Timelines'
  SENT = 'Sent'
  INBOX = 'Inbox'

  def initialize(client)
    @client = client
    @msg_repo = MsgRepository.new(client)
  end

  def post_message(msg)
    # Save the canonical copy
    saved_message = @msg_repo.save(msg)
    # Post to sender's Sent timeline
    add_to_timeline(msg, SENT, saved_message.key)
    # Post to recipient's Inbox timeline
    add_to_timeline(msg, INBOX, saved_message.key)
  end

  def get_timeline(owner, type, date)
    riak_obj = @client.bucket(BUCKET).get(generate_key(owner, type, date))
    Timeline.new(riak_obj.data)
  end

  private

  def add_to_timeline(msg, type, msg_key)
    timeline_key = generate_key_from_msg(msg, type)
    riak_obj = nil

    if @client.bucket(BUCKET).exists?(timeline_key)
      riak_obj = add_to_existing_timeline(timeline_key, msg_key)
    else
      riak_obj = create_new_timeline(timeline_key, msg, type, msg_key)
    end

    riak_obj.store
  end

  def create_new_timeline(key, msg, type, msg_key)
    owner = get_owner(msg, type)
    riak_obj = @client.bucket(BUCKET).new(key)
    riak_obj.data = Timeline.new(owner: owner,
                                 type: type,
                                 msgs: [msg_key])
    riak_obj.content_type = 'application/json'
    riak_obj
  end

  def add_to_existing_timeline(key, msg_key)
    riak_obj = @client.bucket(BUCKET).get(key)
    timeline = Timeline.new(riak_obj.data)
    timeline.msgs << msg_key
    riak_obj.data = timeline
    riak_obj
  end

  def get_owner(msg, type)
    type == INBOX ? msg.to : msg.from
  end

  def generate_key_from_msg(msg, type)
    owner = get_owner(msg, type)
    generate_key(owner, type, msg.created)
  end

  def generate_key(owner, type, date)
    owner + '_' + type + '_' + date.utc.strftime('%F')
  end
end



Finally, let’s test them:


# Setup our repositories
client = Riak::Client.new(protocol: 'pbc', pb_port: 10017)
user_repo = UserRepository.new(client)
msgs_repo = MsgRepository.new(client)
timeline_repo = TimelineRepository.new(client)

# Create and save users
marleen = User.new(user_name: 'marleenmgr',
                   full_name: 'Marleen Manager',
                   email: 'marleen.manager@basho.com')

joe = User.new(user_name: 'joeuser',
               full_name: 'Joe User',
               email: 'joe.user@basho.com')

user_repo.save(marleen)
user_repo.save(joe)

# Create new Msg, post to timelines
msg = Msg.new(from: marleen.user_name,
              to: joe.user_name,
              created: Time.now,
              text: 'Welcome to the company!')

timeline_repo.post_message(msg)

# Get Joe's inbox for today, get first message
joes_inbox_today = timeline_repo.get_timeline(joe.user_name, 'Inbox', Time.now)
joes_first_message = msgs_repo.get(joes_inbox_today.msgs.first)

puts "From: #{joes_first_message.from}\nMsg : #{joes_first_message.text}"



As you can see, the repository pattern helps us with a few things:



		It helps us to see if an object exists before creating a new one


		It keeps our buckets and key names consistent


		It provides us with a consistent interface to work with.





While this set of repositories solves many of our problems, it is very
minimal and doesn’t cover all the edge cases. For instance, what happens
if two different people try to create a user with the same username?


We can also easily “compute” key names now, but how do we quickly look
up the last 10 messages a user sent? Many of these answers will be
application dependent. If your application shows the last 10 messages in
reverse order, for example, you may want to store that set of data in
another collection object to make lookup faster. There are drawbacks to
every solution, but we recommend seeking out the key/value-based
solution first, as it will likely be the quickest.


So to recap, in this chapter we learned:



		How to choose bucket names


		How to choose natural keys based on how we want to partition our data.









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/taste-of-riak/object-modeling.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Taste of Riak: Object Modeling”
project: riak
version: 1.4.8+
document: tutorials
toc: true
audience: beginner
keywords: [developers, client, modeling]




As a developer, you may be nonplussed to see that Secondary Indexes (2i)
don’t work with the Bitcask backend. You may also be wondering how to
work with “sets” of data.


In this chapter, we’ll cover how to deal with both, and in the next
chapter we’ll introduce some important distributed systems concepts such
as [[siblings|Vector Clocks#Siblings]], [[eventual consistency]], and
[[sibling resolution|Vector Clocks#Siblings]] that you’ll need to know
to become a pro Riak developer.


For the remainder of the tutorials, we will be implementing pieces of an
internal messaging app. This app, codenamed “Msgy” (we couldn’t afford
all the vowels) will provide “a way to incentivize long-tail watercooler
networking for employees.” In short, it will allow us to post little
snippets of text (Msgs) to each other at work without all the hassle of
email, while we block traditional social media.


At the data level, we only have a few objects to work with:



		User — A user object, containing a user_name, a full_name, and
an email address.


		Msg — A message that a user has sent, containing text, sender
and recipient addresses, and a created date.


		Timeline — A list of Msgs, containing an owner and a
msg_type.  The type can be one of two things:
		Inbox: A user’s inbox of personal messages, or a group’s public Msg list.


		Sent: A list of a user’s sent messages.











The Timeline objects could easily be implemented with a 2i query
across the Msg bucket, but in this chapter we’ll show how to do it
using only key/value operations.



Choose Your Programming Language


Please select the language with which you’d like to proceed:



		[image: Java]


		[image: Ruby]


		[image: Python]


		[image: CSharp]


		[image: CSharp]


		[image: Erlang]








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/taste-of-riak/querying.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Taste of Riak: Querying”
project: riak
version: 1.3.1+
document: tutorials
toc: true
audience: beginner
keywords: [developers, client, 2i, search]




Now that we’ve had a taste of the CRUD interface for Riak, let’s look
into a few ways to lay out and query our data: [[secondary indexes|Using
Secondary Indexes]] and [[key/value operations|The Basics]].



Configuration Changes


Before we experiment with these methods, we will have to change our Riak
instance’s configuration a little bit.


To do this we will have to find Riak’s riak.conf file, which can
usually be found at /etc/riak/riak.conf. If you are running
SmartOS it will be at /opt/local/etc/riak/riak.conf, and if you used
Homebrew to install Riak on OSX it will be at
/usr/local/Cellar/riak/**VERSION**/libexec/etc/riak.conf.


Open the riak.conf file in your favorite text editor.



Using the LevelDB Backend for 2i


Search for the storage_backend setting and change it from bitcask to
leveldb (because only [[LevelDB]] supports secondary indexes, a
feature that we’ll use in our examples in this tutorial).


Save your riak.conf, and restart riak by executing riak stop
followed by riak start from the command line. Run riak ping after
the restart to ensure that the node is up and running.


Note: If you are running a cluster instead of a single node, you
will have to make these changes on each node.





Choose Your Programming Language


Please select the language with which you’d like to proceed:



		[image: Java]


		[image: Ruby]


		[image: Python]


		[image: CSharp]


		[image: Node.js]


		[image: Erlang]


		[image: PHP]










          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/taste-of-riak/go.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Taste of Riak: Go”
project: riak
version: 1.4.0+
document: guide
toc: true
audience: beginner
keywords: [developers, client, go]




If you haven’t set up a Riak cluster, please visit the [[Prerequisites|Taste
of Riak: Prerequisites]] first.


To try this flavor of Riak, a working installation of Go [http://golang.org/doc/install] is required.



Client Setup


riakpbc [https://github.com/mrb/riakpbc] is a community-maintained Riak
client library for Go.


First, install riakpbc:


$ go get github.com/mrb/riakpbc



Next, create the following directory structure in your GOPATH and download taste_of_riak.go [https://github.com/basho/basho_docs/raw/master/source/data/taste_of_riak.go]:


$ mkdir -p $GOPATH/src/basho.com/tasteofriak
$ cp ~/taste_of_riak.go $GOPATH/src/basho.com/tasteofriak



You can now compile and run this via the command line:


$ cd $GOPATH/src/basho.com/tasteofriak
$ go install
$ $GOPATH/bin/tasteofriak



Running it should return:


Creating objects...
Reading objects...
1
true
two
true
Deleting objects...
Creating, reading, and deleting complex objects...
3
true



Now we’ll walk through the code to see what it actually does at each step.





Creating Objects


The first thing to do is create a new client instance targeting each of the
Riak nodes in your cluster. If you happen to have the cluster behind a load
balancer, simply provide the IP and port your load balancer is listening on.


client := riakpbc.NewClient([]string{
    "127.0.0.1:10017",
    "127.0.0.1:10027",
    "127.0.0.1:10037"
})



From there, we make a connection to all of the nodes (using Dial):


if err := client.Dial(); err != nil {
    log.Fatalf("Dialing failed: %v", err)
}



Now, let’s store the integer 1 with a key of one:


if _, err := riak.StoreObject("test", "one", 1); err != nil {
    log.Print(err.Error())
}



Next, let’s store a simple string value of two with a matching key of two.


if _, err := client.StoreObject("test", "two", "two"); err != nil {
    log.Print(err.Error())
}






Reading Objects


Now that we have a few objects stored, let’s retrieve them and make sure they
return the values we expect.


one, err := client.FetchObject("test", "one")
if err != nil {
    log.Print(err.Error())
}
fmt.Println(string(one.GetContent()[0].GetValue()))

one_value, err := strconv.ParseInt(string(one.GetContent()[0].GetValue()), 10, 64)
if err != nil {
    log.Print(err.Error())
}
fmt.Println(one_value == 1)

two, err := client.FetchObject("test", "two")
if err != nil {
    log.Print(err.Error())
}
fmt.Println(string(two.GetContent()[0].GetValue()))
fmt.Println(string(two.GetContent()[0].GetValue()) == "two")




strconv.ParseInt
In order to parse the integer value back from a []byte, we use Go’s
strconv.ParseInt [http://golang.org/pkg/strconv/#ParseInt].


The second argument to ParseInt is 10 (signifying base 10) and the third
is 64 (for the bit size).






Deleting Objects


To clean up after ourselves, here’s how to delete data:


if _, err := client.DeleteObject("test", "one"); err != nil {
    log.Print(err.Error())
}

if _, err := client.DeleteObject("test", "two"); err != nil {
    log.Print(err.Error())
}






Working with Complex Objects


Since the world is a little more complicated than simple integers and strings,
let’s see how we can work with more complex objects.


How about a Go struct!


First, ensure that you have the ExampleData struct definition:


type ExampleData struct {
    Three int `json:"three"`
}



This struct contains an integer property Three that will be serialized as
JSON (because of the json tag).


Next, create a coder that marshalls/unmarshalls JSON and associate it with a
new client:


coder := riakpbc.NewCoder("json", riakpbc.JsonMarshaller, riakpbc.JsonUnmarshaller)
coder_client := riakpbc.NewClientWithCoder([]string{
    "127.0.0.1:10017",
    "127.0.0.1:10027",
    "127.0.0.1:10037",
}, coder)



After connecting to each node (using Dial) and setting a client ID, create
an ExampleData struct and store it in Riak:


data := ExampleData{
    Three: 3,
}
if _, err := coder_client.StoreStruct("test", "three", &data); err != nil {
    log.Print(err.Error())
}



Retrieving a property from a struct looks like this:


out := &ExampleData{}
if _, err := coder_client.FetchStruct("test", "three", out); err != nil {
    log.Print(err.Error())
}
fmt.Println(out.Three)
fmt.Println(out.Three == 3)



Finally, let’s clean up our mess:


if _, err := client.DeleteObject("test", "three"); err != nil {
    log.Print(err.Error())
}







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/dev/taste-of-riak/object-modeling-erlang.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: “Taste of Riak: Object Modeling with Erlang”
project: riak
version: 1.4.8+
document: tutorials
toc: true
audience: beginner
keywords: [developers, client, 2i, search, erlang, modeling]




To get started, let’s create the records that we’ll be using.



Code Download

You can also download the code for this chapter at
[Github](https://github.com/basho/taste-of-riak/tree/am-dem-erlang-modules/erlang/Ch03-Msgy-Schema).The Github version includes Erlang type specifications which have been
omitted here for brevity.



%% msgy.hrl

-define(USER_BUCKET, <<"Users">>).
-define(MSG_BUCKET, <<"Msgs">>).
-define(TIMELINE_BUCKET, <<"Timelines">>).
-define(INBOX, "Inbox").
-define(SENT, "Sent").

-record(user, {user_name, full_name, email}).

-record(msg, {sender, recipient, created, text}).

-record(timeline, {owner, msg_type, msgs}).



We’ll be using the bucket Users to store our data. We won’t be [[using
bucket types]] here, so we don’t need to specify one.


To use these records to store data, we will first have to create a user
record. Then, when a user creates a message, we will append that message
to one or more timelines. If it’s a private message, we’ll append it to
the Recipient’s Inbox timeline and to the User’s own Sent timeline.
If it’s a group message, we’ll append it to the Group’s timeline, as
well as to the User’s Sent timeline.



Buckets and keys revisited


Now that we’ve worked out how we will differentiate data in the system,
let’s figure out our bucket and key names.


The bucket names are straightforward. We can use Users, Msgs, and
Timelines. The key names, however, are a little more tricky. In past
examples we’ve used sequential integers, but this presents a problem: we
would need a secondary service to hand out these IDs. This service could
easily be a future bottleneck in the system, so let’s use a natural key.
Natural keys are a great fit for key/value systems because both humans
and computers can easily construct them when needed, and most of the
time they can be made unique enough for a KV store.


Bucket | Key Pattern | Example Key
:——|:————|:———–
Users | <user_name> | joeuser
Msgs | <username>_<datetime> | joeuser_2014-03-06T02:05:13.223556Z
Timelines | <username>_<type>_<date> | joeuser_Sent_2014-03-06Z
 marketing_group_Inbox_2014-03-06Z |


For the Users bucket, we can be certain that we will want each
username to be unique, so let’s use the username as the key.  For the
Msgs bucket, let’s use a combination of the username and the posting
datetime in an ISO 8601 Long [http://en.wikipedia.org/wiki/ISO_8601]
format. This combination gives us the pattern <username>_<datetime>,
which produces keys like joeuser_2014-03-05T23:20:28Z.


Now for Timelines, we need to differentiate between Inbox and Sent
timelines, so we can simply add that type into the key name. We will
also want to partition each collection object into some time period,
that way the object doesn’t grow too large (see note below).


For Timelines, let’s use the pattern <username>_<type>_<date> for
users, and <groupname>_Inbox_<date> for groups, which will look like
joeuser_Sent_2014-03-06Z or marketing_group_Inbox_2014-03-05Z,
respectively.



Note

Riak performs best with objects under 1-2 MB. Objects larger than that
can hurt performance, especially if many siblings are being created. We
will cover siblings, sibling resolution, and sibling explosions in the
next chapter.




Keeping our story straight with repositories


Now that we’ve figured out our object model, let’s write some modules to
act as repositories that will help us create and work with these records
in Riak:


%% user_repository.erl

-module(user_repository).
-export([save_user/2,
         get_user/2]).
-include("msgy.hrl").

save_user(ClientPid, User) ->
    RUser = riakc_obj:new(?USER_BUCKET,
                          list_to_binary(User#user.user_name),
                          User),
    riakc_pb_socket:put(ClientPid, RUser).

get_user(ClientPid, UserName) ->
    {ok, RUser} = riakc_pb_socket:get(ClientPid,
                                      ?USER_BUCKET,
                                      list_to_binary(UserName)),
    binary_to_term(riakc_obj:get_value(RUser)).







%% msg_repository.erl

-module(msg_repository).
-export([create_msg/3,
         get_msg/2]).
-include("msgy.hrl").

-spec create_msg(user_name(), user_name(), text()) -> msg().
create_msg(Sender, Recipient, Text) ->
    #msg{sender=Sender,
         recipient=Recipient,
         created=get_current_iso_timestamp(),
         text = Text}.

-spec get_msg(pid(), riakc_obj:key()) -> msg().
get_msg(ClientPid, MsgKey) ->
    {ok, RMsg} = riakc_pb_socket:get(ClientPid,
                                     ?MSG_BUCKET,
                                     MsgKey),
    binary_to_term(riakc_obj:get_value(RMsg)).

%% @private
-spec get_current_iso_timestamp() -> datetimestamp().
get_current_iso_timestamp() ->
    {_,_,MicroSec} = DateTime = erlang:now(),
    {{Year,Month,Day},{Hour,Min,Sec}} = calendar:now_to_universal_time(DateTime),
    lists:flatten(
        io_lib:format("~4..0B-~2..0B-~2..0BT~2..0B:~2..0B:~2..0B.~6..0B",
            [Year, Month, Day, Hour, Min, Sec, MicroSec])).








%% timeline_repository.erl

-module(timeline_repository).
-export([post_msg/2,
         get_timeline/4]).
-include("msgy.hrl").

post_msg(ClientPid, Msg) ->
     %% Save the canonical copy
    SavedMsg = save_msg(ClientPid, Msg),
    MsgKey = binary_to_list(riakc_obj:key(SavedMsg)),

    %% Post to sender's Sent timeline
    add_to_timeline(ClientPid, Msg, sent, MsgKey),

    %% Post to recipient's Inbox timeline
    add_to_timeline(ClientPid, Msg, inbox, MsgKey),
    ok.

get_timeline(ClientPid, Owner, MsgType, Date) ->
    TimelineKey = generate_key(Owner, MsgType, Date),
    {ok, RTimeline} = riakc_pb_socket:get(ClientPid,
                                          ?TIMELINE_BUCKET,
                                          list_to_binary(TimelineKey)),
    binary_to_term(riakc_obj:get_value(RTimeline)).

%% --------------------------------------------------------------------

%% @private
save_msg(ClientPid, Msg) ->
    MsgKey = Msg#msg.sender ++ "_" ++ Msg#msg.created,
    ExistingMsg = riakc_pb_socket:get(ClientPid,
                                      ?MSG_BUCKET,
                                      list_to_binary(MsgKey)),
    SavedMsg = case ExistingMsg of
        {error, notfound} ->
            NewMsg = riakc_obj:new(?MSG_BUCKET, list_to_binary(MsgKey), Msg),
            {ok, NewSaved} = riakc_pb_socket:put(ClientPid,
                                                 NewMsg,
                                                 [if_none_match, return_body]),
            NewSaved;
        {ok, Existing} -> Existing
    end,
    SavedMsg.

%% @private
add_to_timeline(ClientPid, Msg, MsgType, MsgKey) ->
    TimelineKey = generate_key_from_msg(Msg, MsgType),
    ExistingTimeline = riakc_pb_socket:get(ClientPid,
                                           ?TIMELINE_BUCKET,
                                           list_to_binary(TimelineKey)),
    UpdatedTimeline = case ExistingTimeline of
        {error, notfound} ->
            create_new_timeline(Msg, MsgType, MsgKey, TimelineKey);
        {ok, Existing} ->
            add_to_existing_timeline(Existing, MsgKey)
    end,

    {ok, SavedTimeline} = riakc_pb_socket:put(ClientPid,
                                              UpdatedTimeline,
                                              [return_body]),
    SavedTimeline.

%% @private
create_new_timeline(Msg, MsgType, MsgKey, TimelineKey) ->
    Owner = get_owner(Msg, MsgType),
    Timeline = #timeline{owner=Owner,
                         msg_type=MsgType,
                         msgs=[MsgKey]},
    riakc_obj:new(?TIMELINE_BUCKET, list_to_binary(TimelineKey), Timeline).

%% @private
add_to_existing_timeline(ExistingRiakObj, MsgKey) ->
    ExistingTimeline = binary_to_term(riakc_obj:get_value(ExistingRiakObj)),
    ExistingMsgList = ExistingTimeline#timeline.msgs,
    UpdatedTimeline = ExistingTimeline#timeline{msgs=[MsgKey|ExistingMsgList]},
    riakc_obj:update_value(ExistingRiakObj, UpdatedTimeline).

%% @private
get_owner(Msg, inbox) ->  Msg#msg.recipient;
get_owner(Msg, sent) ->  Msg#msg.sender.

%% @private
generate_key_from_msg(Msg, MsgType) ->
    Owner = get_owner(Msg, MsgType),
    generate_key(Owner, MsgType, Msg#msg.created).

%% @private
generate_key(Owner, MsgType, Date) when is_tuple(Date) ->
    DateString = get_iso_datestamp_from_date(Date),
    generate_key(Owner, MsgType, DateString);

generate_key(Owner, MsgType, Datetimestamp) ->
    DateString = get_iso_datestamp_from_iso_timestamp(Datetimestamp),
    MsgTypeString = case MsgType of
        inbox -> ?INBOX;
        sent -> ?SENT
    end,
    Owner ++ "_" ++ MsgTypeString ++ "_" ++ DateString.

%% @private
get_iso_datestamp_from_date(Date) ->
    {Year,Month,Day} = Date,
    lists:flatten(io_lib:format("~4..0B-~2..0B-~2..0B", [Year, Month, Day])).

%% @private
get_iso_datestamp_from_iso_timestamp(CreatedString) ->
    {Date, _} = lists:split(10,CreatedString),
    Date.




Finally, let’s test them:


%% msgy.erl

-module(msgy).
-export([main/0]).
-include("msgy.hrl").

main() ->
  %% Setup our repositories
  {ok, Pid} = riakc_pb_socket:start_link("127.0.0.1", 10017),

  %% Create and save users
  Joe = #user{user_name="joeuser",
              full_name="Joe User",
              email="joe.user@basho.com"},

  Marleen = #user{user_name="marleenmgr",
                  full_name="Marleen Manager",
                  email="marleen.manager@basho.com"},

  user_repository:save_user(Pid, Joe),
  user_repository:save_user(Pid, Marleen),

  %% Create new Msg, post to timelines
  Msg = msg_repository:create_msg(Marleen#user.user_name, Joe#user.user_name, "Welcome to the company!"),
  timeline_repository:post_msg(Pid, Msg),


  %% Get Joe's inbox for today, get first message
  {TodaysDate,_} = calendar:now_to_universal_time(erlang:now()),
  JoesInboxToday = timeline_repository:get_timeline(Pid, Joe#user.user_name, inbox, TodaysDate),

  JoesFirstMessage = msg_repository:get_msg(Pid, hd(JoesInboxToday#timeline.msgs)),

  io:format("From: ~s~nMsg : ~s~n~n", [JoesFirstMessage#msg.sender, JoesFirstMessage#msg.text]),
  ok.



As you can see, the repository pattern helps us with a few things:



		It helps us to see if an object exists before creating a new one


		It keeps our buckets and key names consistent


		It provides us with a consistent interface to work with.





While this set of repositories solves many of our problems, it is very
minimal and doesn’t cover all the edge cases. For instance, what happens
if two different people try to create a user with the same username?


We can also easily “compute” key names now, but how do we quickly look
up the last 10 messages a user sent? Many of these answers will be
application dependent. If your application shows the last 10 messages in
reverse order, for example, you may want to store that set of data in
another collection object to make lookup faster. There are drawbacks to
every solution, but we recommend seeking out the key/value-based
solution first, as it will likely be the quickest.


So to recap, in this chapter we learned:



		How to choose bucket names


		How to choose natural keys based on how we want to partition our data.









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/advanced/configs/search.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Riak Search Settings
project: riak
version: 0.10.0+
document: appendix
toc: true
audience: intermediate
keywords: [search]
moved: {
‘1.4.0-‘: ‘/references/Riak-Search—Settings’
}





Note on Search 2.0 vs. Legacy Search

This document refers to the new Riak Search 2.0 with
[[Solr|http://lucene.apache.org/solr/]] integration (codenamed
Yokozuna). For information about the deprecated Riak Search, visit [[the
old Riak Search
Settings|http://docs.basho.com/riak/1.4.8/ops/advanced/configs/search/]].

This document covers Riak’s [[Search|Using Search]] subsystem from an
operational perspective. If you are looking for more developer-focused
docs, we recommend the following:



		[[Using Search]]


		[[Search Schema]]


		[[Search Details]]


		[[Custom Search Extractors]]


		[[Riak Data Types and Search]]






Enabling Riak Search


Although Riak Search is integrated into Riak and requires no special
installation, it is not enabled by default.  You must enable it in every
node’s [[configuration files]] as follows:


search = on






JVM Installation


Because Solr is a Java application, you will need to install Java 1.6
or later on every node. We recommend installing Oracle’s JDK
7u25 [http://www.oracle.com/technetwork/java/javase/7u25-relnotes-1955741.html].
Installation packages can be found on the Java SE 7 Downloads
page [http://www.oracle.com/technetwork/java/javase/downloads/java-archive-downloads-javase7-521261.html#jre-7u25-oth-JPR]
and instructions on the documentation
page [http://www.oracle.com/technetwork/java/javase/documentation/index.html].



Riak Config Settings


Setting search to on is required, but other search settings are
optional. A list of these parameters can also be found in our
[[configuration files|Configuration Files#Search]] documentation.


Field | Default | Valid values | Description
:—–|:——–|:————-|:———–
search | off | on or off | Enable or disable Search
search.anti_entropy.data_dir | ./data/yz_anti_entropy | Directory | The directory in which Riak Search stores files related to [[active anti-entropy]]
search.root_dir | ./data/yz | Directory | The root directory in which index data and configuration is stored
search.solr.start_timeout | 30s | Integer with time units (eg. 2m) | How long Riak will wait for Solr to start (attempts twice before shutdown). Values lower than 1s will be rounded up to 1s.
search.solr.port | 8093 | Integer | The port number to which Solr binds (note: binds on every interface)
search.solr.jmx_port | 8985 | Integer | The port number to which Solr JMX (note: binds on every interface)
search.solr.jvm_options | -d64 -Xms1g -Xmx1g -XX:+UseStringCache -XX:+UseCompressedOops | Java command-line arguments | The options to pass to the Solr JVM. Non-standard options, e.g. -XX, may not be portable across JVM implementations.


While most of the default values are sufficient, you may have to
increase search.solr.start_timeout as more data is indexed, which may
cause Solr to require more time to start.







Solr JVM and Ports


Riak Search runs one Solr process per node to manage its indexing and
search functionality. While the underlying project, Yokozuna, manages
index distribution, node coverage for queries, [[active anti-entropy
(AAE)|Search Details#Active-Anti-Entroy-AAE-]], and JVM process
management, you should provide plenty of RAM and diskspace for running
both Riak and the JVM running Solr. We recommend a minimum of 6GB of RAM
per node.


Concerning ports, be sure to take the necessary [[security|Security and
Firewalls]] precautions to prevent exposing the extra Solr and JMX ports
to the outside world.





Solr for Operators


For further information on Solr monitoring, tuning, and performance, we
recommend the following documents for getting started:



		Solr Monitoring [https://wiki.apache.org/solr/SolrMonitoring]


		Solr Performance
Factors [https://wiki.apache.org/solr/SolrPerformanceFactors]


		Solr Performance
Problems [https://wiki.apache.org/solr/SolrPerformanceProblems]


		JConsole [http://docs.oracle.com/javase/7/docs/technotes/guides/management/jconsole.html]





A wide variety of other documentation is available from the Solr OSS
community.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/advanced/configs/secondary-index.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Configuring Secondary Indexes
project: riak
version: 1.2.0+
document: tutorials
toc: true
audience: advanced
keywords: [operator, 2i]
moved: {
‘1.4.0-‘: ‘/cookbooks/Secondary-Indexes—Configuration’
}





Configuration


Secondary indexes (2i) are enabled by configuring Riak to use the [[LevelDB]] or [[Memory]] backend (or one of those in conjunction with the [[Multi]] backend.


All nodes in a cluster must be configured to use an indexing-capable backend for secondary indexes to work properly.



Migrating an Existing Cluster


Warning: this should be done with caution to avoid overburdening your cluster. This will involve migrating all data on any given node to other nodes in the cluster, resulting in higher than usual network and disk I/O.


These steps will remove a node from the cluster, enable a backend that supports 2i, and re-add it to the cluster.



		Choose one node in the cluster. Run riak-admin leave on the node.


		Wait for transfers to complete. Then, run riak stop.


		Turn on 2i by configuring Riak to use the appropriate backend.


		Run riak-admin join


		Repeat with remaining nodes.










Indexing an Object


To index an object, an application tags the object with one or more field/value pairs, also called index entries. At write time, the object is indexed under these index entries. An application can modify the indexes for an object by reading an object, adding or removing index entries, and then writing the object. Finally, an object is automatically removed from all indexes when it is deleted.


The object’s value and its indexes should be thought of as a single unit. There is no way to alter the indexes of an object independently from the value of an object, and vice versa. To think of it another way, you can imagine that every time you write an object, it completely de-indexes the object, and then re-indexes the object based on the new set of provided index entries.


In the case where an object has siblings, the object is indexed under the index entries for ALL of the siblings. When the conflict is resolved, it acts just like an index update. Riak de-indexes the object, and then re-indexes the newly resolved object based on the provided index entries.


Indexing is atomic, and is updated in real time when writing an object. This means that an object will be present in future index queries as soon as the write operation completes.



Index Data Types


As of version 1.0, Riak supports two types of indexes, binaries and integers. Because there is no index schema, the data type of an index is encoded within the suffix of an index field’s name. Available suffixes are _int and _bin, indicating an integer or a string (aka binary), respectively. For example, timestamp_int is an integer field and email_bin is a string field.


More complicated data types (such as dates and timestamps) can be stored by encoding the date as a string of characters and choosing a format that sorts correctly. For example, a date could be encoded as the string “YYYYMMDD”. Floats can be encoded by deciding on a required precision level, multiplying the value accordingly, and then truncating the float to an int. For example, to store a float with precision down to the thousandths, you would multiply the float by 1000.


Index field names are automatically converted to lowercase. Index fields and values should only contain ASCII characters. For that reason, it’s best to normalize or encode any user-supplied data before using it as an index. While Secondary Indexes may appear to work with multibyte encodings, they should be avoided because Secondary Index range queries assume single byte characters, so range queries across multibyte strings will return incorrect results.


When using the HTTP interface, multi-valued indexes are specified by separating the values with a comma (,). For that reason, your application should avoid using a comma as part of an index value.





Index Sizes


The indexes on an object contribute to the overall size of an object. The number of indexes on an object is limited only by the maximum
recommended Riak object size (not larger than 1-2MB). Basho has stress tested objects with 1000 index entries, but expect that most applications will use significantly fewer.


The size of an individual index is also limited only by resources, but note that some HTTP proxies impose size limits on HTTP headers. Since indexes are encoded as HTTP headers when using the HTTP interface, this may affect the maximum index value size.


On disk, indexes contribute to the overall size of the object, and are also stored in a separate structure that takes additional disk space. The overhead for each additional index is minimal. LevelDB employs prefix compression, which can also drastically reduce the amount of disk space an index requires.





An Object’s Indexes and Value Are Orthogonal


An object’s indexes and an object’s value are completely orthogonal. The indexes may or may not reflect information that already exists in the object’s value.


The intended usage is that an application will store some information, such as a blob of JSON data, in the value of a Riak object, and then annotate the object with indexes for easier retrieval later. The indexes may or may not repeat data that is already found in the JSON object. For example, an object may have an email_bin index field while also having an email field in the JSON blob.


This may seem inefficient in the cases where data is duplicated, but it leads to some interesting scenarios. For example, an application can store images in Riak (or MP3s, or other opaque, non-extensible data structures), and can index the images by owner, file size, creation date, etc.







Index Lookups


Index queries are only supported on one index field at a time. The query can specify either an exact match or a range of values. Range queries are inclusive, so results may match the start or end value. The query operation returns a list of matching keys. The application may then decide to loop through each key, looking up the value from Riak.


Currently, the result order is undefined, and there is no way to directly pull back a list of objects using secondary indexes. This may change in the future.


An index query can be piped into a MapReduce job, allowing applications to sort, filter, or process query results in parallel across a cluster.



Lookup Performance


2i uses document-based partitioning, which means that the indexes for an object are stored on the same partition as the object itself. This has implications on query-time performance. When issuing a query, the system must read from what we call a “covering” set of partitions. The system looks at how many replicas of our data are stored and determines the minimum number of partitions that it must examine to retrieve a full set of results, accounting for any offline nodes.


By default, Riak is configured to store 3 replicas of all objects, so the system can generate a full result set if it reads from one-third of the system’s partitions, as long as it chooses the right set of partitions. The query is then broadcast to the selected partitions, which read the index data, generate a list of keys, and send them back to the requesting node.





Special Fields


The $key index field is a special field that is implicitly indexed on all objects when 2i is enabled. The value of this field is the object’s key, so this field allows an application to perform range queries across the keys in a bucket.


The $bucket index field is another special field that is implicitly indexed on all objects. The value of this field is the object’s bucket, so this field allows an application retrieve all objects within a bucket based on secondary indexes.








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/advanced/configs/mapreduce.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Riak MapReduce Settings
project: riak
version: 1.2.0+
document: appendix
toc: true
audience: advanced
keywords: [mapreduce]
moved: {
‘1.4.0-‘: ‘/latest/references/MapReduce—Settings’
}





Configuring MapReduce


[[MapReduce|Using MapReduce]] (M/R) is always enabled, but configurable
through the [[app.config|Configuration-Files#app-config]] file as
follows under riak_kv


{riak_kv, [



mapred_name is the URL directory used to submit M/R requests to Riak.
By default mapred, making the command path, for example:
http://localhost:8091/mapred


    {mapred_name, "mapred"},



{{#<1.3.0}}
mapred_system indicates which version of the MapReduce system should
be used:



		pipe means riak_pipe [https://github.com/basho/riak_pipe] will
power M/R queries


		legacy means that luke [https://github.com/basho/luke] will be used





    {mapred_system, pipe},



{{/<1.3.0}}


mapred_2i_pipe indicates whether [[2i|Using Secondary Indexes]]
MapReduce inputs are queued in parallel in their own pipe (true), or
serially through a helper process (false or undefined).


{{#1.1.0+}}
Note: Set to false or leave undefined during a rolling upgrade from 1.0.
{{/1.1.0+}}


    {mapred_2i_pipe, true},



{{#<1.3.0}}
mapred_queue_dir directory used to store a transient queue for pending
map tasks.


Only valid for {mapred_system, legacy}, used by
luke [https://github.com/basho/luke].


    %% {mapred_queue_dir, "./data/mr_queue" },



{{/<1.3.0}}


Each of these entries control how many Javascript virtual machines are
available for executing map, reduce, pre- and post-commit hook
functions.


This is largely relevant only if you are writing JavaScript M/R jobs.


    {map_js_vm_count, 8 },
    {reduce_js_vm_count, 6 },
    {hook_js_vm_count, 2 },



{{#<1.3.0}}
mapper_batch_size is the number of items the mapper will fetch in one
request. Larger values can impact read/write performance for
non-MapReduce requests.


Only valid for {mapred_system, legacy}, used by
luke [https://github.com/basho/luke].


    %% {mapper_batch_size, 5},



{{/<1.3.0}}


js_max_vm_mem is the maximum amount of memory, in megabytes, allocated
to the Javascript VMs. If unset, the default is 8MB.


This is largely relevant only if you are writing JavaScript M/R jobs.


    {js_max_vm_mem, 8},



js_thread_stack is the maximum amount of thread stack, in megabytes,
allocated to the Javascript VMs. If unset, the default is 16MB.


Note: This is not the same as the C thread stack.


    {js_thread_stack, 16},



{{#<1.3.0}}
map_cache_size is the number of objects held in the MapReduce cache.
These will be ejected when the cache runs out of room or the bucket/key
pair for that entry changes.


Only valid for {mapred_system, legacy}, used by luke [https://github.com/basho/luke].


    %% {map_cache_size, 10000},



{{/<1.3.0}}


js_source_dir should point to a directory containing Javascript source
files which will be loaded when Riak initializes Javascript VMs.


    %{js_source_dir, "/tmp/js_source"},






Configuration Tuning for Javascript


If you load larger JSON objects in your buckets there is a possibility you might encounter an error like the following:


 {"lineno":465,"message":"InternalError: script stack space quota is exhausted","source":"unknown"}



You can increase the amount of memory allocated to the Javascript VM stack by editing your app.config. The following will increase the stack size from 8MB to 32MB:


{js_thread_stack, 8}



becomes


{js_thread_stack, 32},



In addition to increasing the amount of memory allocated to the stack you can increase the heap size as well by increasing the js_max_vm_mem from the default of 8MB. If you are collecting a large amount of results in a reduce phase you may need to increase this setting.





Configuration for Riak 1.0


Riak 1.0 is the first release including the new MapReduce subsystem known as Riak Pipe.  By default, new Riak clusters will use Riak Pipe to power their MapReduce queries.  Existing Riak clusters that are upgraded to Riak 1.0 will continue to use the legacy MapReduce system unless the following line is added to the riak_kv section of each node’s app.config:


%% Use Riak Pipe to power MapReduce queries
{mapred_system, pipe},



Warning: Do not enable Riak Pipe for MapReduce processing until all nodes in the cluster are running Riak 1.0.
Other than speed and stability of the cluster, the choice of MapReduce subsystem (Riak Pipe or legacy) should be invisible to your client.  All queries should have the same syntax and return the same results on Riak 1.0 with Riak Pipe as they did on earlier versions with the legacy subsystem.  If you should find a case where this is not true, you may revert to using the legacy subsystem by either removing the aforementioned line in your app.config or by changing it to read like this:


%% Use the legacy MapReduce system
{mapred_system, legacy},






Configuration Tuning for Reduce Phases


If you are using Riak 1.0 and the Riak Pipe subsystem for MapReduce queries, you have additional options for tuning your reduce phases.



Batch Size


By default, Riak will evaluate a reduce function every time its phase receives 20 new inputs.  If your reduce phases would run more efficiently with more or fewer new inputs, you may change this default by adding the following to the riak_kv section of your app.config:


%% Run reduce functions after 100 new inputs are received
{mapred_reduce_phase_batch_size, 100},



You may also control this batching behavior on a per-query basis by using the static argument of the phase specification.  When specifying phases over HTTP, the JSON configuration for evaluating the function after 150 new inputs looks like this:


{"reduce":
  {...language, etc. as usual...
   "arg":{"reduce_phase_batch_size":150}}}



In Erlang, you may either specify a similar mochijson2 structure for the phase argument, or use the simpler proplist form:


{reduce, FunSpec, [{reduce_phase_batch_size, 150}], Keep}



Finally, if you want your reduce function to be evaluated only once, after all inputs are received, use this argument instead:


{"reduce":
  {...language, etc. as usual...
   "arg":{"reduce_phase_only_1":true}}}



Similarly, in Erlang:


{reduce, FunSpec, [reduce_phase_only_1], Keep}



Warning: A known bug in Riak 1.0.0 means that it is possible a reduce function may run more often than specified if handoff happens while the phase is accumulating inputs.  This bug was fixed in 1.0.1.



Pre-Reduce


If your reduce functions can benefit from parallel execution, it is possible to request that the outputs of a preceding map phase be reduced local to the partition that produced them, before being sent, as usual, to the final aggregate reduce.


Pre-reduce is disabled by default.  To enable it for all reduce phases by default, add the following to the riak_kv section of your app.config:


%% Always pre-reduce between map and reduce phases
{mapred_always_prereduce, true}



Pre-reduce may also be enabled or disabled on a per-phase basis via the Erlang API for map phases implemented in Erlang.  To enable pre-reduce, for any map phase followed by a reduce phase, pass a proplist as its static phase argument and include the following flag:


{map, FunSpec, [do_prereduce], Keep}



Warning: A known bug in Riak 1.0.0 prevents per-phase pre-reduce from being enabled over HTTP.  This bug also prevents per-phase pre-reduce from being enabled for Javascript phases.  Use the global app.config flag for these cases. This bug was fixed in 1.0.1.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/advanced/backends/leveldb.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: LevelDB
project: riak
version: 1.0.0+
document: tutorials
toc: true
audience: intermediate
keywords: [backends, planning, leveldb]
prev: “[[Bitcask]]“
up:   “[[Choosing a Backend]]“
next: “[[Memory]]“
interest: [
“[[LevelDB documentation|http://leveldb.googlecode.com/svn/trunk/doc/index.html]]”,
“[[Cache Oblivious BTree|http://supertech.csail.mit.edu/cacheObliviousBTree.html]]”,
“[[LevelDB benchmarks|http://leveldb.googlecode.com/svn/trunk/doc/benchmark.html]]”,
“[[LevelDB on Wikipedia|http://en.wikipedia.org/wiki/LevelDB]]”,
“[[LSM trees|http://nosqlsummer.org/paper/lsm-tree]]”,
“[[Cache Conscious Indexing for Decision-Support in Main Memory|http://www.cs.columbia.edu/~library/TR-repository/reports/reports-1998/cucs-019-98.pdf]]“
]
moved: {
‘1.4.0-‘: ‘/tutorials/choosing-a-backend/LevelDB’
}





Note on upgrading to 2.0

If you are using LevelDB in a 1.x version of Riak, are upgrading to 2.0,
and wish to keep using your old `app.config` file for configuration,
make sure to follow the steps for setting the
`total_leveldb_mem_percent` parameter in the [[2.0 upgrade
guide|Upgrading to 2.0#Upgrading-LevelDB]].

eLevelDB [https://github.com/basho/eleveldb] is an Erlang application
that encapsulates LevelDB [http://code.google.com/p/leveldb/], an
open-source, on-disk key/value store created by Google Fellows Jeffrey
Dean and Sanjay Ghemawat.


LevelDB is a relatively new entrant into the growing list of key/value
database libraries, but it has some very interesting qualities that we
believe make it an ideal candidate for use in Riak. LevelDB’s storage
architecture is more like
BigTable’s [http://en.wikipedia.org/wiki/BigTable] memtable/sstable
model than it is like Bitcask. This design and implementation provide
the possibility of a storage engine without Bitcask’s RAM limitation.


Note: Riak uses a fork of LevelDB. The code can be found on
Github [https://github.com/basho/leveldb].


A number of changes have been introduced in the LevelDB backend in Riak
2.0:



		There is now only one performance-related setting that Riak users
need to define—leveldb.total_mem_percent—as LevelDB now
dynamically sizes the file cache and block sizes based upon active
[[vnodes]] assigned to the node.


		The LevelDB backend in Riak 2.0 utilizes a new, faster threading model
for background compaction work on .sst table files. The new model
has increased throughput by at least 10% in all test scenarios.


		Delete operations now receive priority handling in compaction
selection, which means more aggressive reclaiming of disk space than
in previous versions of Riak’s LevelDB backend.


		Nodes storing massive key datasets (e.g. in the billions of keys) now
receive increased throughput due to automatic management of LevelDB’s
block size parameter. This parameter is slowly raised to increase the
number of files that can open simultaneously, improving random read
performance.






Strengths



		License — The LevelDB and eLevelDB licenses are the New BSD
License [http://www.opensource.org/licenses/bsd-license.php] and the
Apache 2.0 License [http://www.apache.org/licenses/LICENSE-2.0.html],
respectively. We’d like to thank Google and the authors of LevelDB at
Google for choosing a completely FLOSS license so that everyone can
benefit from this innovative storage engine.


		Data compression — LevelDB uses Google
Snappy [https://code.google.com/p/snappy/] data compression by
default. This means more CPU usage but less disk space. The
compression efficiency is especially good for text data, including
raw text, Base64, JSON, etc.








Weaknesses



		Read access can be slow when there are many levels to search


		LevelDB may have to do a few disk seeks to satisfy a read; one disk
seek per level and, if 10% of the database fits in memory, one seek
for the last level (since all of the earlier levels should end up
cached in the OS buffer cache for most filesystems) whereas if 1%
fits in memory, LevelDB will need two seeks.








Installing eLevelDB


Riak ships with eLevelDB included within the distribution, so there is
no separate installation required. However, Riak is configured to use
the Bitcask storage engine by default. To switch to eLevelDB, set the
storage_backend variable in [[riak.conf|Configuration Files]] to
leveldb:


storage_backend = leveldb



{riak_kv, [
    %% ...
    {storage_backend, riak_kv_eleveldb_backend},
    %% ...
    ]}






Configuring eLevelDB


eLevelDb’s default behavior can be modified by adding/changing
parameters in the eleveldb section of the [[riak.conf|Configuration Files]]. The [[Key Parameters|LevelDB#Key-Parameters]] section below
details the parameters you’ll use to modify eLevelDB. The [[Parameter
Planning|LevelDB#Parameter-Planning]] section gives a step-by-step
example illustrating how to choose parameter values based on your
application requirements.


The configuration values that can be set in your
[[riak.conf|Configuration Files]] for eLevelDB are as follows:


Config | Description | Default
:——|:————|:——-
leveldb.data_root | LevelDB data root | ./data/leveldb
leveldb.maximum_memory.percent | Defines the percentage (between 1 and 100) of total server memory to assign to LevelDB. LevelDB will dynamically adjust its internal cache sizes as Riak activates/inactivates [[vnodes]] on this server to stay within this size. | 70


If you are using the older, app.config-based system, the equivalent to
the leveldb.data_root is the data_root setting, as in the following
example:


{eleveldb, [
    {data_root, "/path/to/leveldb"},

    %% Other eleveldb-specific settings
]}



The leveldb.maximum_memory.percent setting is only available in the
newer configuration system.



Recommended Settings


Below are general configuration recommendations for Linux
distributions. Individual users may need to tailor these settings for
their application.



sysctl


For production environments, please see [[System Performance Tuning]]
for the recommended /etc/sysctl.conf settings.





Block Device Scheduler


Beginning with the 2.6 kernel, Linux gives you a choice of four I/O
elevator models [http://www.gnutoolbox.com/linux-io-elevator/]. We
recommend using the NOOP elevator. You can do this by changing the
scheduler on the Linux boot line: elevator=noop.





ext4 Options


The ext4 filesystem defaults include two options that increase integrity
but slow performance. Because Riak’s integrity is based on multiple
nodes holding the same data, these two options can be changed to boost
LevelDB’s performance. We recommend setting: barrier=0 and
data=writeback.





CPU Throttling


If CPU throttling is enabled, disabling it can boost LevelDB performance
in some cases.





No Entropy


If you are using https protocol, the 2.6 kernel is widely known for
stalling programs waiting for SSL entropy bits. If you are using https,
we recommend installing the
HAVEGE [http://www.irisa.fr/caps/projects/hipsor/] package for
pseudorandom number generation.





clocksource


We recommend setting clocksource=hpet on your Linux kernel’s boot
line. The TSC clocksource has been identified to cause issues on
machines with multiple physical processors and/or CPU throttling.





swappiness


We recommend setting vm.swappiness=0 in /etc/sysctl.conf. The
vm.swappiness default is 60, which is aimed toward laptop users with
application windows. This was a key change for MySQL servers and is
often referenced in database performance literature.









Implementation Details


LevelDB [http://leveldb.googlecode.com/svn/trunk/doc/impl.html] is a
Google-sponsored open source project that has been incorporated into an
Erlang application and integrated into Riak for storage of key/value
information on disk. The implementation of LevelDB is similar in spirit
to the representation of a single Bigtable tablet (section 5.3).



How Levels Are Managed


LevelDB is a memtable/sstable design. The set of sorted tables is
organized into a sequence of levels. Each level stores approximately ten
times as much data as the level before it. The sorted table generated
from a flush is placed in a special young level (also called level-0).
When the number of young files exceeds a certain threshold (currently
four), all of the young files are merged together with all of the
overlapping level-1 files to produce a sequence of new level-1 files (a
new level-1 file is created for every 2MB of data.)


Files in the young level may contain overlapping keys. However files in
other levels have distinct non-overlapping key ranges. Consider level
number L where L >= 1. When the combined size of files in level-L
exceeds (10^L) MB (i.e.  10MB for level-1, 100MB for level-2, ...), one
file in level-L, and all of the overlapping files in level-(L+1) are
merged to form a set of new files for level-(L+1). These merges have the
effect of gradually migrating new updates from the young level to the
largest level using only bulk reads and writes (i.e., minimizing
expensive disk seeks).


When the size of level L exceeds its limit, LevelDB will compact it in a
background thread. The compaction picks a file from level L and all
overlapping files from the next level L+1. Note that if a level-L file
overlaps only part of a level-(L+1) file, the entire file at level-(L+1)
is used as an input to the compaction and will be discarded after the
compaction. Compactions from level-0 to level-1 are treated specially
because level-0 is special (files in it may overlap each other). A
level-0 compaction may pick more than one level-0 file in case some of
these files overlap each other.


A compaction merges the contents of the picked files to produce a
sequence of level-(L+1) files. LevelDB will switch to producing a new
level-(L+1) file after the current output file has reached the target
file size (2MB). LevelDB will also switch to a new output file when the
key range of the current output file has grown enough to overlap more
then ten level-(L+2) files. This last rule ensures that a later
compaction of a level-(L+1) file will not pick up too much data from
level-(L+2).


Compactions for a particular level rotate through the key space. In more
detail, for each level L, LevelDB remembers the ending key of the last
compaction at level L. The next compaction for level L will pick the
first file that starts after this key (wrapping around to the beginning
of the key space if there is no such file).


Level-0 compactions will read up to four 1MB files from level-0, and at
worst all the level-1 files (10MB) (i.e., LevelDB will read 14MB and
write 14MB in that case).


Other than the special level-0 compactions, LevelDB will pick one 2MB
file from level L. In the worst case, this will overlap with
approximately 12 files from level L+1 (10 because level-(L+1) is ten
times the size of level-L, and another two at the boundaries since the
file ranges at level-L will usually not be aligned with the file ranges
at level-L+1). The compaction will therefore read 26MB, write 26MB.
Assuming a disk IO rate of 100MB/s, the worst compaction cost will be
approximately 0.5 second.


If we throttle the background writing to a reasonably slow rate, for
instance 10% of the full 100MB/s speed, a compaction may take up to 5
seconds. If the user is writing at 10MB/s, LevelDB might build up lots
of level-0 files (~50 to hold the 5*10MB). This may significantly
increase the cost of reads due to the overhead of merging more files
together on every read.





Compaction


Levels are compacted into ordered data files over time. Compaction first
computes a score for each level as the ratio of bytes in that level to
desired bytes. For level 0, it computes files / desired files instead.
The level with the highest score is compacted.


When compacting L0 the only special case to consider is that after
picking the primary L0 file to compact, it will check other L0 files to
determine the degree to which they overlap. This is an attempt to avoid
some I/O, we can expect L0 compactions to usually if not always be “all
L0 files”.


See the PickCompaction routine in
1 [http://www.google.com/codesearch#mHLldehqYMA/trunk/db/version_set.cc]
for all the details.





Comparison of eLevelDB and Bitcask


LevelDB is a persistent ordered map; Bitcask is a persistent hash table
(no ordered iteration). Bitcask stores keys in memory, so for databases
with large number of keys it may exhaust available physical memory and
then swap into virtual memory causing a severe slow down in performance.
Bitcask guarantees at most one disk seek per look-up. LevelDB may have
to do a small number of disk seeks. For instance, a read needs one disk
seek per level. If 10% of the database fits in memory, LevelDB will need
to do one seek (for the last level since all of the earlier levels
should end up cached in the OS buffer cache). If 1% fits in memory,
LevelDB will need two seeks.







Recovery


LevelDB never writes in place: it always appends to a log file, or
merges existing files together to produce new ones. So an OS crash will
cause a partially written log record (or a few partially written log
records). LevelDB recovery code uses checksums to detect this and will
skip the incomplete records.



eLevelDB Database Files


Below are two directory listings showing what you would expect to find
on disk when using eLevelDB. In this example, we use a 64-partition ring
which results in 64 separate directories, each with their own LevelDB
database:


leveldb/
|-- 0
|   |-- 000003.log
|   |-- CURRENT
|   |-- LOCK
|   |-- LOG
|   `-- MANIFEST-000002
|-- 1004782375664995756265033322492444576013453623296
|   |-- 000005.log
|   |-- CURRENT
|   |-- LOCK
|   |-- LOG
|   |-- LOG.old
|   `-- MANIFEST-000004
|-- 1027618338748291114361965898003636498195577569280
|   |-- 000005.log
|   |-- CURRENT
|   |-- LOCK
|   |-- LOG
|   |-- LOG.old
|   `-- MANIFEST-000004

... etc ...

`-- 981946412581700398168100746981252653831329677312
    |-- 000005.log
    |-- CURRENT
    |-- LOCK
    |-- LOG
    |-- LOG.old
    `-- MANIFEST-000004

64 directories, 378 files



After performing a large number of PUT (write) operations, the Riak
cluster running eLevelDB will look something like this:


tree leveldb



The result should look something like this:


├── 0
│   ├── 000003.log
│   ├── CURRENT
│   ├── LOCK
│   ├── LOG
│   ├── MANIFEST-000002
│   ├── sst_0
│   ├── sst_1
│   ├── sst_2
│   ├── sst_3
│   ├── sst_4
│   ├── sst_5
│   └── sst_6
├── 1004782375664995756265033322492444576013453623296
│   ├── 000003.log
│   ├── CURRENT
│   ├── LOCK
│   ├── LOG
│   ├── MANIFEST-000002
│   ├── sst_0
│   ├── sst_1
│   ├── sst_2
│   ├── sst_3
│   ├── sst_4
│   ├── sst_5
│   └── sst_6

... etc ...








Tiered Storage


Google’s original LevelDB implemented stored all .sst table files in a
single database directory. In Riak 1.3, the original LevelDB code was
modified to store .sst files in subdirectories representing each
“level” of the file, e.g. sst_0 or sst_1, in the name of speeding up
database repair operations.


An additional advantage of this approach is that it enables Riak
operators to mount alternative storage devices at each level of a
LevelDB database. This can be an effective strategy because LevelDB is
write intensive in lower levels, with the write intensity declining as
the level number increases. This is due to LevelDB’s storage strategy,
which places more frequently updated data in lower levels.


Because write intensity differs by level, performance can be improved by
mounting faster, more expensive storage arrays in lower levels and
slower, less expensive arrays at higher levels. Tiered storage enables
you to configure the level at which LevelDB switches from a faster array
to a slower array.



Note on write throttling

High-volume, sustained write operations can occasionally fill the
higher-speed storage arrays before LevelDB has had the opportunity to
move data to the low-speed arrays. LevelDB's write throttle will slow
incoming write operations to allow compactions to catch up, as would be
the case when using a single storage array.


Configuring Tiered Storage


If you are using the newer, riak.conf-based configuration system, the
following parameters can be used to configure LevelDB tiered storage:


Parameter | Description
:———|:———–
leveldb.tiered | The level number at which data should switch to the slower array. The default is 0, which disables the feature.
leveldb.tiered.path.fast | The path prefix for .sst files below the level set by leveldb.tiered
leveldb.tiered.path.slow | The path prefix for .sst files at and above the level set by leveldb.tiered


If you are using the older, app.config-based system, the example below
will show you the equivalents of the settings listed in the table above.



Example


The following example LevelDB tiered storage
[[configuration|Configuration Files]] for Riak 2.0 sets the level for
switching storage arrays to 4 and the file path prefix to fast_raid
for the faster array and slow_raid for the slower array:


leveldb.tiered = 4
leveldb.tiered.path.fast = /mnt/fast_raid
leveldb.tiered.path.slow = /mnt/slow_raid



{eleveldb, [
    {tiered_slow_level, 4},
    {tiered_fast_prefix, "/mnt/fast_raid"},
    {tiered_slow_prefix, "/mnt/slow_raid"}
]}



With this configuration, level directories sst_0 through sst_3 will
be stored in /mnt/fast_raid, while directories sst_4 and sst_6
will be stored in /mnt/slow_raid.







Selecting a Level


LevelDB will perform optimally when as much data as possible is stored
in the faster array. The amount of data that can be stored in the faster
array depends on the size of your array and the total number of LevelDB
databases (i.e. the total number of Riak [[vnodes|Riak Glossary#vnode]])
in your cluster. The following table shows approximate sizes (in
megabytes) for each of the following sizes: the amount of raw data
stored in the level, the cumulative size of all levels up to the
specified level, and the cumulative size including active anti-entropy
data.


Level | Level Size | Cumulative Size | Cumulative with AAE
:—–|:———–|:—————-|:——————-
0 | 360 | 360 | 720
1 | 2,160 | 2,520 | 5,040
2 | 2,940 | 5,460 | 10,920
3 | 6,144 | 11,604 | 23,208
4 | 122,880 | 134,484 | 268,968
5 | 2,362,232 | 2,496,716 | 4,993,432
6 | not limited | not limited | not limited


To select the appropriate value for leveldb.tiered, use the following
steps:



		Determine the value of (ring size) / (N - 1), where ring size is the
value of the ring_size configuration parameter and N is the number
of nodes in the cluster. For a ring_size of 128 and a cluster with
10 nodes, the value would be 14.


		Select either the Cumulative Size or Cumulative with AAE
column from the table above. Select the third column if you are not
using active anti-entropy or the fourth column if you are (i.e. if the
anti_entropy [[configuration parameter|Configuration
Files#active-anti-entropy]] is set to active).


		Multiply the value from the first step by the cumulative column in
each row in the table. The first result that exceeds your fast storage
array capacity will provide the level number that should be used for
your leveldb.tiered setting.








Migrating from One Configuration to Another


If you want to use tiered storage in a new Riak installation, you don’t
need to take any steps beyond setting configuration. The rest is
automated.


But if you’d like to use tiered storage in an existing installation that
is not currently using it, you will need to manually move your
installation’s .sst files from one configuration to another.








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/advanced/configs/configuration-files.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Configuration Files
project: riak
version: 1.0.0+
document: reference
audience: intermediate
moved: {
‘1.4.0-‘: ‘/references/Configuration-Files’
}




Riak has a riak.conf configuration file located in /etc if you are
using a source install or in /etc/riak or /usr/local/etc if you used
a binary install.


The riak.conf file is used to set a wide variety of attributes for the
node, from the storage backend that the node will use to store data to
the location of SSL-related files to sibling resolution parameters and
beyond.



Note on upgrades to 2.0

If your cluster is currently running a version of Riak prior to 2.0 and
you'd like to upgrade to version 2.0 or later, you may continue to use
your old `app.config` and `vm.args` files. You may also use the newer
`riak.conf` alongside them, but please be aware that any settings in
`app.config` or `vm.args` will override settings in `riak.conf`.


Retrieving a Configuration Listing


At any time, you can get a snapshot of currently applied configurations
through the command line. For a listing of all of the configs
currently applied in the node:


riak config effective



This will output a long list of the following form:


anti_entropy = active
anti_entropy.bloomfilter = on
anti_entropy.concurrency_limit = 2
# and so on



For detailed information about a particular configuration variable, use
the config describe <variable> command. This command will output a
description of what the parameter configures, which datatype you should
use to set the parameter (integer, string, enum, etc.), the default
value of the parameter, the currently set value in the node, and the
name of the parameter in app.config in older versions of Riak (if
applicable).


For in-depth information about the ring_size variable, for example:


riak config describe ring_size



This will output the following:


Documentation for ring_size
Number of partitions in the cluster (only valid when first
creating the cluster). Must be a power of 2, minimum 8 and maximum
1024.

   Datatype     : [integer]
   Default Value: 64
   Set Value    : undefined
   app.config   : riak_core.ring_creation_size






Checking Your Configuration


The [[riak|riak Command Line]] command line tool has a
[[chkconfig|riak Command Line#chkconfig]] command that enables you to
determine whether the syntax in your configuration files is correct.


riak chkconfig



If your configuration files are syntactically sound, you should see the
output config is OK followed by a listing of files that were checked.
You can safely ignore this listing. If, however, something is
syntactically awry, you’ll see an error output that provides details
about what is wrong. To give an example, the search.solr.jmx_port
setting (in the [[Search|Configuration Files#Search]] section below)
must be set as an integer. Imagine that we set it to something else:


search.solr.jmx_port = banana



If we run riak chkconfig now, we’ll get an error:


[error] Error generating configuration in phase transform_datatypes
[error] Error transforming datatype for: search.solr.jmx_port
[error] "banana" can't be converted to an integer



The error message will specify which configurable parameters are
syntactically unsound and attempt to provide an explanation why.


Please note that the chkconfig command only checks for syntax. It will
not be able to discern if your configuration is otherwise unsound,
e.g. if your configuration will cause problems on your operating system
or doesn’t activate subsystems that you would like to use.





Debugging Your Configuration


If there is a problem with your configuration but you’re having trouble
identifying the problem, there is a command that you can use to debug
your configuration:


riak config generate -l debug



If there are issues with your configuration, you will see detailed
output that might provide a better sense of what has gone wrong in the
config generation process.





The advanced.config file


For most Riak installations, the riak.conf file should be sufficient
for configuration management. But some installations, particularly those
upgrading from an earlier version of Riak to version 2.0 or later, may
need to make use of an advanced.config file to control some settings
available only in versions prior to 2.0. If this applies to your
installation, please see the [[Advanced Configuration|Configuration
Files#Advanced-Configuration]] section below.





Node Metadata


Every Riak node has a name and a cookie used to facilitate inter-node
communication. The following parameters enable you to customize the name
and cookie.





		Config
		Description
		Default





		distributed_cookie
		Cookie for distributed node communication within a Riak cluster.
All nodes in the same cluster should use the same cookie or they will
not be able to communicate.
		riak



		nodename
		The name of the Riak node.
		riak@127.0.0.1



		ring_size
		Number of partitions in the cluster (only valid when first creating
the cluster). Must be a power of 2. The minimum is 8 and the maximum is
1024.
		64








Ring


Configurable parameters for your cluster’s [[ring|Clusters#the-ring]].





		Config
		Description
		Default





		ring.state_dir
		Default location of ringstate.
		./data/ring



		ring_size
		Number of partitions in the cluster (only valid when first creating
the cluster). Must be a power of 2. The minimum is 8 and the maximum is
1024.
		64



		transfer_limit
		Number of concurrent node-to-node transfers allowed.
		2








Storage Backend


Riak enables you to choose from the following storage backends:



		[[Bitcask]] — [[configuration|Configuration Files#Bitcask]]


		[[LevelDB]] — [[configuration|Configuration Files#LevelDB]]


		[[Memory]] — [[configuration|Configuration Files#Memory-Backend]]


		[[Multi]] — [[configuration|Configuration Files#Multi-Backend]]








		Config
		Description
		Default





		storage_backend
		Specifies the storage engine used for Riak's key-value data and
secondary indexes (if supported).

The available options are
bitcask (the default), leveldb,
memory, and multi.
		bitcask








Directories


The directories in which Riak stores data, logs, dependencies,
executables, and configuration files can be configured using the
parameters below.





		Config
		Description
		Default





		platform_bin_dir
		The directory in which the [[riak|riak Command Line]],
[[riak-admin|riak-admin Command Line]],
riak-debug, and now-deprecated search-cmd
executables are stored.
		./bin



		platform_data_dir
		The directory in which Riak stores its storage backend data, as well
as [[ring state|Clusters]] data, [[active anti-entropy]] data, and
[[cluster metadata]].
		./data



		platform_etc_dir
		The directory in which Riak's configuration files are stored.
		./etc



		platform_lib_dir
		The directory in which Riak's dependencies are housed.
		./lib



		platform_log_dir
		The directory in which Riak's log files are stored, e.g.
console.log, erlang.log, and
crash.log files.
		./log





Each of these directory parameters can be used to construct values for
other parameters by placing it within a $(...). Thus,
platform_log_dir becomes $(platform_log_dir) and so on.


To give an example, you can select the directory used by Riak’s [[active
anti-entropy|Configuration Files#active-anti-entropy]] system using the
anti_entropy.data_dir parameter. When setting that parameter, you can
specify an absolute directory, as below:


anti_entropy.data_dir = /path/to/anti_entropy



Or you can use the value of platform_data_dir:


anti_entropy.data_dir = $(platform_data_dir)/anti_entropy






Search


Configuration parameters for [[Riak Search|Using Search]].





		Config
		Description
		Default





		search
		To enable Search, set this to on.
		off



		search.anti_entropy.data_dir
		The directory in which Search's Active Anti-Entropy data files are
stored
		./data/yz_anti_entropy



		search.root_dir
		The root directory for Riak Search, under which index data and
configuration is stored.
		./data/yz



		search.solr.jmx_port
		The port to which Solr JMX binds.



Note: Binds on every interface.
		8985



		search.solr.jvm_options
		The options to pass to the Solr JVM. Non-standard options, i.e.
-XX, may not be portable across JVM implementations.
Example: XX:+UseCompressedStrings
		-d64 -Xms1g -Xmx1g -XX:+UseStringCache
-XX:+UseCompressedOops



		search.solr.port
		The port to which Solr binds.



Note: Binds on every interface.
		8093



		search.solr.start_timeout
		How long Riak will wait for Solr to start. The start sequence will
be tried twice. If both attempts time out, the Riak node will be shut
down. This may need to be increased as more data is indexed and Solr
takes longer to start. Values lower than 1s will be rounded
up to the minimum 1s.
		30s








LevelDB


Configurable parameters for Riak’s [[LevelDB]] storage backend.



Note on upgrading to 2.0

If you are upgrading to Riak 2.0+ from a 1.x version, using LevelDB, and
wish to use your old configuration files, i.e. `app.config` and
`vm.args`, please note that you must set the `total_leveldb_mem_percent`
setting in the `eleveldb` section of `app.config`. We recommend setting
it to `70`. If you do not set this parameter, it will default to 15,
which can lead to problems in some clusters.




		Config
		Description
		Default





		leveldb.block_cache_threshold
		This setting defines the limit past which block cache memory can no
longer be released in favor of the page cache. This setting has no
impact in favor of file cache. The value is set on a per-vnode basis.

		32MB



		leveldb.compaction.trigger.tombstone_count
		Controls when a background compaction initiates solely due to the
number of delete tombstones within an individual .sst table
file. A value of off disables the feature.
		1000



		leveldb.compression
		Enabling this setting (on), which is the default,
saves disk space. Disabling it may reduce read latency but increase
overall disk activity. This option can be changed at any time, but it
will not impact data on disk until the next time a file requires
compaction.
		on



		leveldb.data_root
		The directory in which LevelDB will store its data.
		./data/leveldb



		leveldb.fadvise_willneed
		Option to override LevelDB's use of fadvise(DONTNEED)
with fadvise(WILLNEED) instead. WILLNEED can
reduce disk activity on systems where physical memory exceeds the
database size.
		false



		leveldb.maximum_memory
		This parameter defines the server memory (in bytes) to assign to
LevelDB. Also see leveldb.maximum_memory.percent to set
LevelDB memory as a percentage of system total.
		80



		leveldb.maximum_memory.percent
		This parameter defines the percentage of total server memory to
assign to LevelDB. LevelDB will dynamically adjust its internal cache
sizes to stay within this size. The memory size can alternately be
assigned as a byte count via leveldb.maximum_memory
instead.
		70



		leveldb.threads
		The number of worker threads performing LevelDB operations.
		71



		leveldb.verify_checksums
		Enables or disables the verification of the data fetched from
LevelDB against internal checksums.
		on



		leveldb.verify_compaction
		Enables or disables the verification of LevelDB data during
compaction.
		on



		leveldb.block.size_steps
		Defines the number of incremental adjustments to attempt between the
block.size value and the maximum block.size
for an .sst table file. A value of zero disables the
underlying dynamic block_size feature.
		16



		leveldb.block.restart_interval
		Defines the key count threshold for a new key entry in the key
index for a block. Most deployments should leave this parameter alone.

		16



		leveldb.block.size
		Defines the size threshold for a block/chunk of data within one
.sst table file. Each new block gets an index entry in the
.sst table file's master index.
		4KB



		leveldb.bloomfilter
		Each database .sst table file can include an optional
"bloom filter" that is highly effective in shortcutting data queries
that are destined to not find the requested key. The Bloom filter
typically increases the size of an .sst table file by about
2%.
		on



		leveldb.write_buffer_size_min
		Each vnode first stores new key/value data in a memory-based write
buffer. This write buffer is in parallel to the recovery log mentioned
in the sync parameter. Riak creates each vnode with a
randomly sized write buffer for performance reasons. The random size is
somewhere between write_buffer_size_min and
write_buffer_size_max.
		30MB



		leveldb.write_buffer_size_max
		See leveldb.write_buffer_size_min directly above.
		60MB



		leveldb.limited_developer_mem
		This is a Riak-specific option that is used when a developer is
testing a high number of vnodes and/or several VMs on a machine with
limited physical memory. Do not use this option if making
performance measurements. This option overwrites values given to
write_buffer_size_min and
write_buffer_size_max.
		off



		leveldb.sync_on_write
		Whether LevelDB will flush after every write.


Note: If you are familiar with fsync, this is analogous
to calling fsync after every write.
		off



		leveldb.tiered
		The level number at which LevelDB data switches from the faster to
the slower array. The default of off disables the
feature.
		off



		leveldb.tiered.path.fast
		The path prefix for .sst files below the level set by
leveldb.tiered.
		



		leveldb.tiered.path.slow
		The path prefix for .sst files below the level set by
leveldb.tiered.
		








Bitcask


Configurable parameters for Riak’s [[Bitcask]] storage backend.





		Config
		Description
		Default





		bitcask.data_root
		The directory under which Bitcask will store its data.
		./data/bitcask



		bitcask.io_mode
		Configure how Bitcask writes data to disk. If set to
erlang, writes are made via Erlang's built-in file API; if
set to nif, writes are made via direct calls to the POSIX C
API. The nif mode provides higher throughput for certain
workloads, but has the potential to negatively impact the Erlang VM,
leading to higher worst-case latencies and possible throughput collapse

		erlang



		bitcask.expiry
		By default, Bitcask keeps all of your data around. If your data has
limited time value, or if you need to purge data for space reasons, you
can set the expiry option. For example, if you need to
purge data automatically after 1 day, set the value to 1d.
off disables automatic expiration
		off



		bitcask.expiry.grace_time
		By default, Bitcask will trigger a merge whenever a data file
contains an expired key. This may result in excessive merging under some
usage patterns. To prevent this you can set the
bitcask.expiry.grace_time option. Bitcask will defer
triggering a merge solely for key expiry by the configured number of
seconds. Setting this to 1h effectively limits each cask to
merging for expiry once per hour.
		0



		bitcask.hintfile_checksums
		Whether to allow the CRC to be present at the end of hintfiles.
Setting this to allow_missing runs Bitcask in a
backwards-compatible mode in which old hint files will still be accepted
without CRC signatures.
		strict



		bitcask.fold.max_puts
		See the description for the bitcask.fold.max_age
config directly below.
		0



		bitcask.fold.max_age
		Fold keys thresholds will reuse the keydir if another fold was
started less than fold.max_age ago and there were fewer
than fold.max_puts updates. Otherwise, it will wait until
all current fold keys complete and then start. Set either option to
unlimited to disable.
		unlimited



		bitcask.merge.thresholds.fragmentation
		Describes which ratio of dead keys to total keys in a file will
cause it to be included in the merge. The value of this setting is a
percentage from 0 to 100. For example, if a data file contains 4 dead
keys and 6 live keys, it will be included in the merge at the default
ratio (which is 40). Increasing the value will cause fewer files to be
merged, decreasing the value will cause more files to be merged.
		40



		bitcask.merge.thresholds.dead_bytes
		Describes the minimum amount of data occupied by dead keys in a file
to cause it to be included in the merge. Increasing the value will cause
fewer files to be merged, whereas decreasing the value will cause more
files to be merged.
		128MB



		bitcask.merge.thresholds.small_file
		Describes the minimum size a file must have to be excluded from the
merge. Files smaller than the threshold will be included. Increasing
the value will cause more files to be merged, whereas decreasing the
value will cause fewer files to be merged.
		10MB



		bitcask.merge.triggers.dead_bytes
		Describes how much data stored for dead keys in a single file will
trigger merging. If a file meets or exceeds the trigger value for dead
bytes, merge will be triggered. Increasing the value will cause merging
to occur less often, whereas decreasing the value will cause merging to
happen more often. When either of these constraints are met by any file
in the directory, Bitcask will attempt to merge files.
		512MB



		bitcask.merge.triggers.fragmentation
		Describes which ratio of dead keys to total keys in a file will
trigger merging. The value of this setting is a percentage from 0 to
100. For example, if a data file contains 6 dead keys and 4 live keys,
then merge will be triggered at the default setting. Increasing this
value will cause merging to occur less often, whereas decreasing the
value will cause merging to happen more often.
		60



		bitcask.merge.window.end
		See the description of the bitcask.merge.policy config
below.
		23



		bitcask.merge.window.start
		See the description of the bitcask.merge.policy config
below.
		0



		bitcask.merge.policy
		Lets you specify when during the day merge operations are allowed to
be triggered. Valid options are: always, meaning no
restrictions; never, meaning that merging will never be
attempted; and window, specifying the hours during which
merging is permitted, where bitcask.merge.window.start and
bitcask.merge.window.end are integers between 0 and 23. If
merging has a significant impact on performance of your cluster, or your
cluster has quiet periods in which little storage activity occurs, you
may want to change this setting from the default.
		always



		bitcask.merge_check_interval
		Bitcask periodically runs checks to determine whether merges are
necessary. This parameter determines how often those checks take place.
Expressed as a time unit, e.g. `10s` for 10 seconds, `5m` for 5 minutes,
etc.
		3m



		bitcask.merge_check_jitter
		In order to prevent merge operations from taking place on different
nodes at the same time, Riak can apply random variance to merge times,
expressed as a percentage of bitcask.merge_check_interval.

		30%



		bitcask.max_merge_size
		Maximum amount of data to merge in one go in the Bitcask backend.

		100GB



		bitcask.max_file_size
		Describes the maximum permitted size for any single data file in the
Bitcask directory. If a write causes the current file to exceed this
size threshold then that file is closed, and a new file is opened for
writes.
		2GB



		bitcask.sync.interval
		See the description of the bitcask.sync.strategy
directly below.
		



		bitcask.sync.strategy
		Changes the durability of writes by specifying when to synchronize
data to disk. The default setting protects against data loss in the
event of application failure (process death) but leaves open a small
window in which data could be lost in the event of complete system
failure (e.g. hardware, OS, or power). The default mode,
none, writes data into operating system buffers which will
be written to the disks when those buffers are flushed by the operating
system. If the system fails, e.g. due power loss or crash, that data is
lost before those buffers are flushed to stable storage.  This is
prevented by the setting o_sync, which forces the operating
system to flush to stable storage at every write. The effect of flushing
each write is better durability, however write throughput will suffer as
each write will have to wait for the write to complete.  Available sync
strategies: none, which will let the operating system
manage syncing writes; o_sync, which will uses the
O_SYNC flag to force syncs on every write; and
interval, by which will force Bitcask to sync every
bitcask.sync.interval seconds.
		none



		bitcask.open_timeout
		Specifies the maximum time Bitcask will block on startup while
attempting to create or open the data directory. You generally need not
change this value. If for some reason the timeout is exceeded on open
you'll see a log message of the form Failed to start bitcask
backend: .... . Only then should you consider a longer timeout.

		4s








Memory Backend


Configurable parameters for Riak’s [[Memory]] backend.





		Config
		Description
		Default





		memory_backend.ttl
		Each value written will be written with this "time to live." Once
that object's time is up, it will be deleted on the next read of its
key. Minimum: 1s.
		



		memory_backend.max_memory_per_vnode
		The maximum amount of memory consumed per vnode by the memory
storage backend. Minimum: 1MB.
		








Multi Backend


Configurable parameters for Riak’s [[Multi]] backend, which enables you
to utilize multiple data backends in a single Riak cluster.


If you are using multiple backends, you can configure the backends
individually by prepending the setting with multi_backend.$name, where
$name is the name of the backend. $name can be any valid
configuration word, like customer_data, my_data, foo_bar_backend,
etc.


Below is the general form for setting multi-backend parameters:


multi_backend.$name.(existing_setting) = <setting>
# or
multi_backend.$name.$backend_type.(backend_specific_setting) = <setting>



Below is a listing of the available parameters:





		Config
		Description
		Default





		multi_backend.$name.storage_backend
		This parameter specifies the Erlang module defining the storage
mechanism that will be used on this node.
		bitcask



		multi_backend.default
		The default name of a backend when one is not specified.
		





To give an example, if you have a LevelDB backend named
customer_backend and wish to set the data_root parameter to
$(platform_data_dir)/leveldb_backends/customer_backend/, you would
do so as follows:


multi_backend.customer_backend.storage_backend = leveldb
multi_backend.customer_backend.leveldb.data_root = $(platform_data_dir)/leveldb_backends/customer_backend
multi_backend.customer_backend.leveldb.maximum_memory.percent = 50






Riak Control


Riak Control is a web-based administrative console for inspecting and
manipulating Riak clusters. The configurable parameters below enable you
to turn the Riak Control subsystem on and off and to configure console
authorization.





		Config
		Description
		Default





		riak_control
		Set to off to disable the admin panel.
		off



		riak_control.auth.mode
		Authentication mode used for access to the admin panel. Options are
off (which is the default) or userlist.
		off



		riak_control.auth.user.$username.password
		If Riak Control's authentication mode
(riak_control.auth.mode) is set to userlist,
this is the list of usernames and passwords for access to the admin
panel.
		








Runtime Health


Configurable parameters for interaction between Riak and the underlying
operating system.





		Config
		Description
		Default





		runtime_health.triggers.distribution_port
		Whether distribution ports with full input buffers will be counted
as busy. Distribution ports connect Riak nodes within a single cluster.

		on



		runtime_health.triggers.port
		Whether ports with full input buffers will be counted as busy.
Ports can represent open files or network sockets.
		on



		runtime_health.triggers.process.heap_size
		A process will become busy when its heap exceeds this size
(in bytes).
		160444000



		runtime_health.triggers.process.garbage_collection
		A process will become busy when it exceeds this amount of time doing
garbage collection. Set as an integer plus time unit, e.g. `50ms` for 50
milliseconds, `5s` for 5 seconds, etc.Note: Enabling
this setting can cause performance problems on multi-core systems.
		off



		runtime_health.triggers.process.long_schedule
		A process will become busy when it exceeds this amount of time
during a single process scheduling and execution cycle. Set as an integer
plus time unit, e.g. `50ms` for 50 milliseconds, `5s` for 5 seconds,
etc.
		off



		runtime_health.thresholds.busy_ports
		The threshold at which a warning will be triggered about the number
of ports that are overly busy. Ports with full input buffers count
toward this threshold.
		2



		runtime_health.thresholds.busy_processes
		The threshold at which to warn a warning will be triggered about the
number of processes that are overly busy. Processes with large heaps or
that take a long time to garbage collect will count toward this
threshold.
		30








Default Bucket Properties


When configuring buckets [[using bucket types]], the table below lists
the bucket properties that are used when no bucket type is specified.





		Config
		Description
		Default





		buckets.default.allow_mult
		Whether or not siblings are allowed



Note: See 
Conflict Resolution for a discussion of siblings.
		true



		buckets.default.basic_quorum
		Whether not-founds will invoke the "basic quorum" optimization.
This setting will short-circuit fetches where the majority of replicas
report that the key is not found. Only used when
notfound_ok is set to false.
		false



		buckets.default.dw
		The number of replicas which must reply to a write request
indicating that the write was committed to durable storage for the write
to be deemed successful.
		quorum



		buckets.default.last_write_wins
		Whether conflicting writes resolve via timestamp.
		false



		buckets.default.merge_strategy
		The strategy used when merging objects that potentially have
conflicts. The default is 2 in Riak 2.0 for typed buckets
and 1 for non-typed buckets. This setting reduces sibling
creation through additional metadata on each sibling (also known as Dotted
Version Vectors). Setting this to 1 is the default for
Riak 1.4 and earlier, and may duplicate siblings that originated in the
same write.
		1



		buckets.default.n_val
		The number of replicas stored.



Note: See
Replication Properties
for further discussion.
		3



		buckets.default.notfound_ok
		Whether not-founds will count toward a quorum of reads.
		true



		buckets.default.postcommit
		A space-delimited list of functions that will be run after a value
is stored. Only Erlang functions are allowed, using the
module:function format.
		



		buckets.default.precommit
		A space-delimited list of functions that will be run before a value
is stored, and that can abort the write. Only Erlang functions are
allowed, using the module:function format.
		



		buckets.default.pr
		The number of primary, non-fallback replicas that must reply to a
read request.
		0



		buckets.default.pw
		The number of primary, non-fallback replicas which must reply to a
write request.
		0



		buckets.default.r
		The number of replicas which must reply to a read request.
		quorum



		buckets.default.w
		The number of replicas which must reply to a write request,
indicating that the write was received.
		quorum



		buckets.default.rw
		The number of replicas which must reply to a delete request.
		quorum








Object Settings


Configurable parameters for [[conflict resolution]] and dealing with
[[sibling explosion|Causal Context#Sibling-Explosion]].





		Config
		Description
		Default





		object.format
		Controls which binary representation of a riak value is stored on
disk. Options are 0, which will use the original
erlang:term_to_binary format but has a higher space
overhead, or 1, which will tell Riak to utilize a new
format for more compact storage of small values.
		1



		object.siblings.maximum
		Writing an object with more than this number of siblings will send
a failure to the client.
		100



		object.siblings.warning_threshold
		Writing an object with more than this number of siblings will
generate a warning in the logs.
		25



		object.size.maximum
		Writing an object larger than this will send a failure to the
client.
		50MB



		object.size.warning_threshold
		Reading or writing objects larger than this size will write a
warning in the logs.
		5MB








Erlang VM


In the older configuration system, the Erlang VM in which Riak runs was
configured using a vm.args file. In the new, riak.conf-based
system, the Erlang VM can be configured using the parameters in the
table below.





		Config
		Description
		Default





		erlang.async_threads
		The number of threads in the Erlang VM's asynchronous thread pool.
The valid range is 0-1024. If thread support is not available, this
parameter will have no impact; if thread support is available, the
default value is 64. This is the equivalent of the +A flag.
More information can be found here.

		64 (if thread support is available)



		erlang.async_threads.stack_size
		If thread support is available in your Erlang VM, this parameter
sets the amount of memory allocated to each asynchronous thread, which
you can set as KB, MB, GB, etc. The valid range is 16-8192 kilowords,
which translates to 64-32768 KB on 32-bit architectures. Although there
is no default, we suggest a stack size of 16 kilowords, which translates
to 64 KB. This small default size has been chosen because the number of
asynchronous threads, set using the erlang.async_threads
parameter explained above, might be quite large. The 64 KB default is
enough for drivers delivered with Erlang/OTP but might not be large
enough to accommodate drivers that use the driver_async()
functionality, documented here.
		



		erlang.distribution.net_ticktime
		The net kernel is an Erlang system process that provides various
forms of network monitoring. In a Riak cluster, one of the functions of
the net kernel is to periodically check node liveness. Tick
time is the frequency with which those checks happen. This
parameter determines that frequency for every N. If you set
this parameter to 10, for example, the tick will occur once
every 10 seconds.
		



		erlang.distribution.port_range.minimum
		For ease of firewall configuration, the Erlang distribution can be
bound to a limited range of TCP ports. If this parameter is set, and
erlang.distribution.port_range.maximum is not set, only
this port will be used. If the minimum is unset, no restriction will be
made on the port range. Instead, Erlang will listen on a random
high-numbered port. More information here and here.
		



		erlang.distribution.port_range.maximum
		See the description for
erlang.distribution.port_range.minimum directly above.

		



		erlang.schedulers.force_wakeup_interval
		Set the scheduler forced wakeup interval. All run queues will be
scanned each time period specified (in milliseconds). While there are
sleeping schedulers in the system, one scheduler will be woken for each
non-empty run queue found. An interval of zero disables this feature,
which is the default. This feature is a workaround for lengthy executing
native code, and native code that does not properly bump reductions.
More information here.
		



		erlang.schedulers.compaction_of_load
		Enables or disables the Erlang scheduler's compaction of load. When
enabled (which is the default), load balancing will strive to establish
a load distribution that causes as many scheduler threads as possible to
be fully loaded, i.e. not to run out of scheduled work. This is
accomplished by migrating load, such as running processes, into a
smaller set of schedulers when schedulers frequently run out of work.
When disabled, the frequency at which schedulers run out of work will
not be taken into account by the load balancing logic.
		true (enabled)



		erlang.schedulers.utilization_balancing
		Enables or disables the Erlang scheduler's balancing of load. By
default, scheduler utilization of balancing is disabled while scheduler
compaction of load is enabled, i.e.
erlang.schedulers.compaction_of_load is set to
true. In this state, the Erlang VM will strive for a load
distribution which causes as many scheduler threads as possible to be
fully loaded, i.e. to not run out of work. When load balancing is
enabled using this setting, the system will attempt to equally scheduler
utilization between schedulers.
		false (disabled)



		erlang.distribution_buffer_size
		For nodes with many busy_dist_port events, Basho
recommends raising the sender-side network distribution buffer size.
32MB may not be sufficient for some workloads and is a suggested
starting point. Erlangers may know this as +zdbbl. See more
here
.
		32MB



		erlang.process_limit
		Raises the default Erlang process limit
		256000



		erlang.max_ets_tables
		Raises the ETS table limit
		256000



		erlang.crash_dump
		Sets the location of crash dumps
		./log/erl_crash.dump



		erlang.fullsweep_after
		A non-negative integer which indicates how many times generational
garbage collections can be done without forcing a fullsweep collection.
In low-memory systems (especially without virtual memory), setting the
value to 0 can help to conserve memory. More information here.

		0



		erlang.max_ports
		The number of concurrent ports/sockets. The valid range is 1024 to
134217727.
		65536



		erlang.K
		Enables or disables the kernel poll functionality if the emulator
supports it. If the emulator does not support kernel poll, and the
K flag is passed to the emulator, a warning is issued at
startup. Similar information here.
		on



		erlang.schedulers.total
		Sets the number of scheduler threads to create and scheduler
threads to set online when erlang.smp support has been
enabled. The maximum for both values is 1024. If the Erlang runtime
system is able to determine the amount of logical processors configured
and logical processors available, schedulers.total will
default to logical processors configured, and
schedulers.online will default to the number of logical
processors available. Otherwise, the default values will be 1.
Schedulers may be omitted if schedulers.online is not and
vice versa. If schedulers.total or
schedulers.online is specified as a negative number, the
value is subtracted from the default number of logical processors
configured or logical processors available, respectively. Specifying
the value 0 for Schedulers or
SchedulersOnline resets the number of scheduler threads or
scheduler threads online respective to its default value. This option
is ignored if the emulator doesn't have SMP support enabled (see the
erlang.smp flag). More information
here.

		



		erlang.schedulers.online
		See the description for erlang.schedulers.total
directly above.
		



		erlang.W
		Sets the mapping of warning messages for error_logger.
Messages sent to the error logger using one of the warning routines can
be mapped either to errors, warnings (w,
which is the default), or info reports (i).
		w



		erlang.smp
		Starts the Erlang runtime system with SMP support enabled. This may
fail if no runtime system with SMP support is available. The
auto setting starts the Erlang runtime system with SMP
support enabled if it is available and more than one logical processor
is detected. A value of disable starts a runtime system
without SMP support. Note: The runtime system with SMP
support will not be available on all supported platforms. See also the
erlang.schedulers settings. Some native extensions (NIFs)
require use of the SMP emulator. More information here.
		enable



		erlang.shutdown_time
		Limits how long the Erlang VM spends shutting down. After the
specified duration elapses, all existing processes are killed.
		10s








JavaScript MapReduce


Configurable parameters for Riak’s now-deprecated JavaScript
[[MapReduce|Using MapReduce]] system.





		Config
		Description
		Default





		javascript.source_dir
		A directory containing the Javascript source files which will be
loaded by Riak when it initializes Javascript VMs.
		



		javascript.maximum_stack_size
		The maximum amount of thread stack memory to allocate to each
JavaScript virtual machine.
		16MB



		javascript.maximum_heap_size
		The maximum amount of memory allocated to each JavaScript virtual
machine.
		8MB



		javascript.hook_pool_size
		The number of JavaScript virtual machines available for executing
pre-commit hook functions.
		2



		javascript.reduce_pool_size
		The number of JavaScript virtual machines available for executing
reduce functions.
		6



		javascript.map_pool_size
		The number of JavaScript virtual machines available for executing
map functions.
		8








Security


Configurable parameters for [[Riak Security|Authentication and
Authorization]].





		Config
		Description
		Default





		ssl.cacertfile
		The default signing authority location for HTTPS.
		#(platform_etc_dir)/cacertfile.pem



		ssl.keyfile
		Default key location for HTTPS.
		#(platform_etc_dir)/key.pem



		ssl.certfile
		Default cert location for HTTPS.
		#(platform_etc_dir)/cert.pem



		secure_referer_check
		Measures were added to Riak 1.2 to counteract cross-site scripting
and request-forgery attacks. Some reverse proxies cannot remove the
Referer header and make serving data directly from Riak
impossible. Turning this setting to off disables this
security check.
		on



		check_crl
		Whether to check the certificate
revocation list (CRL) of a client certificate. This defaults to
on but some CAs may not maintain or define a CRL, so this
can be disabled if no CRL is available.
		on



		tls_protocols.sslv3
		Determine which SSL/TLS versions are allowed. By default, only TLS
1.2 is allowed, but other versions can be enabled if clients don't
support the latest TLS standard. It is strongly recommended that SSLv3
not be enabled unless absolutely necessary. More than one protocol can
be enabled at once. The tls_protocols parameters below can
be used to turn different versions on and off.
		off



		tls_protocols.tlsv1.2
		
		on



		tls_protocols.tlsv1.1
		
		off



		tls_protocols.tlsv1
		
		off



		honor_cipher_order
		Whether to prefer the order in which the server lists its ciphers.
When set to off, the client's preferred cipher order
dictates which cipher is chosen.
		on








Client Interfaces


Configurable parameters for clients connecting to Riak either through
Riak’s [[Protocol Buffers|PBC API]] or [[HTTP|HTTP API]] API.





		Config
		Description
		Default





		protobuf.nagle
		Turns off Nagle's algorithm for Protocol Buffers connections. This
is equivalent to setting the TCP_NODELAY option on the
socket.
		off



		protobuf.backlog
		The maximum length to which the queue of pending connections may
grow. If set, it must be an integer greater than zero. If you
anticipate a huge number of connections being initialized
simultaneously, set this number higher.
		128



		listener.protobuf.$name
		This is the IP address and TCP port to which the Riak Protocol
Buffers interface will bind.
		{"127.0.0.1",8087}



		listener.http.$name
		This is the IP address and TCP port to which the Riak HTTP
interface will bind.
		{"127.0.0.1",8098}



		listener.https.$name
		This is the IP address and TCP port to which the Riak HTTPS
interface will bind.
		








Logging


Configurable parameters for lager [https://github.com/basho/lager],
Riak’s logging system.





		Config
		Description
		Default





		log.console
		Where to emit the default log messages (typically at
info severity). Possible values: off, which
disables console log messages; file, which specifies that
log messages will be output to the file specified by
log.console.file; console, which outputs
messages to standard output (seen when using riak
attach-direct); or both, which outputs messages both
to the file specified in log.console.file and to standard
out.
		file



		log.console.file
		When log.console is set to file or
both, this parameter determines the path of the file to
which console messages will be logged.
		./log/console.log



		log.console.level
		The severity level of the console log. Possible
values:

		debug


		info


		warning


		error





		info



		log.crash
		Whether to enable the crash log
		on



		log.crash.file
		If the crash log is enabled, the file where its messages will be
written
		./log/crash.log



		log.crash.maximum_message_size
		Maximum size of individual messages in the crash log
		64KB



		log.crash.rotation
		The schedule on which to rotate the crash log. More information here.

		$D0



		log.crash.rotation.keep
		The number of rotated crash logs to keep. When set to
current, only the current open log file is kept.
Otherwise, an integer can be specified.
		5



		log.crash.size
		Maximum size of the crash log before it is rotated
		10MB



		log.error.file
		The file where error messages will be logged.
		./log/error.log



		log.error.messages_per_second
		Maximum number of error_logger messages to handle per
second
		100



		log.error.redirect
		Whether to redirect error_logger messages into
lager
		on



		log.syslog
		When set to on, enables log output to syslog
		off



		log.syslog.facility
		Sets the facility
level of syslog output if log.syslog is set to
on. Possible values:
		auth

		authpriv


		clock

		cron


		daemon

		ftp


		kern

		lpr


		mail

		news


		syslog

		user


		uucp




In addition to these settings, you may also select local0
through local7.
		daemon



		log.syslog.ident
		If log.syslog is set to on, this setting
determines the prefix appended to each syslog message.
		riak



		log.syslog.level
		If log.syslog is set to on, this setting
determines the log level of syslog output. Possible values:
		alert

		critical


		debug

		emergency


		error

		info

none		notice


		warning




		info



		sasl
		Whether to enable sasl, Erlang's
built-in error logger
		off








Active Anti-Entropy


Configurable parameters for Riak’s [[active anti-entropy|Managing
Active Anti-Entropy]] subsystem.





		Config
		Description
		Default





		anti_entropy
		How Riak will repair out-of-sync keys. If set to
active, out-of-sync keys will be repaired in the
background; if set to passive, out-of-sync keys are only
repaired on read; and if set to active-debug, verbose
debugging information will be output.
		active



		anti_entropy.throttle
		Whether the distributed throttle for Active Anti-Entropy is
enabled.
		on



		anti_entropy.throttle.$tier.mailbox_size
		Sets the throttling tiers for Active Anti-Entropy. Each tier is a
minimum vnode mailbox size and a time-delay that the throttle should
observe at that size and above. For example,
anti_entropy.throttle.tier1.mailbox_size = 0,
anti_entropy.throttle.tier1.delay = 0ms,
anti_entropy.throttle.tier2.mailbox_size = 40,
anti_entropy.throttle.tier2.delay = 5ms, etc. If
configured, there must be a tier which includes a mailbox size of 0.
Both .mailbox_size and .delay must be set for
each tier.
		



		anti_entropy.throttle.$tier.delay
		See the description for
anti_entropy.throttle.$tier.mailbox_size above.
		



		anti_entropy.bloomfilter
		Bloom filters are highly effective in shortcutting data queries
that are destined to not find the requested key, though they tend to
entail a small performance cost.
		on



		anti_entropy.max_open_files
		
		20



		anti_entropy.write_buffer_size
		The LevelDB options used by Active Anti-Entropy to generate the
LevelDB-backed on-disk hashtrees.
		4MB



		anti_entropy.data_dir
		The directory where AAE hash trees are stored.
		./data/anti_entropy



		anti_entropy.trigger_interval
		The tick determines how often the Active Anti-Entropy manager looks
for work to do (building/expiring trees, triggering exchanges, etc).
Lowering this value will speed up the rate at which all replicas are
synced across the cluster. Increasing the value is not recommended.

		15s



		anti_entropy.concurrency_limit
		Limit how many Active Anti-Entropy exchanges or builds can happen
concurrently.
		2



		anti_entropy.tree.expiry
		Determines how often hash trees are expired after being built.
Periodically expiring a hash tree ensures that the on-disk hash tree
data stays consistent with the actual K/V backend data. It also helps
Riak identify silent disk failures and bit rot. However, expiration is
not needed for normal active anti-entropy operations and should be
infrequent for performance reasons. The time is specified in
milliseconds.
		1w



		anti_entropy.tree.build_limit.per_timespan
		
		1h



		anti_entropy.tree.build_limit.number
		Restrict how fast AAE can build hash trees. Building the tree for a
given partition requires a full scan over that partition's data. Once
built, trees stay built until they are expired. .number is
the number of builds; .per_timespan is the amount of time
in which that number of builds occurs.
		1



		anti_entropy.use_background_manager
		Whether AAE is to use a background process to limit AAE tree
rebuilds. If set to on, this will help to prevent system
response degradation under times of heavy load from multiple background
tasks that contend for the same system resources; setting this parameter
to off can cut down on system resource usage.

		off








Intra-Cluster Handoff


Configurable parameters for intra-cluster, i.e. inter-node, [[handoff]].





		Config
		Description
		Default





		handoff.max_rejects
		The maximum number of times that a secondary system within Riak,
such as Riak Search, can block handoff
of primary key/value data. The approximate maximum duration that a vnode
can be blocked can be determined by multiplying this setting by
vnode_management_timer. If you want to prevent handoff from
ever being blocked by a secondary system, set this parameter to
0.
		6



		handoff.inbound
		Whether inbound handoff is enabled on the node. Possible values are
on or off.
		on



		handoff.outbound
		Whether outbound handoff is enabled on the node. Possible values are
on or off.
		on



		handoff.port
		Specifies the TCP port that Riak uses for intra-cluster data
handoff.
		8099



		handoff.ssl.certfile
		To encrypt riak_core intra-cluster data handoff
traffic, uncomment this line and edit its path to an appropriate
certfile and keyfile.
		



		handoff.ssl.keyfile
		The keyfile paired with the certfile specified in
.certfile.
		



		handoff.use_background_manager
		Whether Riak will use a background manager to limit K/V handoff.
This can help to prevent system response degradation during times of
heavy load caused by multiple background tasks that contend for the same
system resources; setting this parameter to off can cut
down on system resource usage.
		off








Riak Data Types





		Config
		Description
		Default




		datatypes.compression_level
		Whether serialized Data Types will use compression and at what
level. When set to an integer, the parameter refers to the
aggressiveness of compression, on a scale from 0 to 9. on
is equivalent to 6, whereas off is equivalent to 0. Higher
values for compression tend to be more CPU intensive.
		1








SNMP


Configurable parameters for the [[Simple Network Management
Protocol|SNMP]] (SNMP) server built into
Riak Enterprise [http://basho.com/riak-enterprise/].





		Config
		Description
		Default





		snmp.nodePutTime100Threshold
		Maximum PUT time
		off



		snmp.nodePutTime99Threshold
		99th percentile PUT time
		off



		snmp.nodePutTime95Threshold
		95th percentile PUT time
		off



		snmp.nodePutTimeMedianThreshold
		Median PUT time
		off



		snmp.nodePutTimeMeanThreshold
		Mean PUT time
		off



		snmp.nodeGetTime100Threshold
		Maximum GET time
		off



		snmp.nodeGetTime99Threshold
		99th percentile GET time
		off



		snmp.nodeGetTime95Threshold
		95th percentile GET time
		off



		snmp.nodeGetTimeMedianThreshold
		Median GET time
		off



		snmp.nodeGetTimeMeanThreshold
		The threshold for the SNMP gauge at which traps are sent. Set to
off to disable traps for this gauge. When set to a positive
integer in microseconds, the rising trap will be sent when the gauge
crosses above the threshold, and the falling trap will be sent when the
gauge crosses below the threshold. In the case of the
nodeGetTimeMean gauge, the threshold is
nodeGetTimeMeanThreshold, the rising trap is
nodeGetTimeMeanAlarmRising, and the falling trap is
nodeGetTimeMeanFalling. Other gauge thresholds follow this
naming pattern.
		off



		snmp.traps.replication
		Enable or disable traps for Multi-Datacenter Replication.
		off



		snmp.refresh_frequency
		How often SNMP will refresh its counters out of Riak's internal
stats.
		1m



		snmp.database_dir
		The directory in which SNMP will store its internal database.
		./data/snmp/agent/db



		snmp.force_reload
		Whether to force SNMP information to be repopulated on startup

		on








JMX


Configuration parameters for the [[JMX Monitoring]] system built into
Riak Enterprise [http://basho.com/riak-enterprise/].





		Config
		Description
		Default





		jmx
		Turns on Java Management Extensions for Riak
		off



		jmx.refresh_rate
		How often to refresh stats
		30s



		jmx.restart_check
		Time to wait between restarts of JMX. This is only for retrying JMX
if the JMX server crashes.
		10m



		jmx.port
		The port on which JMX will listen
		41110








Strong Consistency



Note on commercial support

Riak's strong consistency feature is currently an open-source-only
feature and is not yet commercially supported.

Riak’s strong consistency feature has a variety of tunable parameters
that allow you to enable and disable strong consistency, modify the
behavior of leaders and followers, set various timeouts, and more. More
detailed information from an operations perspective can be found in our
documentation on [[managing strong consistency]].


Strong consistency is disabled by default. The strong_consistency
parameter enables you to turn it on. This setting is available in each
node’s riak.conf file.





		Config
		Description
		Default





		strong_consistency
		Enables the consensus subsystem used for strongly consistent Riak
operations if set to on.
		off





Unlike the strong_consistency setting, the settings listed below are
available only in advanced.config, in the riak_ensemble section of
that file. That section looks like this:


{riak_ensemble, [
        {parameter1, value},
        {parameter2, value},
        %% Other setting
    ]}



Further instructions on setting parameters in advanced.config can be
found in the [[advanced configuration|Configuration
Files#Advanced-Configuration]] section below.


Using these settings properly demands a firm understanding of the basic
architecture of Riak’s implementation of strong consistency. We highly
recommend reading our documentation on the [[implementation
details|Managing Strong Consistency#Implementation-Details]] behind
strong consistency before changing the defaults on these parameters.





		Config
		Description
		Default





		ensemble_tick
		The rate at which leaders perform their periodic duties, including
refreshing the leader lease, in milliseconds. This setting must be lower
than both the lease_duration and
follower_timeout settings (both listed below). Lower values
mean that leaders perform their duties more frequently, which can allow
for faster convergence if a leader goes offline and then returns to the
ensemble; higher values mean that leaders perform their duties less
frequently, which can reduce network overhead.
		500



		lease_duration
		Determines how long a leader lease remains valid without being
refreshed (in milliseconds). This should be set higher than the
ensemble_tick setting (listed above) so that leaders have
time to refresh their leases before they time out, and it must be set
lower than the follower_timeout setting (listed below).

		ensemble_tick * 3/2



		follower_timeout
		Determines how long a follower waits to hear from a leader before it
abandons the leader (in milliseconds). This must be set greater than the
lease_duration setting.
		lease_duration * 4



		alive_tokens
		Determines the number of ticks the leader will wait to hear from its
associated [[vnode|Riak Glossary#vnode]] before assuming that the vnode
is unhealthy and stepping down as leader. If the vnode does not respond
to the leader before ensemble_tick *
alive_tokens milliseconds have elapsed, the leader will
give up leadership. It may be necessary to raise this setting if your
Riak vnodes are frequently stalling out on slow backend reads/writes. If
this setting is too low, it may cause slow requests to time out earlier
than the request timeout.
		2



		storage_delay
		Determines how long the consensus subsystem delays syncing to disk
when performing certain metadata operations (in milliseconds). This
delay allows multiple operations to be coalesced into a single disk
write. We do not recommend that you change this setting.
		50



		storage_tick
		Determines how often the consensus subsystem writes data to disk
that was requested to be written asynchronously (in milliseconds). We do
not recommend that you change this setting.
		5000



		trust_lease
		Determines whether leader leases are used to optimize reads. When
set to true, a leader with a valid lease will handle the
read directly without contacting any followers; when set to
false, the leader will always contact followers. For more
information, see our internal documentation on

leader leases.
		true



		peer_get_timeout
		Determines the timeout used internally for reading consistent data,
in milliseconds. This setting must be greater than the highest request
timeout used by your application.
		60000 (1 minute)



		peer_put_timeout
		Determines the timeout, in milliseconds, used internally for writing
consistent data. This setting must be greater than the highest request
timeout used by your application.
		60000 (1 minute)



		peer_workers
		The number of concurrent workers used by the leader to service
requests. Increasing this setting may boost performance depending on the
workload.
		1



		tree_validation
		Determines whether Riak considers peer Merkle trees to be trusted
after a node restart. When validation is enabled (the default), Riak
does not trust peer trees after a restart, instead requiring the peer to
sync with a trusted majority. This is the safest option, as it protects
Riak against undetected corruption of the Merkle tree. However, this
mode reduces Riak availability since it can sometimes require more than
a simple majority of nodes to be online and reachable.
		true



		synchronous_tree_updates
		Determines whether the metadata updates to follower Merkle trees are
handled synchronously or not. When set to true, Riak
requires two quorum round trips to occur before replying back to the
client, the first quorum request to write the actual object and the
second to write the Merkle tree data. When set to false,
Riak will respond back to the client after the first round trip, letting
the metadata update happen asynchronously.

It's important to
note that the leader always updates its local Merkle tree
before responding to the client. This setting only affects the metadata
writes sent to followers.

In principle, asynchronous updates
are unsafe. If the leader crashes before sending the metadata updates
and all followers that had acknowledged the object write somehow revert
to the object value immediately prior to a write request, a future read
could return the immediately preceding value without realizing that it
was incorrect. Given that this scenario is unlikely, this setting
defaults to false in the name of improved performance.
		false








Miscellaneous


[bookmark: vnode_management_timer]


		Config
		Description
		Default





		metadata_cache_size
		This setting controls the size of the metadata cache for each vnode.
The cache can be disabled by setting it to off (this is the
default). Enabling the cache should not be necessary in disk-based
backends (i.e. LevelDB and Bitcask) but it can help performance in the
Memory backend. Note that this setting adjusts the size of the ETS table
rather than the actual data. Thus, more space may be used than the
simple size * number-of-vnodes calculation would imply.



Caution: This setting should not be changed without
extensive benchmarking.
		off



		max_concurrent_requests
		The maximum number of concurrent requests of each type (GET or PUT)
that is allowed. Setting this value to infinite disables
overload protection. The erlang.process_limit should be at
least 3 times this setting.
		50000



		dtrace
		Whether DTrace is enabled.
Do not enable unless your Erlang/OTP runtime is compiled to support
DTrace, which is available in R15B01 (supported by the official source
package) and in R14B04 via a custom repository and branch.
		off



		vnode_management_timer
		Sets the frequency with which vnodes attempt to trigger handoff between
this node and other nodes in the cluster.
		10s (10 seconds)




		retry_put_coordinator_failure
		When a PUT (i.e. write) request fails, Riak will retry the operation
if this setting is set to on, which is the default. Setting
it to off will speed response times on PUT requests in
general, but at the risk of potentially increasing the likelihood of
write failure.
		on



		background_manager
		Riak's background manager is a subsystem that coordinates access to
shared resources from other Riak subsystems. The background manager can
help to prevent system response degradation under times of heavy load
caused by multiple background tasks.
		on








Advanced Configuration


The advanced.config file takes the same format as the app.config
file familiar to users of versions of Riak prior to 2.0. Here is an
example:


[
  {riak_core,
    [
      {cluster_mgr, {"127.0.0.1", 8098 } },
      %% more riak_core configs
    ]},

  {riak_repl,
    [
      {data_root, "/var/db/riak/riak_repl/"},
      %% more riak_repl configs
    ]
  }
].



The following settings are available in the advanced.config file:



riak_repl settings


Most settings that are configurable through advanced.config are
related to Riak’s riak_repl subsystem.





		Config
		Description
		Default





		data_root
		Path (relative or absolute) to the working directory for the
replication process.
		/var/db/riak/riak_repl/



		max_fssource_cluster
		The hard limit of fullsync workers that will be running on the
source side of a cluster across all nodes on that cluster for a fullsync
to a sink cluster. This means that if you have configured fullsync for
two different clusters, both with a max_fssource_cluster of
5, 10 fullsync workers can be in progress. This only affects nodes on
the source cluster on which this parameter is defined, either via the
configuration file or command line.
		5



		max_fssource_node
		This setting limits the number of fullsync workers that will be
running on each individual node in a source cluster. This is a hard
limit for all fullsyncs enabled; additional fullsync configurations will
not increase the number of fullsync workers allowed to run on any node.
This only affects nodes on the source cluster on which this parameter is
defined, either via the configuration file or command line.

		1



		max_fssink_node
		This setting limits the number of fullsync workers allowed to run on
each individual node in a sink cluster. This is a hard limit for all
fullsyncs enabled; additional fullsync configurations will not increase
the number of fullsync workers allowed to run on any node. This only
affects nodes on the source cluster on which this parameter is defined,
either via the configuration file or command line.
		1



		fullsync_on_connect
		Whether to initiate a fullsync on initial connection from the sink
cluster.
		true



		fullsync_interval
		A single-integer value representing the duration to wait, in
minutes, between fullsyncs, or a list of {clustername,
time_in_minutes} pairs for each sink participating in fullsync
replication.
		30



		rtq_max_bytes
		The maximum size, in bytes, to which the realtime replication queue
can grow before new objects are dropped. Dropped objects will need to be
replicated with a fullsync.
		104857600



		proxy_get
		Whether to enable Riak CS proxy_get and block
filter.
		disabled



		rt_heartbeat_interval
		A heartbeat message is sent from the source to the sink every
rt_heartbeat_interval seconds. Setting
rt_heartbeat_interval  to undefined disables
the realtime heartbeat. This feature is available only in Riak
Enterprise 1.3.2 and later.
		15



		rt_heartbeat_timeout
		If a heartbeat response is not received within the time period
specified by this setting (in seconds), the source connection exits and
will be re-established. This feature is available only in Riak
Enterprise 1.3.2 and later.
		15



		fullsync_use_background_manager
		By default, fullsync replication will attempt to coordinate with
other Riak subsystems that may be contending for the same resources.
This will help to prevent system response degradations during times of
heavy load from multiple background tasks. To disable background
coordination, set this parameter to `false`. This feature is available
only in Riak Enterprise 2.0 and later.
		true








Upgrading Riak Search with advanced.config


If you are upgrading to Riak 2.x and wish to upgrade to the new [[Riak
Search|Using Search]] (codename Yokozuna), you will need to enable
legacy Search while the upgrade is underway. You can add the following
snippet to your advanced.config configuration to do so:


[
    %% Other configs

    {riak_search, [ {enabled, true} ]},
    {merge_index, [
        {data_root, "/var/lib/riak/merge_index"},
        {buffer_rollover_size, 1048576},
        {max_compact_segments, 20}
    ]},

    %% Other configs
].






Other settings


There are three non-riak_repl settings available in
advanced.config.





		Config
		Section
		Description
		Default





		add_paths
		riak_kv
		If you are installing
custom code for Riak, e.g. for the purpose of running MapReduce jobs or commit hooks, this setting specifies
the paths to any compiled .beam files that you wish to use.
This is expressed as a list of absolute paths on the node's filesystem,
e.g. [ "/tmp", "/other" ].
		



		cluster_mgr
		riak_core
		The cluster manager listens for connections from remote clusters on
the specified IP and port. Every node runs one cluster manager, but only
the cluster manager running on the cluster leader will service requests.
This can change as nodes enter and leave the cluster.
		{"127.0.0.1", 9080}



		delete_mode
		riak_kv
		Specifies how Riak behaves after objects are marked for deletion
with a tombstone. There are three possible settings: keep
disables tombstone removal altogether; immediate removes
objects' tombstones as soon as the delete request is received; and
setting delete_mode to an integer value specifies the
number of milliseconds to wait before removing tombstones. More
information can be found in Object
Deletion.
		3000 (3 seconds)



		target_n_val
		riak_core
		The highest n_val that you generally intend to use.
This setting affects how partitions are distributed within the cluster,
helping to ensure that "hot spots" don't occur, i.e. that data is never
stored more than once on the same physical node. You will need to change
this setting only in rare circumstances. Assuming that
ring_size is a power of 2, the ideal value for this setting
is both (a) greater than or equal to the largest n_val for
any bucket type and (b) an even divisor of the number of partitions in
the ring, i.e. ring_size. The default is 4,
and the number of physical nodes in your cluster must be greater than
target_n_val for this setting to be effective at preventing
hot spots.
		4











          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/advanced/backends/bitcask.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Bitcask
project: riak
version: 0.10.0+
document: tutorials
toc: true
audience: intermediate
keywords: [backends, planning, bitcask]
prev: “[[Choosing a Backend]]“
up:   “[[Choosing a Backend]]“
next: “[[LevelDB]]“
interest: false
moved: {
‘1.4.0-‘: ‘/tutorials/choosing-a-backend/Bitcask’
}




Bitcask [https://github.com/basho/bitcask] is an Erlang application
that provides an API for storing and retrieving key/value data using
log-structured hash tables that provide very fast access. The
design [http://basho.com/assets/bitcask-intro.pdf]
of Bitcask was inspired, in part, by log-structured filesystems and log
file merging.



Bitcask’s Strengths



		Low latency per item read or written


This is due to the write-once, append-only nature of Bitcask
database files.





		High throughput, especially when writing an incoming stream of
random items


Write operations to Bitcask generally saturate I/O and disk
bandwidth, which is a good thing from a performance perspective.
This saturation occurs for two reasons: because (1) data that is
written to Bitcask doesn’t need to be ordered on disk, and (2) the
log-structured design of Bitcask allows for minimal disk head
movement during writes.





		Ability to handle datasets larger than RAM without degradation


Access to data in Bitcask involves direct lookup from an in-memory
hash table. This makes finding data very efficient, even when
datasets are very large.





		Single seek to retrieve any value


Bitcask’s in-memory hash table of keys points directly to locations
on disk where the data lives. Bitcask never uses more than one disk
seek to read a value and sometimes even that isn’t necessary due to
filesystem caching done by the operating system.





		Predictable lookup and insert performance


For the reasons listed above, read operations from Bitcask have
fixed, predictable behavior. This is also true of writes to Bitask
because write operations require, at most, one seek to the end of
the current open file followed by and append to that file.





		Fast, bounded crash recovery


Crash recovery is easy and fast with Bitcask because Bitcask files
are append only and write once. The only items that may be lost are
partially written records at the tail of the last file that was
opened for writes. Recovery operations need to review only the last
record or two written and verify CRC data to ensure that the data is
consistent.





		Easy Backup


In most systems, backup can be very complicated. Bitcask simplifies
this process due to its append-only, write-once disk format. Any
utility that archives or copies files in disk-block order will
properly back up or copy a Bitcask database.









Weaknesses



		Keys must fit in memory


Bitcask keeps all keys in memory at all times, which means that your
system must have enough memory to contain your entire keyspace, plus
additional space for other operational components and operating-
system-resident filesystem buffer space.













Installing Bitcask


Bitcask is the default storage engine for Riak. You can verify that
Bitcask is currently being used as the storage backend with the
[[riak|riak Command Line]] command interface:


riak config effective | grep backend



If this operation returns anything other than bitcask, read
the [[next section|Bitcask#enabling-bitcask]] for instructions on
switching the backend to Bitcask.





Enabling Bitcask


You can set Bitcask as the storage engine using each node’s
[[configuration files]]:


storage_backend = bitcask



{riak_kv, [
    {storage_backend, riak_kv_bitcask_backend},
    %% Other riak_kv settings...

    ]},






Configuring Bitcask


Bitcask enables you to configure a wide variety of its behaviors, from
filesystem sync strategy to merge settings and more.



Note on configuration systems

Riak 2.0 enables you to use either the newer [[configuration
system|Configuration Files]] based on a single riak.conf
file or the older system, based on an app.config
configuration file.Instructions for both systems will be included below. Narrative
descriptions of the various settings will be tailored to the newer
configuration system, whereas instructions for the older system will
largely be contained in the code tabs.



The default configuration values for Bitcask are as follows:


bitcask.data_root = ./data/bitcask
bitcask.io_mode = erlang



{bitcask, [
    {data_root, "/var/lib/riak/bitcask"},
    {io_mode, erlang},

    %% Other Bitcask-specific settings
    ]}



All of the other available settings listed below can be added to your
configuration files.



Open Timeout


The open timeout setting specifies the maximum time Bitcask will block
on startup while attempting to create or open the Bitcask data
directory. The default is 4 seconds.


In general, you will not need to adjust this setting. If, however, you
begin to receive log messages of the form Failed to start bitcask backend: ..., you may want to consider using a longer timeout.


Open timeout is specified using the bitcask.sync.open_timeout
parameter, and can be set in terms of seconds, minutes, hours, etc.
The following example sets the parameter to 10 seconds:


bitcask.sync.open_timeout = 10s



{bitcask, [
    ...,
    {open_timeout, 10} %% This value must be expressed in seconds
    ...
    ]}






Sync Strategy


Bitcask enables you to configure the durability of writes by specifying
when to synchronize data to disk, i.e. by choosing a sync strategy. The
default setting (none) writes data into operating system buffers that
will be written to disk when those buffers are flushed by the operating
system. If the system fails before those buffers are flushed, e.g. due
to power loss, that data is lost. This possibility holds for any
database in which values are asynchronously flushed to disk.


Thus, using the default setting of none protects against data loss in
the event of application failure, i.e. process death, but leaves open a
small window in which data could be lost in the event of a complete
system failure, e.g. hardware or OS failure.


This possibility can be prevented by choosing the o_sync sync
strategy, which forces the operating system to flush to stable storage
at write time for every write. The effect of flushing each write is
better durability, although it should be noted that write throughput
will suffer because each write will have to wait for the write to
complete.


The following sync strategies are available:



		none — lets the operating system manage syncing writes
(default)


		o_sync — uses the O_SYNC flag, which forces syncs on every
write


		Time interval — Riak will force Bitcask to sync at specified
intervals





The following are possible configurations:


bitcask.sync.strategy = none
bitcask.sync.strategy = o_sync
bitcask.sync.interval = 10s



{bitcask, [
    ...,
        {sync_strategy, none},
        {sync_strategy, o_sync},
        {sync_strategy, {seconds, 10}}, %% The time interval must be specified in seconds
    ...
    ]}






Max File Size


The max_file_size setting describes the maximum permitted size for any
single data file in the Bitcask directory. If a write causes the current
file to exceed this size threshold then that file is closed, and a new
file is opened for writes. The default is 2 GB.


Increasing max_file_size will cause Bitcask to create fewer, larger
files that are merged less frequently, while decreasing it will cause
Bitcask to create more numerous, smaller files that are merged more
frequently.


To give an example, if your ring size is 16, your servers could see as
much as 32 GB of data in the bitcask directories before the first merge
is triggered, irrespective of your working set size. You should plan
storage accordingly and be aware that it is possible to see disk data
sizes that are larger than the working set.


The max_file_size setting can be specified using kilobytes, megabytes,
etc. The following example sets the max file size to 1 GB:


bitcask.max_file_size = 1GB



%% The max_file_size setting must be expressed in bytes, as in the
%% example below

{bitcask, [
    ...,
    {max_file_size, 16#40000000}, %% 1 GB expressed in bytes
    ...
    ]}






Hint File CRC Check


During startup, Bitcask will read from .hint files in order to build
its in-memory representation of the key space, falling back to .data
files if necessary. This reduces the amount of data that must be read
from the disk during startup, thereby also reducing the time required to
start up. You can configure Bitcask to either disregard .hint files
that don’t contain a CRC value or to use them anyway.


If you are using the newer, riak.conf-based configuration system, you
can instruct Bitcask to disregard .hint files that do not contain a
CRC value by setting the hintfile_checksums setting to strict (the
default). To use Bitcask in a backward-compatible mode that allows for
.hint files without CRC signatures, change the setting to
allow_missing.


The following example sets the parameter to strict:


bitcask.hintfile_checksums = strict



%% In the app.config-based system, substitute "require_hint_crc" for
%% "hintfile_checksums", "true" for "strict", and "false" for
%% "allow_missing"

{bitcask, [
    ...,
    {require_hint_crc, true},
    ...
    ]}






I/O Mode


The io_mode setting specifies which code module Bitcask should use for
file access. The available settings are:



		erlang (default) — Writes are made via Erlang’s built-in file API


		nif — Writes are made via direct calls to the POSIX C API





The following example sets io_mode to erlang:


bitcask.io_mode = erlang



{bitcask, [
    ...,
    {io_mode, erlang},
    ...
    ]}



In general, the nif IO mode provides higher throughput for certain
workloads, but it has the potential to negatively impact the Erlang VM,
leading to higher worst-case latencies and possible throughput collapse.





O_SYNC on Linux


Synchronous file I/O via
o_sync [http://linux.about.com/od/commands/l/blcmdl2_open.htm] is
supported in Bitcask if io_mode is set to nif and is not supported
in the erlang mode.


If you enable o_sync by setting io_mode to nif, however, you will
still get an incorrect warning along the following lines:


[warning] <0.445.0>@riak_kv_bitcask_backend:check_fcntl:429 {sync_strategy,o_sync} not implemented on Linux



If you are using the older, app.config-based configuration system, you
can disable the check that generates this warning by adding the
following to the riak_kv section of your app.config:


{riak_kv, [
    ...,
    {o_sync_warning_logged, false},
    ...
    ]}






Disk Usage and Merging Settings


Riak stores each [[vnode|Riak Glossary#Vnode]] of the
[[ring|Clusters#the-ring]] as a separate Bitcask directory within the
configured Bitcask data directory.


Each of these directories will contain multiple files with key/value
data, one or more “hint” files that record where the various keys exist
within the data files, and a write lock file. The design of Bitcask
allows for recovery even when data isn’t fully synchronized to disk
(partial writes). This is accomplished by maintaining data files that
are append-only (i.e. never modified in-place) and are never reopened
for modification (i.e. they are only for reading).


This data management strategy trades disk space for operational
efficiency. There can be a significant storage overhead that is
unrelated to your working data set but can be tuned in a way that best
fits your use case. In short, disk space is used until a threshold is
met at which point unused space is reclaimed through a process of
merging. The merge process traverses data files and reclaims space by
eliminating out-of-date of deleted key/value pairs, writing only the
current key/value pairs to a new set of files within the directory.


The merge process is affected by all of the settings described in the
sections below. In those sections, “dead” refers to keys that no longer
contain the most up-to-date values, while “live” refers to keys that do
contain the most up-to-date value and have not been deleted.





Merge Policy


Bitcask enables you to select a merge policy, i.e. when during the day
merge operations are allowed to be triggered. The valid options are:



		always — No restrictions on when merge operations can occur
(default)


		never — Merge will never be attempted


		window — Merge operations occur during specified hours





If you are using the newer, riak.conf-based configuration system, you
can select a merge policy using the merge.policy setting. The
following example sets the merge policy to never:


bitcask.merge.policy = never



{bitcask, [
    ...,
    {merge_window, never},
    ...
    ]}



If you opt to specify start and end hours for merge operations, you can
do so with the merge.window.start and merge.window.end
settings in addition to setting the merge policy to window.
Each setting is an integer between 0 and 23 for hours on a 24h clock,
with 0 meaning midnight and 23 standing for 11 pm.
The merge window runs from the first minute of the merge.window.start hour
to the last minute of the merge.window.end hour.
The following example enables merging between 3 am and 4:59 pm:


bitcask.merge.policy = window
bitcask.merge.window.start = 3
bitcask.merge.window.end = 17



%% In the app.config-based system, you specify the merge window using
%% a tuple, as in the following example:

{bitcask, [
    ...,
    {merge_window, {3, 17}},
    ...
    ]}




merge_window and the Multi backend

If you are using the older configuration system and using Bitcask with
the [[Multi]] backend, please note that if you wish to use a merge
window, you must set it in the global bitcask
section of your configuration file. merge_window settings
in per-backend sections are ignored.

If merging has a significant impact on performance of your cluster, or
if your cluster has quiet periods in which little storage activity
occurs, you may want to change this setting from the default.


A common way to limit the impact of merging is to create separate merge
windows  for each node in the cluster and ensure that these windows do
not overlap. This ensures that at most one node at a time can be
affected by merging, leaving the remaining nodes to handle requests.
The main drawback of this approach is that merges will occur less
frequently, leading to increased disk space usage.





Merge Triggers


Merge triggers determine the conditions under which merging will be
invoked. These conditions fall into two basic categories:



		Fragmentation — This describes the ratio of dead keys to total
keys in a file that will trigger merging. The value of this setting is
an integer percentage (0-100). For example, if a data file contains 6
dead keys and 4 live keys, a merge will be triggered by the default
setting (60%). Increasing this value will cause merging to occur less
often, whereas decreasing the value will cause merging to happen more
often.





		Dead Bytes — This setting describes how much data stored for
dead keys in a single file will trigger merging. If a file meets or
exceeds the trigger value for dead bytes, a merge will be triggered.
Increasing the value will cause merging to occur less often, whereas
decreasing the value will cause merging to happen more often. The
default is 512 MB.


When either of these constraints are met by any file in the directory,
Bitcask will attempt to merge files.








You can set the triggers described above using
merge.triggers.fragmentation and merge.triggers.dead_bytes,
respectively. The former is expressed as an integer between 0 and 100,
whereas the latter can be expressed in terms of kilobytes, megabytes,
gigabytes, etc. The following example sets the dead bytes threshold to
55% and the fragmentation threshold to 1 GB:


bitcask.merge.triggers.fragmentation = 55
bitcask.merge.triggers.dead_bytes = 1GB



%% The equivalent settings in the app.config-based system are
%% frag_merge_trigger and dead_bytes_merge_trigger, respectively. The
%% latter must be expressed in bytes.

{bitcask, [
    ...,
    {frag_merge_trigger, 55},
    {dead_bytes_merge_trigger, 1073741824},
    ...
    ]}






Merge Thresholds


Merge thresholds determine which files will be chosen for inclusion in
a merge operation.



		Fragmentation — This setting describes which ratio of dead keys
to total keys in a file will cause it to be included in the merge. The
value of this setting is a percentage (0-100). For example, if a data
file contains 4 dead keys and 6 live keys, it will be included in the
merge at the default ratio (40%). Increasing the value will cause
fewer files to be merged, while decreasing the value will cause more
files to be merged.


		Dead Bytes — This setting describes which ratio the minimum
amount of data occupied by dead keys in a file to cause it to be
included in the merge. Increasing this value will cause fewer files to
be merged, while decreasing this value will cause more files to be
merged. The default is 128 MB.


		Small File — This setting describes the minimum size a file must
be to be excluded from the merge. Files smaller than the threshold
will be included. Increasing the value will cause more files to be
merged, while decreasing the value will case fewer files to be merged.
The default is 10 MB.





You can set the thresholds described above using the
merge.thresholds.fragmentation, merge.thresholds.dead_bytes, and
merge.threshold.small_file settings, respectively.


The fragmentation setting is expressed as an integer
between 0 and 100, and the dead_bytes and small_file settings can be
expressed in terms of kilobytes, megabytes, gigabytes, etc. The
following example sets the fragmentation threshold to 45%, the
dead bytes threshold to 200 MB, and the small file threshold to 25 MB:


bitcask.merge.thresholds.fragmentation = 45
bitcask.merge.thresholds.dead_bytes = 200MB
bitcask.merge.thresholds.small_file = 25MB



%% In the app.config-based system, the settings corresponding to those
%% listed above are frag_threshold, dead_bytes_threshold, and
%% small_files threshold, respectively. The latter two settings must be
%% expressed in bytes:

{bitcask, [
    ...,
    {frag_threshold, 45},
    {dead_bytes_threshold, 209715200},
    {small_file_threshold, 26214400},
    ...
    ]}




Note on choosing threshold values

The values for the fragmentation and dead bytes thresholds _must be
equal to or less than their corresponding trigger values_. If they are
set higher, Bitcask will trigger merges in cases where no files meet the
threshold, which means that Bitcask will never resolve the conditions
that triggered merging in the first place.




Merge Interval


Bitcask periodically runs checks to determine whether merges are
necessary. You can determine how often those checks take place using
the bitcask.merge_check_interval parameter. The default is 3 minutes.


bitcask.merge_check_interval = 3m



%% In the app.config-based system, this setting is expressed in
%% milliseconds and found in the riak_kv section rather than the bitcask
%% section:

{riak_kv, [
    %% Other configs

    {bitcask_merge_check_interval, 180000},

    %% Other configs
    ]}



If merge check operations happen at the same time on different
[[vnodes|Riak Glossary#Vnode]] on the same node, this can produce spikes
in I/O usage and undue latency. Bitcask makes it less likely that merge
check operations will occur at the same time on different vnodes by
applying a jitter to those operations. A jitter is a random
variation applied to merge times that you can alter using the
bitcask.merge_check_jitter parameter. This parameter is expressed as a
percentage of bitcask.merge_check_interval. The default is 30%.


bitcask.merge_check_jitter = 30%



%% In the app.config-based system, this setting is expressed as a float
%% and found in the riak_kv section rather than the bitcask section:

{riak_kv, [
    %% Other configs

    {bitcask_merge_check_jitter, 0.3},

    %% Other configs
    ]}



For example, if you set the merge check interval to 4 minutes and the
jitter to 25%, merge checks will occur at intervals between 3 and 5
minutes. With the default of 3 minutes and 30%, checks will occur at
intervals between roughly 2 and 4 minutes.





Log Needs Merge


If you are using the older, app.config-based configuration system, you
can use the log_needs_merge setting to tune and troubleshoot Bitcask
merge settings. When set to true (as in the example below), each time
a merge trigger is met, the partition/vnode ID and mergeable files will
be logged.


{bitcask, [
    ...,
    {log_needs_merge, true},
    ...
    ]}




Note on log_needs_merge and the Multi
backend

If you are using Bitcask with the [[Multi]] backend in conjunction with
the older, app.config-based configuration system, please
note that log_needs_merge _must_ be set in the global
bitcask section of your app.config.
All log_needs_merge settings in per-backend sections are
ignored.




Fold Keys Threshold


Fold keys thresholds will reuse the keydir (a) if another fold was
started less than a specified time interval ago and (b) there were fewer
than a specified number of updates. Otherwise, Bitcask will wait until
all current fold keys complete and then start. The default time interval
is 0, while the default number of updates is unlimited. Both thresholds
can be disabled.


The conditions described above can be set using the fold.max_age and
fold.max_puts parameters, respectively. The former can be expressed in
terms of minutes, hours, days, etc., while the latter is expressed as an
integer. Each threshold can be disabled by setting the value to
unlimited. The following example sets the max_age to 1/2 second and
the max_puts to 1000:


bitcask.max_age = 0.5s
bitcask.max_puts = 1000



%% In the app.config-based system, the corresponding parameters are
%% max_fold_age and max_fold_puts, respectively. The former must be
%% expressed in milliseconds, while the latter must be an integer:

{bitcask, [
    ...,
    {max_fold_age, 500},
    {max_fold_puts, 1000},
    ...
    ]}

%% Each of these thresholds can be disabled by setting the value to -1



[bookmark: Automatic-Expiration]





Automatic Expiration


By default, Bitcask keeps all of your data. But if your data has limited
time value or if you need to purge data for space reasons, you can
configure object expiration, aka expiry. This feature is disabled by
default.


You can enable and configure object expiry using the expiry setting
and either specifying a time interval in seconds, minutes, hours, etc.,
or turning expiry off (off). The following example configures objects
to expire after 1 day:


bitcask.expiry = 1d



%% In the app.config-based system, expiry is expressed in terms of
%% seconds:

{bitcask, [
    ...,
    {expiry_secs, 86400}, %% Sets the duration to 1 day
    ...
    ]}

%% Expiry can be turned off by setting this value to -1




Note on stale data

Space occupied by stale data may not be reclaimed immediately,
but the data will become immediately inaccessible to client requests.
Writing to a key will set a new modification timestamp on the value
and prevent it from being expired.

By default, Bitcask will trigger a merge whenever a data file contains
an expired key. This may result in excessive merging under some usage
patterns. You can prevent this by configuring an expiry grace time.
Bitcask will defer trigger a merge solely for key expiry by the
configured amount of time. The default is 0, signifying no grace time.


If you are using the newer, riak.conf-based configuration system, you
can set an expiry grace time using the expiry.grace_time setting and
in terms of minutes, hours, days, etc. The following example sets the
grace period to 1 hour:


bitcask.expiry.grace_time = 1h



%% The equivalent setting in the app.config-based system is
%% expiry_grace_time. This must be expressed in seconds:

{bitcask, [
    ...,
    {expiry_grace_time, 3600}, %% Sets the grace period to 1 hour
    ...
    ]}




Automatic expiration and Riak Search


If you are using [[Riak Search|Using Search]] in conjunction with
Bitcask, please be aware that automatic expiry does not apply to Search
[[indexes|Search Details#Indexes]]. If objects are indexed using Search,
those objects can be expired by Bitcask yet still registered in Search
indexes, which means that Search queries may return keys that no longer
exist. Riak’s [[active anti-entropy]] (AAE) subsystem will eventually
catch this discrepancy, but this depends on AAE being enabled (which is
the default) and could take some time. If search queries returning
expired keys is a problem for your use case, then we would recommend not
using automatic expiration.









Tuning Bitcask


When tuning your environment, there are a number of things to bear in
mind that can assist you in making Bitcask as stable and reliable as
possible and to minimize latency and maximize throughput.



Tips & Tricks



		Bitcask depends on filesystem caches


Some data storage layers implement their own page/block buffer cache
in-memory, but Bitcask does not. Instead, it depends on the
filesystem’s cache. Adjusting the caching characteristics of your
filesystem can impact performance.





		Be aware of file handle limits


Review the documentation on [[open files limit]].





		Avoid the overhead of updating file metadata (such as last access
time) on every read or write operation


You can achieve a substantial speed boost by adding the noatime
mounting option to Linux’s /etc/fstab. This will disable the
recording of the last accessed time for all files, which results
in fewer disk head seeks. If you need last access times but you’d
like some of the benefits of this optimization, you can try
relatime.


/dev/sda5    /data           ext3    noatime  1 1
/dev/sdb1    /data/inno-log  ext3    noatime  1 2






		Small number of frequently changed keys


When keys are changed frequently, fragmentation rapidly increases.
To counteract this, you should lower the fragmentation trigger and
threshold.





		Limited disk space


When disk space is limited, limiting the space occupied by dead keys
is of paramount importance. Lower the dead bytes threshold and
trigger to counteract wasted space.





		Purging stale entries after a fixed period


To automatically purge stale values, set the object expiry value to
the desired cutoff time. Keys that are not modified for a period
equal to or greater than this time interval will become
inaccessible.





		High number of partitions per node


Because each cluster has many partitions running, Bitcask will have
many [[open files|Open Files Limit]]. To reduce the number of open
files, we suggest increasing the max file size so that larger files
will be written. You could also decrease the fragmentation and
dead-bytes settings and increase the small file threshold so that
merging will keep the number of open files small in number.





		High daytime traffic, low nighttime traffic


In order to cope with a high volume of writes without performance
degradation during the day, you might want to limit merging to
in non-peak periods. Setting the merge window to hours of the day
when traffic is low will help.





		Multi-cluster replication (Riak Enterprise)


If you are using Riak Enterprise [http://basho.com/riak-enterprise/]
with the replication feature enabled, your clusters might experience
higher production of fragmentation and dead bytes. Additionally,
because the fullsync feature operates across entire partitions, it
will be made more efficient by accessing data as sequentially as
possible (across fewer files). Lowering both the fragmentation and
dead-bytes settings will improve performance.













FAQ



		[[Why does it seem that Bitcask merging is only triggered when a
Riak node is restarted?|Developing on Riak
FAQs#why-does-it-seem-that-bitc]]


		[[If the size of key index exceeds the amount of memory, how does
Bitcask handle it?|Operating Riak FAQs#if-the-size-of-key-index-e]]


		[[Bitcask Capacity Planning]]








Bitcask Implementation Details


Riak will create a Bitcask database directory for each [[vnode|Vnodes]]
in a [[cluster|Clusters]]. In each of those directories, at most one
database file will be open for writing at any given time. The file being
written to will grow until it exceeds a specified size threshold, at
which time it is closed and a new file is created for additional writes.
Once a file is closed, whether purposely or due to server exit, it is
considered immutable and will never again be opened for writing.


The file currently open for writes is only written by appending, which
means that sequential writes do not require disk seeking, which can
dramatically speed up disk I/O. Note that this effect can be hampered if
you have atime enabled on your filesystem, because the disk head will
have to move to update both the data blocks and the file and directory
metadata blocks. The primary speed advantage from a log-based database
stems of its ability to minimize disk head seeks.


Deleting a value from Bitcask is a two-step process: first, a
[[tombstone|Object Deletion]] is recorded in the open file for writes,
which indicates that a value was marked for deletion at that time, while
references to that key are removed from the in-memory “keydir”
information; later, during a merge operation, non-active data files are
scanned, and only  those values without tombstones are merged into the
active data file. This effectively removes the obsolete data and
reclaims disk space associated with it. This data management strategy
may use up a lot of space over time, since Bitcask writes new values
without touching the old ones.


The compaction process referred to as “merging” solves this
problem. The merge process iterates over all non-active (i.e. immutable)
files in a Bitcask database and produces as output a set of data files
containing only the “live” or latest versions of each present key.



Bitcask Database Files


Below are two directory listings showing what you should expect to find
on disk when using Bitcask. In this example, we use a 64-partition
[[ring|Clusters#the-ring]], which results in 64 separate directories,
each holding its own Bitcask database.


ls ./data/bitcask



The result:


0
1004782375664995756265033322492444576013453623296
1027618338748291114361965898003636498195577569280

... etc ...

981946412581700398168100746981252653831329677312



Note that when starting up the directories are created for each
[[vnode|Vnodes]] partition’s data. At this point, however, there are not
yet any Bitcask-specific files.


After performing one PUT (write) into the Riak cluster running Bitcask:


curl -XPUT http://localhost:8098/types/default/buckets/test/keys/test \
  -H "Content-Type: text/plain" \
  -d "hello"



The “N” value for this cluster is 3 (the default), so you’ll see that
the three vnode partitions responsible for this data now have Bitcask
database files:


bitcask/

... etc ...

|-- 1118962191081472546749696200048404186924073353216-1316787078245894
|   |-- 1316787252.bitcask.data
|   |-- 1316787252.bitcask.hint
|   `-- bitcask.write.lock

... etc ...


|-- 1141798154164767904846628775559596109106197299200-1316787078249065
|   |-- 1316787252.bitcask.data
|   |-- 1316787252.bitcask.hint
|   `-- bitcask.write.lock

... etc ...


|-- 1164634117248063262943561351070788031288321245184-1316787078254833
|   |-- 1316787252.bitcask.data
|   |-- 1316787252.bitcask.hint
|   `-- bitcask.write.lock

... etc ...




As more data is written to the cluster, more Bitcask files are created
until merges are triggered.


bitcask/
|-- 0-1317147619996589
|   |-- 1317147974.bitcask.data
|   |-- 1317147974.bitcask.hint
|   |-- 1317221578.bitcask.data
|   |-- 1317221578.bitcask.hint
|   |-- 1317221869.bitcask.data
|   |-- 1317221869.bitcask.hint
|   |-- 1317222847.bitcask.data
|   |-- 1317222847.bitcask.hint
|   |-- 1317222868.bitcask.data
|   |-- 1317222868.bitcask.hint
|   |-- 1317223014.bitcask.data
|   `-- 1317223014.bitcask.hint
|-- 1004782375664995756265033322492444576013453623296-1317147628760580
|   |-- 1317147693.bitcask.data
|   |-- 1317147693.bitcask.hint
|   |-- 1317222035.bitcask.data
|   |-- 1317222035.bitcask.hint
|   |-- 1317222514.bitcask.data
|   |-- 1317222514.bitcask.hint
|   |-- 1317223035.bitcask.data
|   |-- 1317223035.bitcask.hint
|   |-- 1317223411.bitcask.data
|   `-- 1317223411.bitcask.hint
|-- 1027618338748291114361965898003636498195577569280-1317223690337865
|-- 1050454301831586472458898473514828420377701515264-1317223690151365

... etc ...




This is normal operational behavior for Bitcask.








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/advanced/backends/multi.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Multi
project: riak
version: 1.0.0+
document: tutorials
audience: intermediate
keywords: [backends, planning, multi, leveldb, memory, bitcask]
prev: “[[Memory]]“
up:   “[[Choosing a Backend]]“
interest: false
moved: {
‘1.4.0-‘: ‘/tutorials/choosing-a-backend/Multi’
}




Riak allows you to run multiple backends within a single Riak cluster.
Selecting the Multi backend enables you to use different storage
backends for different [[buckets]]. Any combination of the three
available backends—[[Bitcask]], [[LevelDB]], and [[Memory]]—can be
used.



Configuring Multiple Backends


You can set up your cluster to use the Multi backend using Riak’s
[[configuration files]].


storage_backend = multi



{riak_kv, [
    %% ...
    {storage_backend, riak_kv_multi_backend},
    %% ...
]},



Remember that you must stop and then re-start each node when you change
storage backends or modify any other configuration.





Using Multiple Backends


In Riak 2.0 and later, we recommend using multiple backends by applying
them to buckets [[using bucket types]]. Assuming that the cluster has
already been configured to use the multi backend, this process
involves three steps:



		Creating a bucket type that enables buckets of that type to use the
desired backends


		Activating that bucket type


		Setting up your application to use that type





Let’s say that we’ve set up our cluster to use the Multi backend and we
want to use [[LevelDB]] and the [[Memory]] backend for different sets of
data. First, we need to create two bucket types, one which sets the
backend bucket property to leveldb and the other which sets that
property to memory. All bucket type-related activity is performed
through the [[riak-admin|riak-admin Command Line]] command interface.


We’ll call our bucket types leveldb_backend and memory_backend, but
you can use whichever names you wish.


riak-admin bucket-type create leveldb_backend '{"props":{"backend":"leveldb"}}'
riak-admin bucket-type create memory_backend '{"props":{"backend":"memory"}}'



Then, we must activate those bucket types so that they can be used in
our cluster:


riak-admin bucket-type activate leveldb_backend
riak-admin bucket-type activate memory_backend



Once those types have been activated, any objects stored in buckets
bearing the type leveldb_backend will be stored in LevelDB, whereas
all objects stored in buckets of the type memory_backend will be
stored in the Memory backend.


More information can be found in our documentation on [[using bucket
types]].





Configuring Multiple Backends


Once you’ve set up your cluster to use multiple backends, you can
configure each backend on its own. All configuration options available
for LevelDB, Bitcask, and Memory are all available to you when using the
Multi backend.



Using the Newer Configuration System


If you are using the newer, riak.conf-based [[configuration
system|Configuration Files]], you can configure the backends by
prefacing each configuration with multi_backend.


Here is an example of the general form for configuring multiple
backends:


multi_backend.$name.$setting_name = setting



If you are using, for example, the LevelDB and Bitcask backends and wish
to set LevelDB’s bloomfilter setting to off and the Bitcask
backend’s io_mode setting to nif, you would do that as follows:


multi_backend.leveldb.bloomfilter = off
multi_backend.bitcask.io_mode = nif






Using the Older Configuration System


If you are using the older, app.config-based configuration system,
configuring multiple backends involves adding one or more backend-
specific sections to your riak_kv settings (in addition to setting
the storage_backend setting to riak_kv_multi_backend, as shown
above).


Note: If you are defining multiple file-based backends of the same
type, each of these must have a separate data_root directory defined.


While all configuration parameters can be placed anywhere within the
riak_kv section of app.config, in general we recommend that you
place them in the section containing other backend-related settings to
keep the settings organized.


Below is the general form for your app.config file:


{riak_kv, [
    %% ...
    {multi_backend_default, <<"bitcask_mult">>},
    {multi_backend, [
        %% Here's where you set the individual multiplexed backends
        {<<"bitcask_mult">>,  riak_kv_bitcask_backend, [
                         %% bitcask configuration
                         {data_root, "/var/lib/riak/bitcask_mult/"},
                         {config1, ConfigValue1},
                         {config2, ConfigValue2}
        ]},
        {<<"bitcask_expiry_mult">>,  riak_kv_bitcask_backend, [
                         %% bitcask configuration
                         {data_root, "/var/lib/riak/bitcask_expiry_mult/"},
                         {expiry_secs, 86400},
                         {config1, ConfigValue1},
                         {config2, ConfigValue2}
        ]},
        {<<"eleveldb_mult">>, riak_kv_eleveldb_backend, [
                         %% eleveldb configuration
                         {config1, ConfigValue1},
                         {config2, ConfigValue2}
        ]},
        {<<"second_eleveldb_mult">>,  riak_kv_eleveldb_backend, [
                         %% eleveldb with a different configuration
                         {config1, ConfigValue1},
                         {config2, ConfigValue2}
        ]},
        {<<"memory_mult">>,   riak_kv_memory_backend, [
                         %% memory configuration
                         {config1, ConfigValue1},
                         {config2, ConfigValue2}
        ]}
    ]},
    %% ...
]},



Note that in each of the subsections of the multi_backend setting, the
name of each backend you wish to configure can be anything you would
like. Directly after naming the backend, you must specify which of the
backends corresponds to that name, i.e.  riak_kv_bitcask_backend,
riak_kv_eleveldb_backend, or riak_kv_memory_backend. Once you have
done that, the various configurations for each named backend can be set
as objects in an Erlang list.







Example Configuration


Imagine that you are using both Bitcask and LevelDB in your cluster, and
you would like storage to default to Bitcask. The following
configuration would create two backend configurations, named
bitcask_mult and leveldb_mult, respectively, while also setting the
data directory for each backend and specifying that bitcask_mult is
the default.


storage_backend = multi

multi_backend.bitcask_mult.storage_backend = bitcask
multi_backend.bitcask_mult.bitcask.data_root = /var/lib/riak/bitcask_mult

multi_backend.leveldb_mult.storage_backend = leveldb
multi_backend.leveldb_mult.leveldb.data_root = /var/lib/riak/leveldb_mult

multi_backend.default = bitcask_mult



{riak_kv, [
    %% ...
    {multi_backend_default, <<"bitcask_mult">>},
    {multi_backend, [
        {<<"bitcask_mult", riak_kv_bitcask_backend, [
            {data_root, "/var/lib/riak/bitcask"}
        ]},
        {<<"leveldb_mult", riak_kv_eleveldb_backend, [
            {data_root, "/var/lib/riak/leveldb"}
        ]}
    ]}
    %% ...
]}






Multi Backend Memory Use


Each Riak storage backend has settings for configuring how much memory
the backend can use, e.g. caching for LevelDB or for the entire set of
data for the Memory backend. Each of these backends suggests allocating
up to 50% of available memory for this purpose. When using the Multi
backend, make sure that the sum of all backend memory use is at 50%
or less. For example, using three backends with each set to 50% memory
usage will inevitably lead to memory problems.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/tuning/aws.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: AWS Performance Tuning
project: riak
version: 1.0.0+
document: cookbook
toc: true
audience: advanced
keywords: [operator, performance, aws]
moved: {
‘1.4.0-‘: ‘/cookbooks/Performance-Tuning-AWS’
}




This guide introduces some recommended best practices for performance
tuning of Riak clusters in the Amazon Web Services (AWS) Elastic Compute
Cloud (EC2) environment.



Tip

Be sure to check out [[System Performance Tuning]] for more general
performance and tuning recommendations for Riak clusters.


EC2 Instances


EC2 instances are available as predefined types which encapsulate a
fixed amount of computing resources. For Riak, the most important of
these resources are Disk I/O, RAM, and Network I/O, followed by CPU
cores. With this in mind, Riak users have reported success with large,
extra large, and cluster compute instance types for use as cluster nodes
in the AWS EC2 environment.


The most commonly used instance
types [http://aws.amazon.com/ec2/instance-types/] for Riak cluster nodes
are m1.large and m1.xlarge. In cases where 10-gigabit Ethernet
networking is desired, the Cluster Compute class of EC2 instances, such
as cc1.4xlarge or cc2.8xlarge can be used.


Amazon also offers a High I/O Quadruple Extra Large instance
(hi1.4xlarge) that is backed by solid state drives (SSD) and features
very high I/O performance.


EBS-Optimized EC2 instances, which provide between 500 Megabits per
second and 1,000 Megabits per second of throughput with Provisioned
IOPS [http://aws.amazon.com/about-aws/whats-new/2012/07/31/announcing-provisioned-iops-for-amazon-ebs/]
EBS volumes are also available, and recommended for use with Provisioned
IOPS EBS volumes.


Riak’s primary bottleneck will be disk and network I/O, meaning that in
most cases, standard EBS will incur too much latency and iowait. Riak’s
I/O pattern tends to operate on small blobs from many places on the
disk, whereas EBS is best at bulk reads and writes. The negative effects
of this pattern can be mitigated by adding RAID over multiple volumes,
using Provisioned IOPS, and/or choosing the Bitcask backend if secondary
indexes are not needed for the application.


In any case, proper benchmarking and tuning are needed to achieve the
desired performance.



Tip

Most successful AWS cluster deployments use more EC2 instances than they
would the same number of physical nodes to compensate for the
performance variability caused by shared, virtualized resources. Plan to
have more EC2 instance based nodes than physical server nodes when
estimating cluster size with respect to node count.




Operating System



Clocks


NTP is configured by default on Amazon EC2 Linux instances. Please
refer to the Set the Time for an
Instance [http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/set-time.html]
section of the EC2 documentation for steps on verifying if NTP is
working properly. If NTP is not working properly, significant clock
drift can occur.





Mounts and Scheduler


On EBS volumes, the deadline scheduler should be used. To check the
scheduler in use for block device xvdf, for example, use the following
command:


cat /sys/block/xvdf/queue/scheduler



To set the scheduler to deadline, use the following command:


echo deadline > /sys/block/xvdf/queue/scheduler



More information on the disk scheduler is available in [[System
Performance Tuning]].





Virtual Memory Subsystem


EBS volumes have considerably less bandwidth than hardware disks.  To
avoid saturating EBS bandwidth and inducing IO latency spikes, it is
recommended to tune the Linux virtual memory subsystem to flush smaller
amounts of data more often. To do so, please see [[Linux system
performance tuning|System Performance Tuning#Optional-I-O-Settings]].





Forensics


When a failure occurs, collect as much information as possible. Check
monitoring systems, back up log and configuration files if they are
available, including system logs like dmesg and syslog. Make sure
that the other nodes in the Riak cluster are still operating normally
and are not affected by a wider problem like an AWS service outage. Try
to determine the cause of the problem from the data you have collected.
If you are a licensed Riak Enterprise
Edition [http://basho.com/riak-enterprise/] user and the failure comes
from Riak or is not immediately obvious, you may open a ticket on the
Basho Client Services help desk or contact the 24/7 emergency line.


Have your collected data ready when contacting Basho Client Services. A
Client Services Engineer (CSE) might request log files, configuration
files, or other information.







Data Loss


Many failures either do not entail data loss or have minimal loss that
can be repaired automatically, without intervention. Outage of a single
node does not necessarily cause data loss, as other replicas of every
key are available elsewhere in the cluster. Once the node is detected as
down, other nodes in the cluster will take over its responsibilities
temporarily and transmit the updated data to it when it eventually
returns to service (also called hinted handoff).


The more severe data loss scenarios usually relate to hardware failure
(in the case of AWS, service failure or instance termination). In the
cases where data is lost, several options are available for restoring
the data:



		Restore from backup. A daily backup of Riak nodes can be helpful.
The data in this backup may be stale depending on the time at which
the node failed, but can be used to partially restore data from
lost EBS volumes. If running in a RAID configuration, rebuilding the
array may also be possible.


		Restore from Multi-Datacenter Replication. If replication is enabled
between two or more clusters, the missing data will gradually be
restored via realtime replication and fullsync replication. A
fullsync operation can also be triggered manually via the
riak-repl command.


		Restore using intra-cluster repair. Riak versions 1.2 and greater
include a “repair” feature which will restore lost partitions with
data from other replicas. This currently has to be invoked manually
using the Riak console and should be performed with guidance from a
Basho CSE.





Once data has been restored, normal operations should continue. If
multiple nodes completely lose their data, consultation and assistance
from Basho is strongly recommended.





Benchmarking


Using a tool such as Basho
Bench [https://github.com/basho/basho_bench], you can generate load that
simulates application operations by constructing and communicating
approximately-compatible data payloads with the Riak cluster directly.


Benchmarking is critical to determining the appropriate EC2 instance
types, and strongly recommended. More information is available on
benchmarking Riak clusters with [[Basho Bench]].


Besides running Basho Bench, we also advise that you load test Riak with
your own tests to ensure that load imparted by MapReduce queries,
full-text queries, and index queries are within the expected range.





Simulating Upgrades, Scaling, and Failure states


In addition to simply measuring performance, it is also important to
measure how performance degrades when the cluster is not in
steady-state. While under a simulation of live load, the following
states might be simulated:



		Stop one or more nodes normally and restart them after a few moments
(simulates [[rolling upgrade|Rolling Upgrades]]).


		Join two or more nodes to the cluster.


		Leave nodes from the cluster (after step #2).


		Hard-kill the Riak beam.smp process (i.e., kill -9) and then
restart it.


		Hard-reboot a node’s instance using the AWS console and then
restart it.


		Hard-stop and destroy a node’s instance and build a new one from
backup.


		Via networking, e.g. firewall, partition one or more nodes from
the rest of the cluster and then restore the original
configuration.








Out-of-Memory


Sometimes, Riak will exit when it runs out of available RAM. While this
does not necessarily cause data loss, it may indicate that the cluster
needs to be scaled out. While the Riak node is out, other nodes may also
be at risk if free capacity is low on the rest of the cluster, so
monitor carefully.


Replacing the EC2 instance type with one that has greater RAM capacity
may temporarily alleviate the problem, but out of memory (OOM) tends to
be an indication that the cluster is underprovisioned.


Software bugs (memory leaks) could also be a cause of OOM, so we
recommend Riak Enterprise Edition users to contact Basho Client Services
if this problem occurs.





Dealing with IP addresses


EC2 instances that are not provisioned inside a VPC can change the
following attributes after a restart:



		Private IP address


		Public IP address


		Private DNS


		Public DNS





Because these parameters play a role in a Riak instance’s node name,
ensure that you follow the steps outlined in the [[Node Name
Changed|Recovering a Failed Node#Node Name Changed]] section to replace
it.


To avoid this inconvenience, you can deploy Riak inside a
VPC [http://aws.amazon.com/vpc/]. Instances inside the VPC do not
change their private IP address on restart. In addition you get the
following benefits:



		Access control lists can be defined at multiple levels


		The instance is not automatically open to the internet


		Amazon VPC is free [http://aws.amazon.com/vpc/pricing/]








Choice of Storage


EC2 instances support ephemeral and EBS storage. Ephemeral is local to
the instance, generally performs better, but disappears when instances
go down.


On the other hand, EBS is effectively network attached storage that
persists after instances go down. Along with EBS you can optionally
enable Provisioned
IOPS [http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PIOPS.html]
(PIOPS) provide more stable performance.


For more information on EC2 storage options, please see their
documentation [http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html].





References



		[[System Performance Tuning]]


		[[Failure and Recovery]]


		Basho Client Services Help Desk [https://help.basho.com]









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/advanced/backends/memory.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Memory
project: riak
version: 1.0.0+
document: tutorials
toc: true
audience: intermediate
keywords: [backends, planning, memory]
prev: “[[LevelDB]]“
up:   “[[Choosing a Backend]]“
next: “[[Multi]]“
interest: false
moved: {
‘1.4.0-‘: ‘/tutorials/choosing-a-backend/Memory’
}




The Memory storage backend uses in-memory tables to store all data.
This data is never persisted to disk or to any other storage mechanism.
The Memory storage engine is best used for testing Riak clusters or for
storing small amounts of transient state in production systems.


Internally, the Memory backend uses Erlang Ets tables to manage data.
More information can be found in the
official Erlang documentation [http://www.erlang.org/doc/man/ets.html].



Enabling the Memory Backend


To enable the memory backend, edit your [[configuration files]] for each
Riak node and specify the Memory backend as shown in the following
example:


storage_backend = memory



{riak_kv, [
    ...,
    {storage_backend, riak_kv_memory_backend},
    ...
    ]}



Note: If you replace the existing specified backend by removing it
or commenting it out as shown in the above example, data belonging to
the previously specified backend will still be preserved on the
filesystem but will no longer be accessible through Riak unless the
backend is enabled again.


If you require multiple backends in your configuration, please consult
the [[Multi backend documentation|Multi]].





Configuring the Memory Backend


The Memory backend enables you to configure two fundamental aspects of
object storage: maximum memory usage per [[vnode|Vnodes]]
and object expiry.



Max Memory


This setting specifies the maximum amount of memory consumed by the
Memory backend. It’s important to note that this setting acts on a
per-vnode basis, not on a per-node or per-cluster basis. This should
be taken into account when planning for memory usage with the Memory
backend, as the total memory used will be max memory times the number
of vnodes in the cluster.


When the threshold value that you set has been met in a particular
vnode, Riak will begin discarding objects, beginning with the oldest
object and proceeding until memory usage returns below the allowable
threshold.


You can configure maximum memory using the
memory_backend.max_memory_per_vnode setting. You can specify
max_memory_per_vnode however you’d like, using kilobytes, megabytes,
or even gigabytes.


The following are all possible settings:


memory_backend.max_memory_per_vnode = 500KB
memory_backend.max_memory_per_vnode = 10MB
memory_backend.max_memory_per_vnode = 2GB



%% In the app.config-based system, the equivalent setting is max_memory,
%% which must be expressed in megabytes:

{riak_kv, [
    %% storage_backend specifies the Erlang module defining the storage
    %% mechanism that will be used on this node.

    {storage_backend, riak_kv_memory_backend},
    {memory_backend, [
        ...,
            {max_memory, 4096}, %% 4GB in megabytes
        ...
    ]}



To determine an optimal max memory setting, we recommend consulting the
documentation on [[LevelDB cache size|LevelDB#Cache-Size]].





TTL


The time-to-live (TTL) parameter specifies the amount of time an object
remains in memory before it expires. The minimum time is one second.


In the newer, riak.conf-based configuration system, you can specify
ttl in seconds, minutes, hours, days, etc. The following are all
possible settings:


memory_backend.ttl = 1s
memory_backend.ttl = 10m
memory_backend.ttl = 3h



%% In the app.config-based system, the ttl setting must be expressed in
%% seconds:

{memory_backend, [
    %% other settings
        {ttl, 86400}, %% Set to 1 day
    %% other settings
    ]}




Dynamically Changing ttl

There is currently no way to dynamically change the `ttl` setting for a
bucket or bucket type. The current workaround would be to define
multiple Memory backends using the Multi backend, each with different
`ttl` values. For more information, consult the documentation on the
[[Multi]] backend.







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/tuning/latency-reduction.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Latency Reduction Checklist
project: riak
version: 1.4.9+
document: guide
audience: intermediate
keywords: [operator, troubleshooting, latency]




Although latency is unavoidable in distributed systems like Riak, there
are a number of actions that can be undertaken to reduce latency
to the lowest levels possible within a cluster. In this guide, we’ll
list potential sources of high latency and what you can do about it.



Large Objects


Riak always performs best with smaller objects. Large objects, which can
be mistakenly inserted into Riak by your application or caused by
siblings (see below), can often increase latency.


We recommend keeping all objects stored in Riak smaller than 1-2 MB,
preferably below 100 KB. Large objects lead to increased I/O activity
and can put strain on memory resources. In some cases, just a few large
objects can impact latency in a cluster, even for requests that are
unrelated to those objects.


If your use case requires large objects, we recommend checking out
[[Riak CS]], which is intended as a storage system for large objects.



Mitigation


The best way to find out if large objects are impacting latency is to
monitor each node’s object size stats. If you run [[riak-admin status|riak-admin Command Line#status]] or make an HTTP GET request
to Riak’s /stats endpoint, you will see the results for the following
metrics related to object size, all of which are calculated only for
GET operations (i.e. reads):


Metric                        | Explanation
:—————————–|:———–
fsm_node_get_objsize_mean   | The mean object size encountered by this node in the last minute
fsm_node_get_objsize_median | The median object size encountered by this node in the last minute
fsm_node_get_objsize_95     | The 95th-percentile object size encountered by this node in the last minute
fsm_node_get_objsize_99     | The 99th-percentile object size encountered by this node in the last minute
fsm_node_get_objsize_100    | The 100th-percentile object size encountered by this node in the last minute


The mean and median measurements may not be good indicators,
especially if you’re storing billions of keys. Instead, you should be on
the lookout for trends in the 95, 99, and 100 measures:



		Is there an upward trend?


		Do the metrics indicate that there are outliers?


		Do these trends coincide with increased latency?





If you suspect that large object size is impacting latency, try making
the following changes to each node’s [[configuration|Configuration
Files]]:



		If you are using the newer, riak.conf-based configuration system,
the commented-out value for erlang.distribution_buffer_size is 32MB.
Uncomment this setting and re-start your node.


		If you are using the older, app.config/vm.args-based configuration
system, try increasing the +zddbl setting in vm.args to 32768 or
higher (measured in kilobytes). This increases the size of the
distributed Erlang buffer from its default of 1024 KB. Re-start your
node when configuration changes have been made.





Large objects can also impact latency even if they’re only present on
some nodes. If increased latency occurs only on N nodes, where N is your
[[replication factor|Replication Properties#n-value-and-replication]],
also known as n_val, this could indicate that a single large object
and its replicas are slowing down all requests on those nodes.


If large objects are suspected, you should also audit the behavior of
siblings in your cluster, as explained in the [[next section|Latency
Reduction Checklist#Siblings]].







Siblings


In Riak, object conflicts are handled by keeping multiple versions of
the object in the cluster either until a client takes action to resolve
the conflict or until [[active anti-entropy|Riak
Glossary#active-anti-entropy]] resolves the conflict without client
intervention. While sibling production is normal, [[sibling
explosion|Causal Context#Sibling-Explosion]] is a problem that can come
about if many siblings of an object are produced. The negative effects
are the same as those associated with [[large objects|Latency Reduction
Checklist#Large-Objects]].



Mitigation


The best way to monitor siblings is through the same [[riak-admin status|riak-admin Command Line#status]] interface used to monitor
object size (or via an HTTP GET request to /stats). In the output of
riak-admin status in each node, you’ll see the following
sibling-related statistics:


Metric                         | Explanation
:——————————|:———–
node_get_fsm_siblings_mean   | The mean number of siblings encountered during all GET operations by this node within the last minute
node_get_fsm_siblings_median | The median number of siblings encountered during all GET operations by this node within the last minute
node_get_fsm_siblings_95     | The 95th percentile of the number of siblings encountered during all GET operations by this node within the last minute
node_get_fsm_siblings_99     | The 99th percentile of the number of siblings encountered during all GET operations by this node within the last minute
node_get_fsm_siblings_100    | The 100th percentile of the number of siblings encountered during all GET operations by this node within the last minute


Is there an upward trend in these statistics over time? Are there any
large outliers? Do these trends correspond to your observed latency
spikes?


If you believe that sibling creation problems could be responsible for
latency issues in your cluster, you can start by checking the following:



		If allow_mult is set to true for some or all of your buckets, be
sure that your application is correctly resolving siblings. Be sure to
read our documentation on [[conflict resolution]] for a fuller picture
of how this can be done. {{#2.0.0+}}Note: In Riak versions 2.0 and
later, allow_mult is set to true by default for all bucket types
that you create and activate. If you wish to set allow_mult to
false on a bucket type, you will have to do so
explicitly.{{/2.0.0+}}


		{{2.0.0-}} Application errors are a common source of problems with
siblings. Updating the same key over and over without passing a
[[causal context]] to Riak can cause sibling explosion. If this seems
to be the issue, modify your application’s conflict resolution
strategy.


		{{2.0.0+}} Application errors are a common source of problems with
siblings. Updating the same key over and over without passing a
[[causal context]] to Riak can cause sibling explosion. If this seems
to be the issue, modify your application’s [[conflict resolution]]
strategy. Another possibility worth exploring is using [[dotted
version vectors|Causal Context#Dotted-Version-Vectors]] (DVVs) in
place of traditional vector clocks. DVVs can be enabled [[using bucket
types]] by setting the dvv_enabled parameter to true for buckets
that seem to be experiencing sibling explosion.










Compaction and Merging


The [[Bitcask]] and [[LevelDB]] storage backends occasionally go through
heavily I/O-intensive compaction phases during which they remove deleted
data and reorganize data files on disk. During these phases, affected
nodes may be slower to respond to requests than other nodes. If your
cluster is using one or both of these backends, there are steps that can
be taken to monitor and address latency issues.



Mitigation


To determine whether compaction and merging cycles align with increased
latency, keep an eye on on your console.log files (and LevelDB LOG
files if you’re using LevelDB). Do Bitcask merging and/or LevelDB
compaction events overlap with increased latencies?


If so, our first recommendation is to examine your [[replication
properties]] to make sure that neither R nor W are set to N, i.e. that
you’re not requiring that reads or writes go to all nodes in the
cluster. The problem with setting R=N or W=N is that any request
will only respond as quickly as the slowest node amongst the N nodes
involved in the request.


Beyond checking for R=N or W=N for requests, the recommended
mitigation strategy depends on the backend:



Bitcask


With Bitcask, it’s recommended that you:



		Limit merging to off-peak hours to decrease the effect of merging
cycles on node traffic


		Stagger merge windows between nodes so that no more than one node is
undergoing a merge phase at any given time





Instructions on how to accomplish both can be found in our guide to
[[tuning Bitcask|Bitcask#tuning-bitcask]].


It’s also important that you adjust your maximum file size and merge
threshold settings appropriately. This setting is labeled
bitcask.max_file_size in the newer, riak.conf-based [[configuration
files]] and max_file_size in the older, app.config-based system.


Setting the maximum file size lower will cause Bitcask to merge more
often (with less I/O churn), while setting it higher will induce less
frequent merges with more I/O churn. To find settings that are ideal for
your use case, we recommend checking out our guide to [[configuring
Bitcask|Bitcask#configuring-bitcask]].





LevelDB


The more files you keep in memory, the faster LevelDB will perform in
general. To make sure that you are using your system resources
appropriately with LevelDB, check out our guide to [[LevelDB parameter
planning|LevelDB#parameter-planning]].









OS Tuning


While a number of latency-related problems can manifest themselves in
development and testing environments, some performance limits only
become clear in production environments.



Mitigation


If you suspect that OS-level issues might be impacting latency, it might
be worthwhile to revisit your OS-specific configurations. The following
guides may be of help:



		[[Open files limit]]


		General [[System performance tuning]]


		[[AWS performance tuning]] if you’re running Riak on Amazon Web
Services [http://aws.amazon.com/]










I/O and Network Bottlenecks


Riak is a heavily I/O- and network resource-intensive system.
Bottlenecks on either front can lead to undue latency in your cluster.
We recommend an active monitoring strategy to detect problems
immediately when they arise.



Mitigation


To diagnose potential I/O bottlenecks, there are a number of Linux tools
at your disposal, including
iowait [http://www.linuxquestions.org/questions/linux-newbie-8/what-is-iowait-415961/]
and netstat [http://en.wikipedia.org/wiki/Netstat].


To diagnose potential overloads, Riak versions 1.3.2 and later come
equipped with an overload protection feature designed to prevent
cascading failures in overly busy nodes. This feature limits the number
of GET and PUT finite state machines (FSMs) that can exist
simultaneously on a single Riak node. Increased latency can result if a
node is frequently running up against these maximums.



		Monitor node_get_fsm_active and node_get_fsm_active_60s to get an
idea of how many operations your nodes are coordinating. If you see
non-zero values in node_get_fsm_rejected or
node_get_fsm_rejected_60s, that means that some of your requests are
being discarded due to overload protection.


		The FSM limits can be increased, but disabling overload protection
entirely is not recommended. More details on these settings are
available in the release
notes [https://github.com/basho/riak/blob/1.3/RELEASE-NOTES.md] for
Riak version 1.3.





{{#2.0.0+}}







Object Settings


In versions 2.0 and later, Riak enables you to configure a variety of
settings regarding Riak objects, including allowable object sizes, how
many [[siblings|Causal Context#Siblings]] to allow, and so on. If you
suspect that undue latency in your cluster stems from object size or
related factors, you may consider adjusting these settings.


A concise listing of object-related settings can be found in the [[Riak
configuration|Configuration Files#object-settings]] documentation. The
sections below explain these settings in detail.



Note on configuration files in 2.0

The object settings listed below are only available using the new system
for [[configuration files]] specific to Riak 2.0. If you are using the
older, `app.config`-based system, you will not have access to
these settings.


Object Size


As stated above, Basho recommends always keeping objects below 1-2 MB
and preferably below 100 KB if possible. If you want to ensure that
objects above a certain size do not get stored in Riak, you can do so by
setting the object.size.maximum parameter lower than the default of
50MB, which is far above the ideal object size. If you set this
parameter to, say, 1MB and attempt to store a 2 MB object, the write
will fail and an error message will be returned to the client.


You can also set an object size threshold past which a write will
succeed but will register a warning in the logs, you can adjust the
object.size.warning_threshold parameter. The default is 5MB.





Sibling Explosion Management


In order to prevent or cut down on [[sibling explosion|Causal
Context#sibling explosion]], you can either prevent Riak from storing
additional siblings when a specified sibling count is reached or set a
warning threshold past which Riak logs an error (or both). This can be
done using the object.siblings.maximum and
object.siblings.warning_threshold settings. The default maximum is 100
and the default warning threshold is 25.





Object Storage Format


There are currently two possible binary representations for objects
stored in Riak:



		Erlang’s native term_to_binary format, which tends to have a higher
space overhead


		A newer, Riak-specific format developed for more compact storage of
smaller values





You can set the object storage format using the object.format
parameter: 0 selects Erlang’s term_to_binary format while 1 (the
default) selects the Riak-specific format.


{{/2.0.0+}}








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/advanced/runtime.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Runtime Interaction
project: riak
version: 2.0.0+
document: cookbook
audience: advanced
keywords: [runtime, ops, troubleshooting]




Riak’s [[configuration files]] provide a variety of parameters that
enable you to fine-tune how Riak interacts with two important elements
of the underlying operating system: distribution ports and OS
processes/garbage collection.



Ports


Distribution ports connect Riak nodes within a [[cluster|Clusters]]. The
following port-related parameters are available:



		runtime_health.triggers.distribution_port — Whether distribution
ports with full input buffers will be counted as busy.
		Default: on








		runtime_health.triggers.port — Whether ports with full input
buffers will be counted as busy. Ports can represent open files or network sockets.
		Default: on








		runtime_health.thresholds.busy_ports — The threshold at which a
warning will be triggered about the number of ports that are overly
busy. Ports with full input buffers count toward this threshold.
		Default: 2














Processes


Riak will log warnings related to busy operating system processes and
garbage collection. You can specify the conditions in which warnings are
triggered using the following parameters:



		runtime_health.thresholds.busy_processes — The threshold at which
a warning will be triggered about the number of processes that are
overly busy. Processes with large heaps or that take a long time to
garbage collect will count toward this threshold.
		Default: 30








		runtime_health.triggers.process.heap_size — A process will be
marked as busy when its size exceeds this size (in bytes).
		Default: 160444000








		runtime_health.triggers.process.garbage_collection — A process
will be marked as busy when it exceeds this amount of time doing
garbage collection. Enabling this setting can cause performance
problems on multi-core systems.
		Default: off


		Example when enabled: 50ms








		runtime_health.triggers.process.long_schedule — A process will
become busy when it exceeds this length of time during a single
process scheduling and execution cycle.
		Default: off


		Example when enabled: 20ms















          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/advanced/riak-control.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Riak Control
project: riak
version: 1.0.0+
document: appendix
toc: true
audience: intermediate
keywords: [control]
moved: {
‘1.4.0-‘: ‘/references/appendices/Riak-Control’
}




Riak Control is a web-based administrative console for inspecting and
manipulating Riak clusters.



Requirements


Though Riak Control is maintained as a separate
application [https://github.com/basho/riak_control], the necessary code
for it ships with versions of Riak 1.1 and above and requires no
additional installation steps.


Before getting started, you should know the address and port of the HTTP (or
HTTPS) listeners for the cluster member(s) running Riak Control.  You can obtain
this information from the configuration files as indicated here:


listener.http.<name> = 127.0.0.1:8098

or 

listener.https.<name> = 127.0.0.1:8096

## *** The default listeners in the riak.conf file are 
##     named `internal`, so you would consult the value of
##     `listener.http.internal` in your configuration.




 {riak_api,
     [
        %% Other configs
        ... if HTTP is configured ...
        {http,[{"127.0.0.1",8098}]},
        ... if HTTPS is configured ...
        {https,[{"127.0.0.1",8069}]},
         %% Other configs
     ]},

%% *** This is a truncated configuration to illustrate the 
%%     pertinent items -- the `http` and `https` tuples within 
%%     the `riak_api` tuple's value list.




Note on SSL

We strongly recommend that you enable SSL for Riak Control. It is
disabled by default, and if you wish to enable it you must do so
explicitly. More information can be found in the document below.




Enabling and Disabling Riak Control


Riak Control is disabled by default, meaning that you should see the
following in your [[configuration files]]:


riak_control = off



{riak_control, [
                %% Other configs
                {enabled, false},
                %% Other configs
               ]}



Enabling Riak Control is simple:


riak_control = on



{riak_control, [
                %% Other configs
                {enabled, true},
                %% Other configs
               ]}



Make sure to restart the node once you have enabled Riak Control for the
change to take effect.


After restarting the node, you should be able to access it by going
to http://ip_address_of_listener:port/admin. In the case of a development
cluster using the default configuation, you would access Riak Control at
http://127.0.0.1:8098/admin


If you enabled authentication for Riak Control while performing the above
configuration, you will be unable to access Riak Control until you have enabled
and configured SSL and HTTPS.





Enabling SSL and HTTPS


In order to use SSL in conjunction with Riak Control, SSL must be
enabled on each Riak node. For more information, see our [[security
documentation|Authentication and
Authorization#Enabling-SSL]]. Once SSL is enabled, you can proceed to
setting up [[authentication|Riak Control#Authentication]] for Riak
Control.


Please note that Riak Control will not work if you have enabled
authentication but SSL is not set up properly.





Authentication


Riak Control provides you the option of requiring authentication (via
HTTP basic auth) for users of the web interface. It is disabled by
default. To enable authentication:


riak_control.auth.mode = on



{riak_control, [
                %% Other configs
                {auth, userlist}, %% The only other available option is "none"
                %% Other configs
               ]}



When authentication is enabled, you can specify as many
username/password pairs as you wish. The default pair is the username


user and the password pass. We strongly recommend selecting
different credentials. The example below would set up three user-defined
pairs:


riak_control.auth.user.bob.password = bob_is_the_coolest
riak_control.auth.user.polly.password = h4x0r123
riak_control.auth.user.riakrocks.password = cap_theorem_4_life



{riak_control, [
                %% Other configs
                {userlist, [
                            {"bob", "bob_is_the_coolest"},
                            {"polly", "h4x0r123"},
                            {"riakrocks", "cap_theorem_4_life"}
                            ]}
                %% Other configs
]}






User Interface


To begin using Riak Control, navigate to https://ip_address_of_https_listener:https_port/admin`
For a default configuration, this will be https://localhost:8069/admin.


If your browser warns you that it cannot authenticate the page, this may
be because you are using self-signed certificates. If you have
authentication enabled in your configuration, you will next be asked to
authenticate. Enter an appropriate username and password now.



Note on browser TLS

Your browser needs to be support TLS v1.2 to use Riak Control over
HTTPS. A list of browsers that support TLS v1.2 can be found
[here](https://en.wikipedia.org/wiki/Transport_Layer_Security#Web_browsers).
TLS v1.2 may be disabled by default on your browser, for example if you
are using Firefox versions earlier than 27, Safari versions earler than
7, Chrome versions earlier than 30, or Internet Explorer versions
earlier than 11.  To enable it, follow browser-specific instructions.


Snapshot View


When you first navigate to Riak Control, you will land on the Snapshot
view:


[ [image: Snapshot View] ] (/images/control_current_snapshot.png)


In this interface, the health of your cluster is made immediately
obvious. In the event that something isn’t quite right (or has the
potential to cause problems in the near future), the green check mark
will turn into a red X. The red X is accompanied by a list of
reasons for concern. Each item in the list links to a page where you can
get more information about the issue.





Cluster Management View


On the top right side of the admin panel are navigation tabs. If you
click the Cluster tab, you will be taken to the cluster management
page.


On this page, you can see all of the nodes in your cluster, along with
their status, the percentage of the ring owned by that node, and memory
consumption. You can also stage and commit changes to the cluster, such
as adding, removing, and marking nodes as down.


Staged changes to the cluster:


[ [image: Cluster Management Staged] ] (/images/control_cluster_management_staged.png)


Changes committed; transfers active:


[ [image: Cluster Management Transfers] ] (/images/control_cluster_management_transfers.png)


Cluster stabilizes after changes:


[ [image: Cluster Management Stable] ] (/images/control_cluster_management_stable.png)





Node Management View


The node management view allows you to operate against the individual
nodes in the cluster.


[ [image: Node Management] ] (/images/control_node_management.png)





Ring View


One level deeper than the cluster view is the ring view. This is where you can
see the health of each [[vnode|Vnodes]].


[ [image: Ring View] ] (/images/control_current_ring.png)


Most of the time, your ring will be too large to effectively manage from
the ring view. That said, with filters you can easily identify partition
ownership, unreachable primaries, and in-progress handoffs.








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/advanced/deletion.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Object Deletion
project: riak
version: 2.0.0+
document: guide
audience: advanced
keywords: [operators, deletion, delete_mode, tombstones]




In single-server, non-clustered data storage systems, object deletion
is a trivial process. In an [[eventually consistent|Eventual
Consistency]], [[clustered|Clusters]] system like Riak, however,
object deletion is far less trivial because objects live on multiple
[[nodes|Riak Glossary#nodes]], which means that a deletion process must
be chosen to determine when an object can be removed from the storage
backend.



Object Deletion Example Scenario


The problem of object deletion in Riak can be illustrated more
concretely using the following example:



		An object is stored on nodes A, B, and C


		Node C suddenly goes offline


		A Riak client sends a delete request to node A, which forwards that
request to node B


		On nodes A and B, the object is marked as deleted with a
[[tombstone|Object Deletion#tombstones]]


		Node C comes back online


		The object has been marked as deleted on nodes A and B, but it still
lives on node C


		A client attempts to read the object, Riak senses that there are
divergent replicas and initiates a repair process (either [[read
repair|Active Anti-Entropy#read-repair]] or [[active anti-entropy]],
depending on configuration)





At this point, Riak needs to make a decision about what to do. Should
node C be instructed to delete the object as well? Should nodes A and B
be instructed to reinstate the object so that it lives on all three
nodes again?


What happens in this scenario depends on how you have configured Riak to
handle deletion. More on configuration can be found in the
[[section below|Object Deletion#configuring-object-deletion]].





Tombstones


Riak addresses the problem of deletion in distributed systems by marking
deleted objects with a so-called tombstone. This means that an
X-Riak-Deleted metadata key is added to the object and given the value
true, while the object itself is set to an empty Erlang object,
i.e. <<>>.


When a delete request is sent to Riak, the following process is set in
motion:



		A tombstone object (<<>>) is written to N [[vnodes]], with N
defined by [[n_val|Replication Properties#n-value-and-replication]]


		If all N vnodes store the tombstone, the object is removed


		If fallback vnodes are in use, the object will not be immediately
removed








Configuring Object Deletion


If step 3 in the process explained above is reached, the delete_mode
setting in your [[configuration files|Configuration
Files#advanced-configuration]] will determine what happens next. This
setting determines how long Riak will wait after identifying an object
for deletion and actually removing the object from the storage backend.


There are three possible settings:



		keep — Disables tombstone removal; protects against an edge case
in which an object is deleted and recreated on the owning
[[vnodes]] while a fallback is either down or awaiting handoff


		immediate — The tombstone is removed as soon as the request is
received


		Custom time interval — How long to wait until the tombstone is
removed, expressed in milliseconds. The default is 3000, i.e. to
wait 3 seconds





In general, we recommend setting the delete_mode parameter to keep
if you plan to delete and recreate objects under the same key
frequently.


Setting delete_mode to immediate can be useful in situations in
which an aggressive space reclamation process is necessary, such as
when running [[MapReduce jobs|Using MapReduce]], but we do not recommend
this in general.


Setting delete_mode to a longer time duration than the default can be
useful in certain edge cases involving [[Multi-Datacenter
Replication|Multi Data Center Replication v3 Architecture]], e.g. when
network connectivity is an issue.


Please note that there is an edge case where tombstones will remain
stored in the backend, even if the time interval-based delete_mode is
used. This occurs if the node is stopped after a tombstone has been
written but before it has been removed from the backend. In this case,
the tombstone will show up in keylisting and MapReduce operations and
will not disappear until you read the key, which has the effect of
making Riak aware of the tombstone. In practice, if delete_modeis set
to 10000, all keys that have been deleted during the last 10 seconds
before a node is stopped will remain in the backend.





Client Library Examples


If you are updating an object that has been deleted—or if you suspect
that an update might target a deleted object—it is recommended that
you first fetch the [[causal context]] of the object prior to updating.
This can be done by setting the deletedvclock parameter to true as
part of the [[fetch operation|PBC Fetch Object]]. This can also be done
with the official Riak clients for Ruby, Java, and Erlang, as in the
example below:


object.delete
deleted_object = bucket.get('bucket', 'key', deletedvclock: true)
deleted_object.vclock



# It is not currently possible to fetch the causal context for a deleted
# key in the Python client.



Location loc = new Location("<bucket>")
        .setBucketType("<bucket_type>")
        .setKey("<key>");
FetchValue fetch = new FetchValue.Builder(loc)
        .withOption(Option.DELETED_VCLOCK, true)
        .build();
FetchValue.Response response = client.execute(fetch);
System.out.println(response.getVclock().asString());



{ok, Obj} = riakc_pb_socket:get(Pid,
                                {<<"bucket_type">>, <<"bucket">>},
                                <<"key">>,
                                [{deleted_vclock}]).

%% In the Erlang client, the vector clock is accessible using the Obj
%% object obtained above.



$response = (new \Basho\Riak\Command\Builder\FetchObject($riak))
  ->buildLocation('deleted_key', 'in_some_bucket', 'of_a_certain_type')
  ->build()
  ->execute();

echo $response->getVclock(); // a85hYGBgzGDKBVI8m9WOeb835ZRhYCg1zGBKZM5jZdhnceAcXxYA






Resources



		Discussion on the Riak mailing
list [http://lists.basho.com/pipermail/riak-users_lists.basho.com/2011-October/006048.html]









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/advanced/upgrading-search-2.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Upgrading Search from 1.x to 2.x
project: riak
version: 2.0.0+
document: cookbook
toc: true
audience: advanced
keywords: [search, upgrading]




If you’re using Search in a version of Riak prior to 2.0 (1.3.0 to
1.4.x), you should follow these steps to migrate your search indexes
from the legacy merge_index to the new Solr-backed ([[Yokozuna|Search
Details]]) indexes. The legacy version of Riak Search is now deprecated
and does not support most new 2.0 features, i.e. no [[Riak Data
Types|Using Data Types]], [[bucket types|Using Bucket Types]], [[strong
consistency]], or [[security|authentication and authorization]]), so we
highly recommend that you migrate.


And please note that the legacy merge_index-based search (aka legacy
Search) will be removed in a future release of Riak.



Overview of an Upgrade


The migration steps explained here are as automated as they can
reasonably be, but they do include some manual steps for safety. They
are meant to be run on a live cluster, so there’s no need to take all of
your nodes down. Like all migration activities, you should undertake
these steps at a time when your cluster is relatively light on traffic,
i.e. not the week before Christmas.


The main goal of a live migration is to stand up indexes in the new Riak
Search that parallel the existing ones in legacy. New writes add entries
to both indexes while AAE adds entries in the new indexes for existing
data.


Parallel indexes mean more disk usage. How much more will depend on the
schema but tests have shown Solr to generally use less disk space. A
prudent plan will expect new Search to use as much disk as legacy. You
can also expect more CPU usage as analysis will temporarily be performed
by both systems. Finally, Solr runs on a JVM process requiring its own
RAM. A good start is 2 GB but more will be required for heavier
workloads. On the contrary, do not make too large a heap as it could
cause lengthy garbage collection pauses.


As the new search indexes catch up with the old, incoming queries will
still be serviced by legacy Search. Once you have determined that the
new indexes are consistent with KV, you can perform a live switch to the
new system and turn off legacy Search. Finally, you can remove the old
merge index directories to reclaim disk space.



Downgrading and Merge Index

It may be tempting to keep the merge index files in case of a downgrade.
We don't recommend doing that if writes are being made to these buckets
during upgrade.  Once `search: false` is set on a bucket, all new KV
data written will have missing indexes in the merge index and
overwritten data will have inconsistent indexes. At this point, a
downgrade requires a full re-index of the data as legacy Search has no
mechanism to cope with inconsistency (such as [[active anti-entropy]] in
the new Search).


Active Anti-Entropy (AAE) Required

Migration requires that Riak's AAE subsystem be enabled. It's
responsible for finding all the missing index entries for existing data
and adding them. Technically speaking, the migration can be performed
without AAE, but it will require a key listing or [[MapReduce|Using
MapReduce]] job that re-indexes every object. This method will use more
CPU, network, and especially disk space from merge index as its GC
algorithm is bad at getting rid of large index files.




Steps to Upgrading



		First, you’ll perform a normal [[rolling upgrade|rolling upgrades]].
As you upgrade, enable yokozuna (the new Riak Search library) on
each node. If you’re still using app.config it’s called yokozuna.
If you’ve chosen to upgrade to the new riak.conf config option, it’s
called search.


search = on



{yokozuna, [
            %% Other configs
            {enabled, true},
            %% Other configs
           ]}




Upgrade First

Don't proceed until all nodes have been upgraded to the newest
version. This way all nodes have new Search capabilities before
running the next steps which require them.




		For every schema in legacy Search, you must create a comparable
schema in new Search. If you want to use the default schema named
[[_yz_default|search schema]], you can skip this step, but we highly
recommend you create your own custom schema.


To create a schema, you can follow the Solr [[search schema]]
instructions to learn how to define your xml file. Once you’ve created
the file, you can upload it to the cluster.


curl -XPUT http://localhost:8098/search/schema/my_schema \
  -H 'Content-Type: application/xml' \
  --data-binary @my_schema.xml






		For every index in legacy Search, you must create a comparable index
in new Search, setting the appropriate schema that you created in the
previous step. This index can have the same name as your legacy Search
index. You can find more details about index creation under [[Using
Search|Using Search#Simple-Setup]].


curl -XPUT http://localhost:8098/search/index/my_index \
  -H 'Content-Type: application/json' \
  -d '{"schema":"my_schema"}'






		For each bucket which is indexed by legacy Search, you must add the
search_index bucket property to point to the new Search index. This
new index is what we are attempting to migrate all of our index data to.
You can find more details about this step under [[Using Search|Using
Search#Simple-Setup]].


curl -XPUT http://localhost:8098/buckets/my_bucket/props \
  -H 'Content-Type: application/json' \
  -d '{"props":{"search_index":"my_index"}}'



Once a bucket is associated with the new Search, all objects that are
written or modified in Riak will be indexed by both legacy and new
Search. However, the HTTP and client query interfaces will still
continue to use the legacy Search.





		The new Search [[AAE|Replication#Active-Anti-Entropy-AAE-]] hash
trees must be manually cleared so that AAE will notice the missing
indexes.


Attach to one of the Riak nodes by calling riak attach-direct. Paste
the following code into the shell. It clears the Search hash trees for
each node in the cluster.


riak_core_util:rpc_every_member_ann(yz_entropy_mgr, clear_trees, [], infinity).



Press Ctrl-D to exit from the attached shell.


In the background AAE will rebuild the hash trees and exchange them
with KV. These exchanges will notice objects are missing and index
them in new Search.


 


		Monitor the AAE status of every node until a full round of exchanges
have occurred on every node.


riak-admin search aae-status



First, you must wait until all trees are rebuilt. This may take a
while as each node is configured, by default, to build a maximum of
one tree per hour. You can determine when a tree is build by looking
at the Entropy Trees section. When a tree is not built it will show
-- under the Built (ago) column. Otherwise, it will list how long
ago the tree was built in a human friendly format. Here is an example
of trees that are not built:


================================ Entropy Trees ================================
Index                                              Built (ago)
-------------------------------------------------------------------------------
...
296867520082839655260123481645494988367611297792   --
319703483166135013357056057156686910549735243776   --
...



Here is an example of built trees:


================================ Entropy Trees ================================
Index                                              Built (ago)
  -------------------------------------------------------------------------------
...
296867520082839655260123481645494988367611297792   12.3 hr
319703483166135013357056057156686910549735243776   5.3 hr
...



After all the trees are built you then have to wait for a full
exchange round to occur for every partition on every node.  That is,
the full exchange round must be NEWER than the time the tree was
built.  That way you know the exchange was based on the latest tree.
The exchange information is found under the Exchanges section.
Under that section there are two columns: Last (ago) and All (ago).  In this was you want to wait until the All (ago) section is
newer than the value of Built (ago) in the Entropy Trees section.
For example, given the entropy tree output above this output would
indicate both partitions have had a full exchange round since the
latest tree was built:


================================== Exchanges ==================================
Index                                              Last (ago)    All (ago)
-------------------------------------------------------------------------------
...
296867520082839655260123481645494988367611297792   12.1 hr       12.1 hr
319703483166135013357056057156686910549735243776   5.1 hr        5.2 hr
...



Notice that 12.1 hr is newer than 12.3 hr and 5.2 hr newer than
5.3 hr. Once the exchange is newer for every partition on every
node you know that AAE has brought all new indexes up to date.





		Next, call the following command that will give HTTP and PB query
control to the new Riak Search.


riak-admin search switch-to-new-search



 
 Check Results Before Switching (Optional)

 Up until this point all incoming queries are serviced by the legacy
 Search system.  After the `switch-to-new-search` is run all queries
 will be handled by new Search.  If you first want to verify the
 results of new Search before switching then you can use its dedicated
 HTTP resource at `/search/query/?q=...`.
 



		Set the search bucket property to false for all legacy indexed
buckets. This deactivates legacy Search.


curl -XPUT "http://localhost:8098/buckets/my_bucket/props" \
  -H 'Content-Type: application/json' \
  -d '{"props":{"search": false}}'






		Disable the Riak Search process on each node by setting riak_search
enabled to false.


{riak_search, [
               %% Other configs
               {enabled, false},
               %% Other configs
              ]},






		Perform a rolling restart. This is needed both to stop legacy
Search as well as properly remove the legacy Search commit hooks. A bug
in the 1.4.x series allowed bucket properties to leak into what Riak
developers call the “raw ring”. In the case of legacy Search it causes
the commit hooks to persist even when legacy Search is disable and the
search property is set to false.


New Search has code to expunge the legacy hooks from the raw ring but
it only occurs during start-up and requires that legacy Search be
disabled in the configuration.  Thus, the easiest way to fix things is
to disable legacy Search (in step 9) and then perform a rolling
restart of the cluster.





		Finally, delete the merge index directories to reclaim disk space.








For any questions reach out the the [[Riak community|Help and
Community]]. Preferably, ask your questions up front rather than during
the middle of a migration.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/advanced/install-custom-code.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Installing Custom Code
project: riak
version: 1.3.1+
document: tutorial
toc: true
audience: advanced
keywords: [operators, code, erlang, javascript]
moved: {
‘1.4.0-‘: ‘/cookbooks/Erlang-Named-Functions’
}




Riak supports the use of Erlang named functions in compiled modules for
[[pre/post-commit hooks|Advanced Commit Hooks]], and MapReduce operations. This
doc contains installation steps with simple examples for each use case.


Your developers can compile [[custom erlang code|Advanced Commit Hooks]], which
they can send to you as a beam file. You should note that in Erlang, a file
name must have the same name the module. So if you are given a file named
validate_json.beam, do not rename it.


Note: The [[Configure|Installing Custom Code#Configure]] step (add_paths) also applies to installing JavaScript files.



Compiling


If you have been given Erlang code and are expected to compile it for
your developers, keep the following notes in mind.


Note on the Erlang Compiler
 You
must use the Erlang compiler (erlc) associated with the Riak
installation or the version of Erlang used when compiling Riak from source.
For packaged Riak installations, you can consult Table 1 below for the
default location of Riak's erlc for each supported platform.
If you compiled from source, use the erlc from the Erlang version
you used to compile Riak.



		CentOS & RHEL Linux
		
/usr/lib64/riak/erts-5.9.1/bin/erlc







		Debian & Ubuntu Linux
		
/usr/lib/riak/erts-5.9.1/bin/erlc







		FreeBSD
		
/usr/local/lib/riak/erts-5.9.1/bin/erlc







		SmartOS
		
/opt/local/lib/riak/erts-5.9.1/bin/erlc







		Solaris 10
		
/opt/riak/lib/erts-5.9.1/bin/erlc









Table 1: Erlang compiler executable location for packaged Riak installations
on supported platforms


Compiling the module is a straightforward process.


erlc validate_json.erl



Next, you’ll need to define a path from which compiled modules can be stored
and loaded. For our example, we’ll use a temporary directory /tmp/beams,
but you should choose a directory for production functions based on your
own requirements such that they will be available where and when needed.


Ensure that the directory chosen above can be read by
the riak user.
Successful compilation will result in a new .beam file,
validate_json.beam.





Configure


Take the validate_json.beam and copy this file to the /tmp/beams directory.


cp validate_json.beam /tmp/beams/



After copying the compiled module into /tmp/beams/, you must update
app.config and configure Riak to allow loading of compiled modules from
the directory where they’re stored (again in our example case, /tmp/beams).


Edit app.config and insert an add_paths setting into the riak_kv
section as shown:


{riak_kv, [
  %% ...
  {add_paths, ["/tmp/beams/"]},
  %% ...



After updating app.config, Riak must be restarted. In production cases, you
should ensure that if you are adding configuration changes to multiple nodes,
that you do so in a rolling fashion, taking time to ensure that the Riak key
value store has fully initialized and become available for use.


This is done with the riak-admin wait-for-service command as detailed
in the [[Commands documentation|riak-admin Command Line#wait-for-service]].


It is important that you ensure riak_kv is
active before restarting the next node.




          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/advanced/aae.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Managing Active Anti-Entropy
project: riak
version: 1.4.9+
document: guide
audience: advanced
keywords: [operators, aae, active anti-entropy]




Riak’s [[active anti-entropy]] (AAE) subsystem is a set of background
processes that repair object inconsistencies stemming from missing or
divergent object values across nodes. Riak operators can turn AAE on and
off and configure and monitor its functioning.



Enabling Active Anti-Entropy


Whether AAE is currently enabled in a node is determined by the value of
the anti_entropy parameter in the node’s [[configuration files]].


{{#2.0.0-}}
AAE is turned off by default. To use it, you will need to turn it on in
the riak_kv section of your app.config:


{riak_kv, [

  {anti_entropy, {on, []}},

    %% More riak_kv settings...
]}



{{/2.0.0-}}
{{#2.0.0+}}


In Riak versions 2.0 and later, AAE is turned on by default.


anti_entropy = active



{riak_kv, [

    {anti_entropy, {on, []}},

    %% More riak_kv settings...
]}



{{/2.0.0+}}


For monitoring purposes, you can also activate AAE debugging, which
provides verbose debugging message output:


{{#2.0.0-}}


{riak_kv, [

    %% With debugging
    {anti_entropy, {on, [debug]}},

    %% More riak_kv settings...
]}



{{/2.0.0-}}
{{#2.0.0+}}


anti_entropy = active-debug



{riak_kv, [

    %% With debugging
    {anti_entropy, {on, [debug]}},

    %% More riak_kv settings...
]}



{{/2.0.0+}}


Remember that you will need to [[restart the node|riak-admin Command
Line#restart]] for any configuration-related changes to take effect.





Disabling Active Anti-Entropy


Alternatively, AAE can be switched off if you would like to repair
object inconsistencies using [[read repair|Active
Anti-Entropy#read-repair]] alone:


{{#2.0.0-}}


{riak_kv, [

    %% AAE turned off
    {anti_entropy, {off, []}},

    %% More riak_kv settings...
]}



{{/2.0.0-}}
{{#2.0.0+}}


anti_entropy = passive



{riak_kv, [

    %% AAE turned off
    {anti_entropy, {off, []}},

    %% More riak_kv settings...
]}



{{/2.0.0+}}


If you would like to reclaim the disk space used by AAE operations, you
must manually delete the directory in which AAE-related data is stored
in each node.


rm -Rf <path_to_riak_node>/data/anti_entropy/*



The default directory for AAE data is ./data/anti_entropy, as in the
example above, but this can be changed. See the section below titled
Data Directory.


Remember that you will need to [[restart the node|riak-admin Command
Line#restart]] for any configuration-related changes to take effect.


The directory deletion method above can also be used to force a
rebuilding of hash trees.





Monitoring AAE


Riak’s command-line interface includes a command that provides insight
into AAE-related processes and performance:


riak-admin aae-status



When you run this command in a node, the output will look like this
(shortened for the sake of brevity):


================================== Exchanges ==================================
Index                                              Last (ago)    All (ago)
-------------------------------------------------------------------------------
0                                                  19.0 min      20.3 min
22835963083295358096932575511191922182123945984    18.0 min      20.3 min
45671926166590716193865151022383844364247891968    17.3 min      19.8 min
68507889249886074290797726533575766546371837952    16.5 min      18.3 min
91343852333181432387730302044767688728495783936    15.8 min      17.3 min
...

================================ Entropy Trees ================================
Index                                              Built (ago)
-------------------------------------------------------------------------------
0                                                  5.7 d
22835963083295358096932575511191922182123945984    5.6 d
45671926166590716193865151022383844364247891968    5.5 d
68507889249886074290797726533575766546371837952    4.3 d
91343852333181432387730302044767688728495783936    4.8 d

================================ Keys Repaired ================================
Index                                                Last      Mean      Max
-------------------------------------------------------------------------------
0                                                     0         0         0
22835963083295358096932575511191922182123945984       0         0         0
45671926166590716193865151022383844364247891968       0         0         0
68507889249886074290797726533575766546371837952       0         0         0
91343852333181432387730302044767688728495783936       0         0         0




Each of these three tables contains information for each
[[vnode|Vnodes]] in your cluster in these three categories:


Category | Measures | Description
:——–|:———|:———–
Exchanges | Last | When the most recent exchange between a data partition and one of its replicas was performed
| All | How long it has been since a partition exchanged with all of its replicas
Entropy Trees | Built | When the hash trees for a given partition were created
Keys Repaired | Last | The number of keys repaired during all key exchanges since the last node restart
| Mean | The mean number of keys repaired during all key exchanges since the last node restart
| Max | The maximum number of keys repaired during all key exchanges since the last node restart


All AAE status information obtainable using the riak-admin aae-status
command is stored in-memory and is reset when a node is restarted with
the exception of hash tree build information, which is persisted on disk
(because hash trees themselves are persisted on disk).





Configuring AAE


Riak’s [[configuration files]] enable you not just to turn AAE on and
off but also to fine-tune your cluster’s use of AAE, e.g. how
much memory AAE processes should consume, how frequently specific
processes should be run, etc.



Data Directory


By default, data related to AAE operations is stored in the
./data/anti_entropy directory in each Riak node. This can be changed
by setting the anti_entropy.data_dir parameter to a different value.


{{#2.0.0+}}





Throttling


AAE has a built-in throttling mechanism that can insert delays between
AAE repair operations when [[vnode|Vnodes]] mailboxes reach the length
specified by the anti_entropy.throttle.$tier.delay parameter (more on
that in the section below). Throttling can be switched on and off using
the anti_entropy.throttle parameter. The default is on.



Throttling Tiers


If you active AAE throttling, you can use tiered throttling to
establish a series of vnode mailbox-size thresholds past which a
user-specified time delay should be observed. This enables you to
establish, for example, that a delay of 10 milliseconds should be
observed if the mailbox of any vnode reaches 50 messages.


The general form for setting throttling tiers is as follows:


anti_entropy.throttle.$tier.mailbox_size
anti_entropy.throttle.$tier.delay



In the above example, $tier should be replaced with the desired
name for that tier, e.g. tier1, large_mailbox_tier, etc. If you
choose to set throttling tiers, you will need to set the mailbox size
for one of the tiers to 0. Both the .mailbox_size and .delay
parameters must be set for each tier.


Below is an example configuration for three tiers, with mailbox sizes of
0, 50, and 100 and time delays of 5, 10, and 15 milliseconds,
respectively:


anti_entropy.throttle.tier1.mailbox_size = 0
anti_entropy.throttle.tier1.delay = 5ms
anti_entropy.throttle.tier2.mailbox_size = 50
anti_entropy.throttle.tier2.delay = 10ms
anti_entropy.throttle.tier3.mailbox_size = 100
anti_entropy.throttle.tier3.delay = 15ms








Bloom Filters


Bloom filters are mechanisms used to prevent reads that are destined to
fail because no object exists in the location that they’re querying.
Using bloom filters can improve reaction time for some queries, but
entail a small general performance cost. You can switch bloom filters
on and off using the anti_entropy.bloomfilter parameter.





Trigger Interval


The anti_entropy.trigger_interval setting determines how often Riak’s
AAE subsystem looks for work to do, e.g. building or expiring hash
trees, triggering information exchanges between nodes, etc. The default
is every 15 seconds (15s). Raising this value may save resources, but
at a slightly higher risk of data corruption.





Hash Trees


As a fallback measure in addition to the normal operation of AAE on-disk
hash trees, Riak periodically clears and regenerates all hash trees
stored on disk to ensure that hash trees correspond to the key/value
data stored in Riak. This enables Riak to detect silent data corruption
resulting from disk failure or faulty hardware. The
anti_entropy.tree.expiry setting enables you to determine how often
that takes place. The default is once a week (1w). You can set up this
process to run once a day (1d), twice a day (12h), once a month
(4w), and so on.


In addition to specifying how often Riak expires hash trees after they
are built, you can also specify how quickly and how many hash trees are
built. You can set the frequency using the
anti_entropy.tree.build_limit.per_timespan parameter, for which the
default is every hour (1h); the number of hash tree builds is
specified by anti_entropy.tree.build_limit.number, for which the
default is 1.





Write Buffer Size


While you are free to choose the backend for data storage in Riak,
background AAE processes use [[LevelDB]]. You can adjust the size of the
write buffer used by LevelDB for hash tree generation using the
anti_entropy.write_buffer_size parameter. The default is 4MB.





Open Files and Concurrency Limits


The anti_entropy.concurrency_limit parameter determines how many AAE
cross-node information exchanges or hash tree builds can happen
concurrently. The default is 2.


The anti_entropy.max_open_files parameter sets an open-files limit for
AAE-related background tasks, analogous to [[open files limit]] settings
used in operating systems. The default is 20.







AAE and Riak Search


Riak’s AAE subsystem works to repair object inconsistencies both with
for normal key/value objects as well as data related to [[Riak
Search|Using Search]]. In particular, AAE acts on indexes stored in
Solr [http://lucene.apache.org/solr/], the search platform that drives
Riak Search. Implementation details for AAE and Search can be found in
the [[Search Details|Search Details#Active-Anti-Entropy-AAE-]]
documentation.


You can check on the status of Search-related AAE using the following
command:


riak-admin search aae-status



The output from that command can be interpreted just like the output
discussed in the section on [[monitoring|Managing Active
Anti-Entropy#Monitoring-AAE]] above.


{{/2.0.0+}}






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/advanced/strong-consistency.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Managing Strong Consistency
project: riak
version: 2.0.0+
document: guide
audience: advanced
keywords: [operators, strong-consistency]





Note on commercial support

Riak's strong consistency feature is currently an open-source-only
feature and is not yet commercially supported.

This document provides information on configuring and monitoring a Riak
cluster’s optional [[strong consistency]] subsystem. Documentation for
developers building applications using Riak’s strong consistency feature
can be found in [[Using Strong Consistency]], while a more theoretical
treatment can be found in [[Strong Consistency]].



Minimum Cluster Size


In order to use strong consistency in Riak, your cluster must consist
of at least three nodes. If it does not, all strongly consistent
operations will fail. If your cluster is smaller than three nodes, you
will need to [[add more nodes|Adding and Removing Nodes]] and make sure
that strong consistency is [[enabled|Managing Strong
Consistency#Enabling-Strong-Consistency]] on all of them.


Strongly consistent operations on a given key may also fail if a
majority of object replicas in a given ensemble are unavailable, whether
due to slowness, crashes, or network partitions. This means that you may
see strongly consistent operations fail even if the minimum cluster size
requirement has been met. More information on ensembles can be found in
[[Implementation Details|Managing Strong
Consistency#Implementation-Details]].


While strong consistency requires at least three nodes, we have a
variety of recommendations regarding cluster size, which can be found in
[[Fault Tolerance|Managing Strong Consistency#Fault-Tolerance]].





Enabling Strong Consistency


Strong consistency in Riak is disabled by default. You can enable it in
each node’s [[configuration files|Configuration
Files#Strong-Consistency]].


strong_consistency = on



%% In the older, app.config-based system, the strong consistency
%% parameter is enable_consensus:

{riak_core, [
    % ...
    {enable_consensus, on},
    % ...
    ]}



Remember that you must [[restart your node|riak Command Line]] for
configuration changes to take effect.


For strong consistency requirements to be applied to specific keys,
those keys must be in [[buckets]] bearing a bucket type with the
consistent property set to true. More information can be found in
[[Using Bucket Types]].


If you enable strong consistency on all nodes in a cluster with fewer
than three nodes, strong consistency will be enabled but not yet
active. Strongly consistent operations are not possible in this
state. Once at least three nodes with strong consistency enabled are
detected in the cluster, the system will be activated and ready for use.
You can check on the status of the strong consistency subsystem using
the [[riak-admin ensemble-status|Managing Strong Consistency#riak-admin-ensemble-status]] command.





Fault Tolerance


Strongly consistent operations in Riak are necessarily less highly
available than [[eventually consistent|Eventual Consistency]] operations
because strongly consistent operations can only succeed if a quorum
of object replicas are currently reachable. A quorum can be expressed as
N / 2 + 1 (or n_val / 2 + 1), meaning that 3 replicas constitutes a
quorum if N=5, 4 replicas if N=7, etc. If N=7 and 4 replicas are
unavailable, for example, no strongly consistent operations on that
object can succeed.


While Riak uses N=3 by default, bear in mind that higher values of N
will allow for more fault tolerance. The table below shows the number
of allowable missing replicas for assorted values of N:


Replicas | Allowable missing replicas
:——–|:————————–
3 | 1
5 | 2
7 | 3
9 | 4
15 | 7


Thus, we recommend setting n_val higher than the default of 3 for
strongly consistent operations. More on n_val in the section below.



n_val Recommendations


Due to the quorum requirements explained above, we recommend that you
use at least N=5 for strongly consistent data. You can set the value
of N, i.e. n_val, for buckets [[using bucket types]]. For example, you
can create and activate a bucket type with N set to 5 and strong
consistency enabled—we’ll call the bucket type
consistent_and_fault_tolerant—using the following series of
[[commands|riak-admin Command Line]]:


riak-admin bucket-type create consistent_and_fault_tolerant \
  '{"props": {"consistent":true,"n_val":5}}'
riak-admin bucket-type activate consistent_and_fault_tolerant



If the activate command outputs consistent_and_fault_tolerant has been activated, the bucket type is now ready to provide strong
consistency guarantees.



Setting the target_n_val parameter


The target_n_val parameter sets the highest n_val that you intend to
use in an entire cluster. The purpose of this parameter is to ensure
that so-called “hot spots” don’t occur, i.e. that data is never stored
more than once on the same physical node. This can happen when:



		target_n_val is greater than the number of physical nodes, or


		the n_val for a bucket is greater than target_n_val.





A problem to be aware of if you’re using strong consistency is that the
default for target_n_val is 4, while our suggested minimum n_val for
strongly consistent bucket types is 5. This means that you will need to
raise target_n_val if you intend to use an n_val over 4 for any
bucket type in your cluster. If you anticipate using an n_val of 7 as
the largest n_val within your cluster, for example, you will need to
set target_n_val to 7.


This setting is not contained in riak.conf, and must instead be set in
the advanced.config file. For more information, see our documentation
on [[advanced configuration|Configuration
Files#Advanced-Configuration]].


If you are using strong consistency in a cluster that has already been
created with a target_n_val that is too low (remember that the default
is too low), you will need to raise it to the desired higher value and
restart each node.





Note on Bucket Properties


The consistent bucket property is one of two bucket properties,
alongside [[datatype|Using Data Types]], that cannot be changed once a
bucket type has been created.


Furthermore, if consistent is set to true for a bucket type, you
cannot change the n_val for the bucket type once it’s been created. If
you attempt to do so, you’ll see the following error:


Error updating bucket <bucket_type_name>:
n_val cannot be modified for existing consistent type



If you’ve created a bucket type with a specific n_val and wish to
change it, you will need to create a new bucket type with the
appropriate n_val and use the new bucket type instead.







Fault Tolerance and Cluster Size


From the standpoint of strongly consistent operations, larger clusters
tend to be more fault tolerant. Spreading [[ensembles|Managing Strong
Consistency#Implementation-Details]] across more nodes will decrease the
number of ensembles active on each node and thus decrease the number of
quorums affected when a node goes down.


Imagine a 3-node cluster in which all ensembles are N=3 ensembles. If
two nodes go down, all ensembles will lose quorum and will be unable
to function. Strongly consistent operations on the entire keyspace will
fail until at least one node is brought back online. And even when that
one node is brought back online, a significant portion of the keyspace
will continue to be unavailable for strongly consistent operations.


For the sake of contrast, imagine a 50-node cluster in which all
ensembles are N=5 (i.e. all objects are replicated to five nodes).  In
this cluster, each node is involved in only 10% of the total ensembles;
if a single node fails, that failure will thus impact only 10% of
ensembles. In addition, because N is set to 5, that will not impact
quorum for any ensemble in the cluster; two additional node failures
would need to occur for quorum to be lost for any ensemble.  And even
in the case of three nodes failing, it is highly unlikely that that
failure would impact the same ensembles; if it did, only those ensembles
would become unavailable, affecting only 10% of the key space, as
opposed to 100% in the example of a 3-node cluster consisting of N=3
ensembles.


These examples illustrate why we recommend higher values for N—again,
at least N=5—as well as clusters with many nodes. The 50-node cluster
example above is used only to illustrate why larger clusters are more
fault tolerant. The definition of “many” nodes will vary according to your needs.
For recommendations regarding cluster size, see [[Cluster Capacity
Planning]].





Offline Node Recommendations


In general, strongly consistent Riak is more sensitive to the number of
nodes in the cluster than eventually consistent Riak, due to the quorum
requirements described above. While Riak is designed to withstand a
variety of failure scenarios that make nodes in the cluster unreachable,
such as hardware or network failure, we nonetheless recommend that you
limit the number of nodes that you intentionally down or reboot.
Having multiple nodes leave the cluster at once can threaten quorum and
thus affect the viability of some or all strongly consistent operations,
depending on the size of the cluster.


If you’re using strong consistency and you do need to reboot multiple
nodes, we recommend rebooting them very carefully. Rebooting nodes too
quickly in succession can force the cluster to lose quorum and thus be
unable to service strongly consistent operations. The best strategy is
to reboot nodes one at a time and wait for each node to rejoin existing
[[ensembles|Managing Strong Consistency#Implementation-Details]] before
continuing to the next node. At any point in time, the state of
currently existing ensembles can be checked using [[riak-admin ensemble-status|Managing Strong Consistency#riak-admin-ensemble-status]].







Performance


If you run into performance issues, bear in mind that the key space in a
Riak cluster is spread across multiple [[consensus groups|Strong
Consistency#Implementation-Details]], each of which manages a portion of
that key space. Larger [[ring sizes|Clusters#The-Ring]] allow more
independent consensus groups to exist in a cluster, which can provide
for more concurrency and higher throughput, and thus better performance.
The ideal ring size, however, will also depend on the number of nodes in
the cluster. General recommendations can be found in [[Cluster Capacity
Planning|Cluster Capacity Planning#Ring-Size-Number-of-Partitions]].


Adding nodes to your cluster is another means of enhancing the
performance of strongly consistent operations. Instructions on doing so
can be found in [[Adding and Removing Nodes]].


Your cluster’s configuration can also affect strong consistency
performance. See the section on [[configuration|Managing Strong
Consistency#Configuring-Strong-Consistency]] below.





riak-admin ensemble-status


The [[riak-admin|riak-admin Command Line#ensemble-status]] interface
used for general node/cluster management has an ensemble-status
command that provides insight into the current status of the consensus
subsystem undergirding strong consistency.


Running the command by itself will provide the current state of the
subsystem:


riak-admin ensemble-status



If strong consistency is not currently enabled, you will see Note: The consensus subsystem is not enabled. in the output of the command; if
strong consistency is enabled, you will see output like this:


============================== Consensus System ===============================
Enabled:     true
Active:      true
Ring Ready:  true
Validation:  strong (trusted majority required)
Metadata:    best-effort replication (asynchronous)

================================== Ensembles ==================================
 Ensemble     Quorum        Nodes      Leader
-------------------------------------------------------------------------------
   root       4 / 4         4 / 4      riak@riak1
    2         3 / 3         3 / 3      riak@riak2
    3         3 / 3         3 / 3      riak@riak4
    4         3 / 3         3 / 3      riak@riak1
    5         3 / 3         3 / 3      riak@riak2
    6         3 / 3         3 / 3      riak@riak2
    7         3 / 3         3 / 3      riak@riak4
    8         3 / 3         3 / 3      riak@riak4




Interpreting ensemble-status Output


The following table provides a guide to ensemble-status output:


Item | Meaning
:—-|:——-
Enabled | Whether the consensus subsystem is enabled on the current node, i.e. whether the strong_consistency parameter in riak.conf has been set to on. If this reads off and you wish to enable strong consistency, see our documentation on enabling strong consistency.
Active | Whether the consensus subsystem is active, i.e. whether there are enough nodes in the cluster to use strong consistency, which requires at least three nodes.
Ring Ready | If true, then all of the [[vnodes]] in the cluster have seen the current ring, which means that the strong consistency subsystem can be used; if false, then the system is not yet ready. If you have recently added or removed one or more nodes to/from the cluster, it may take some time for Ring Ready to change.
Validation | This will display strong if the tree_validation setting in riak.conf has been set to on and weak if set to off.
Metadata | This depends on the value of the synchronous_tree_updates setting in riak.conf, which determines whether strong consistency-related Merkle trees are updated synchronously or asynchronously. If best-effort replication (asynchronous), then synchronous_tree_updates is set to false; if guaranteed replication (synchronous) then synchronous_tree_updates is set to true.
Ensembles | This displays a list of all of the currently existing ensembles active in the cluster.


		Ensemble — The ID of the ensemble

		Quorum — The number of ensemble peers that are either leading or following

		Nodes — The number of nodes currently online

		Leader — The current leader node for the ensemble






Note: The root ensemble, designated by root in the sample
output above, is a special ensemble that stores a list of nodes and
ensembles in the cluster.


More in-depth information on ensembles can be found in our internal
documentation [https://github.com/basho/riak_ensemble/blob/develop/doc/Readme.md].





Inspecting Specific Ensembles


The ensemble-status command also enables you to directly inspect the
status of specific ensembles in a cluster. The IDs for all current
ensembles are displayed in the Ensembles section of the
ensemble-status output described above.


To inspect a specific ensemble, specify the ID:


riak-admin ensemble-status <id>



The following would inspect ensemble 2:


riak-admin ensemble-status 2



Below is sample output for a single ensemble:


================================= Ensemble #2 =================================
Id:           {kv,0,3}
Leader:       riak@riak2 (2)
Leader ready: true

==================================== Peers ====================================
 Peer  Status     Trusted          Epoch         Node
-------------------------------------------------------------------------------
  1    following    yes             1            riak@riak1
  2     leading     yes             1            riak@riak2
  3    following    yes             1            riak@riak3



The table below provides a guide to the output:


Item | Meaning
:—-|:——-
Id | The ID for the ensemble used internally by Riak, expressed as a 3-tuple. All ensembles are kv; the second element names the ring partition for which the ensemble is responsible; and the third element is the n_val for the keys for which the ensemble is responsible.
Leader | Identifies the ensemble’s leader. In this case, the leader is on node riak@riak2 and is identified as peer 2 in the ensemble.
Leader ready | States whether the ensemble’s leader is ready to respond to requests. If not, requests to the ensemble will fail.
Peers | A list of peer [[vnodes]] associated with the ensemble.


		Peer — The ID of the peer

		Status — Whether the peer is a leader or a follower

		Trusted — Whether the peer’s Merkle tree is currently considered trusted or not

		Epoch — The current consensus epoch for the peer. The epoch is incremented each time the leader changes.

		Node — The node on which the peer resides.






More information on leaders, peers, Merkle trees, and other details can
be found in [[Implementation Details|Managing Strong
Consistency#Implementation-Details]] below.







Implementation Details


Strong consistency in Riak is handled by a subsystem called
riak_ensemble [https://github.com/basho/riak_ensemble/blob/develop/doc/Readme.md]
This system functions differently from other systems in Riak in a number
of ways, and many of these differences are important to bear in mind for
operators configuring their cluster’s usage of strong consistency.



Basic Operations


The first major difference is that strongly consistent Riak involves a
different set of operations from [[eventually consistent|Eventual
Consistency]] Riak. In strongly consistent buckets, there are four types
of atomic operations on objects:



		Get operations work just as they do against
non-strongly-consistent keys, but with two crucial differences:
		Connecting clients are guaranteed to return the most recently
written value (which makes those operations CP, i.e. consistent and
partition tolerant)


		Reads on strongly consistent keys never return siblings, hence
there is no need to develop any sort of [[conflict resolution]]
strategy for those keys








		Conditional put operations write an object only if no object
currently exists in that key. The operation will fail if the key
already exists; if the key was never written or has been deleted, the
operation succeeds.


		Conditional modify operations are compare-and-swap (CAS)
operations that succeed only if the value of a key has not changed
since it was previously read.


		Delete operations work mostly like they do against
non-strongly-consistent keys, with the exception that
[[tombstones|Object Deletion#Tombstones]] are not harvested, which is
the equivalent of having delete_mode set to keep.





From the standpoint of clients connecting to Riak, there is little
difference between strongly and non-strongly consistent data. The
operations performed on objects—reads, writes, deletes, etc.—are the
same, which means that the client API for strong consistency is
essentially the same as it is for eventually consistent operations, with
the important exception of [[error handling|Using Strong
Consistency#Error-Messages]].





Ensembles


The main actors in Riak’s implementation of strong consistency are
ensembles, which are independent groups that watch over a portion of
a Riak cluster’s key space and coordinate strongly consistent operations
across nodes. When watching over a given key space, ensembles must act
upon multiple replicas of a given object, the number of which is
specified by n_val (more on this in [[Replication Properties]]).


Eventually consistent Riak can service requests even when only a single
object replica is available, using mechanisms like [[vector
clocks|Causal Context#Vector-Clocks]] and [[dotted version
vectors|Causal Context#Dotted-Version-Vectors]]—or, in a different
way, [[Riak Data Types|Data Types]])—to ensure eventual consistency
between replicas.  Strongly consistent Riak is different because it
requires that a quorum of object replicas be online and reachable,
where a quorum is defined as n_val / 2 + 1. If a quorum is not
available for a key, all strongly consistent operations against that key
will fail.


More information can be found in the section on [[Fault
Tolerance|Managing Strong Consistency#fault-tolerance]] above.





Peers, Leaders, Followers, and Workers


All ensembles in strongly consistent Riak consist of agents called
peers. The number of peers in an ensemble is defined by the n_val
of that ensemble, i.e. the number of object replicas that the
ensemble watches over. Amongst the peers in the ensemble, there are two
basic actors: leaders and followers.


Leaders and followers coordinate with one another on most requests.
While leaders and followers coordinate on all writes, i.e. all puts and
deletes, you can enable leaders to respond to gets without the need to
coordinate with followers. This is known as granting a leader lease.
Leader leases are enabled by default, and are disabled (or re-enabled)
at the cluster level. A more in-depth account of ensemble behavior can
be found in our internal
documentation [https://github.com/basho/riak_ensemble/tree/feature/add-docs/doc].


In addition to leaders and followers, ensemble peers use lightweight
Erlang processes called workers to perform long-running K/V
operations, allowing peers to remain responsive to requests. The number
of workers assigned to each peer depends on your configuration.


These terms should be borne in mind in the sections on configuration
below.





Integrity Checking


An essential part of implementing a strong consistency subsystem in a
distributed system is integrity checking, which is a process that
guards against data corruption and inconsistency even in the face of
network partitions and other adverse events that Riak was built to
handle gracefully.


Like Riak’s [[active anti-entropy]] subsystem, strong consistency
integrity checking utilizes Merkle
trees [http://en.wikipedia.org/wiki/Merkle_tree] that are persisted on
disk. All peers in an ensemble, i.e. all leaders and followers, maintain
their own Merkle trees and update those trees in the event of most
strongly consistent operations. Those updates can occur synchronously or
asynchronously from the standpoint of client operations, depending on
the configuration that you specify.


While integrity checking takes place automatically in Riak, there are
important aspects of its behavior that you can configure. See the Merkle Tree settings section below for more
information on configurable parameters.







Configuring Strong Consistency


The riak_ensemble subsystem provides a wide variety of tunable
parameters that you can adjust to fit the needs of your Riak cluster.
All riak_ensemble-specific parameters, with the exception of the
strong_consistency parameter used to [[enable strong
consistency|Managing Strong Consistency#Enabling-Strong-Consistency]],
must be set in each node’s advanced.config file, not in riak.conf
or app.config.


Information on the syntax and usage of advanced.config can be found in
our documentation on [[advanced configuration|Configuration
Files#Advanced-Configuration]]. That same document also contains a full
listing of [[strong-consistency-related configuration
parameters|Configuration Files#Strong-Consistency]].


Please note that the sections below require a basic understanding of the
following terms:



		ensemble


		peer


		leader


		follower


		worker


		integrity checking


		Merkle tree





For an explanation of these terms, see the [[Implementation
Details|Managing Strong Consistency#Implementation-Details]] section
above.



Leader Behavior


The trust_lease setting determines whether leader leases are used to
optimize reads. When set to true, a leader with a valid lease can
handle reads directly without needing to contact any followers. When
false, the leader will always contact followers, which can lead to
degraded read performance. The default is true. We recommend leaving
leader leases enabled for performance reasons.


All leaders have periodic duties that they perform, including refreshing
the leader lease. You can determine how frequently this occurs, in
milliseconds, using the ensemble_tick setting. The default is 500
milliseconds. Please note that this setting must be lower than both
the lease_duration and follower_timeout settings (both explained
below).


If you set trust_lease to true, you can also specify how long a
leader lease remains valid without being refreshed using the
lease_duration setting, which is specified in milliseconds. This
setting should be higher than ensemble_tick to ensure that leaders
have to time to refresh their leases before they time out, and it must
be lower than follower_timeout, explained in the section below. The
default is ensemble_tick * 3/2, i.e. if ensemble_tick is 400,
lease_duration will default to 600.





Worker Settings


You can choose how many workers are assigned to each peer using the
peer_workers setting. Workers are lightweight processes spawned by
leaders and followers. While increasing the number of workers will make
the strong consistency subsystem slightly more computationally
expensive, more workers can mean improved performance in some cases,
depending on the workload. The default is 1.





Timeouts


You can establish timeouts for both reads and writes (puts and deletes)
using the peer_get_timeout and peer_put_timeout settings,
respectively. Both are expressed in milliseconds and default to 60000
(1 minute).


Longer timeouts will decrease the likelihood that read or write
operations will fail due to long computation times; shorter timeouts
entail shorter wait times for connecting clients, but at a higher risk
of failed operations under heavy load.





Merkle Tree Settings


[bookmark: merkle]


Leaders and followers in Riak’s strong consistency system maintain
persistent Merkle trees [http://en.wikipedia.org/wiki/Merkle_tree] for
all data stored by that peer. More information can be found in the
Integrity Checking section above. The two sections directly below
describe Merkle-tree-related parameters.



Tree Validation


The tree_validation parameter determines whether Riak considers Merkle
trees to be trusted after peers are restarted (for whatever reason).
When enabled, i.e. when tree_validation is set to true (the
default), Riak does not trust peer trees after a restart, instead
requiring the peer to sync with a trusted quorum. While this is the
safest mode because it protects Riak against silent corruption in Merkle
trees, it carries the drawback that it can reduce Riak availability by
requiring more than a simple majority of nodes to be online and
reachable when peers restart.


If you are using ensembles with N=3, we strongly recommend setting
tree_validation to false.





Synchronous vs. Asynchronous Tree Updates


Merkle tree updates can happen synchronously or asynchronously. This is
determined by the synchronous_tree_updates parameter. When set to
false, which is the default, Riak responds to the client after the
first roundtrip that updates the followers’ data but before the second
roundtrip required to update the followers’ Merkle trees, allowing the
Merkle tree update to happen asynchronously in the background; when set
to true, Riak requires two quorum roundtrips to occur before replying
back to the client, which can increase per-request latency.


Please note that this setting applies only to Merkle tree updates sent
to followers. Leaders always update their local Merkle trees before
responding to the client. Asynchronous updates can be unsafe in certain
scenarios. For example, if a leader crashes before sending metadata
updates to followers and all followers that had acknowledged the write
somehow revert the object value immediately prior to the write request,
a future read could hypothetically return the immediately preceding
value without realizing that the value was incorrect. Setting
synchronous_tree_updates to false does bear this possibility, but it
is highly unlikely.









Monitoring Strong Consistency


Riak provides a wide variety of data related to the current operating
status of a node. This data is available by running the [[riak-admin status|Inspecting a Node#riak-admin-status]] command. That data now
includes statistics specific to strongly consistent operations.


A full listing of these stats is available in [[Inspecting a Node]].
All strong consistency-related stats are prefixed with consistent_,
e.g. consistent_gets, consistent_puts, etc. Many of these stats are
so-called “one-minute stats,” meaning that they reflect node activity in
the last minute.


Strong consistency stats fall into two categories: GET-related and
PUT-related stats.



GET-related stats


Stat | Description
:—-|:———–
consistent_gets | Number of strongly consistent GETs coordinated by this node in the last minute
consistent_gets_total | Total number of strongly consistent GETs coordinated by this node
consistent_get_objsize_mean | Mean object size for strongly consistent GETs on this node in the last minute
consistent_get_objsize_median | Median object size for strongly consistent GETs on this node in the last minute
consistent_get_objsize_95 | 95th-percentile object size for strongly consistent GETs on this node in the last minute
consistent_get_objsize_99 | 99th-percentile object size for strongly consistent GETs on this node in the last minute
consistent_get_objsize_100 | 100th-percentile object size for strongly consistent GETs on this node in the last minute
consistent_get_time_mean | Mean time between reception of client GETs to strongly consistent keys and subsequent response
consistent_get_time_median | Median time between reception of client GETs to strongly consistent keys and subsequent response
consistent_get_time_95 | 95th-percentile time between reception of client GETs to strongly consistent keys and subsequent response
consistent_get_time_99 | 99th-percentile time between reception of client GETs to strongly consistent keys and subsequent response
consistent_get_time_100 | 100th-percentile time between reception of client GETs to strongly consistent keys and subsequent response





PUT-related stats


Stat | Description
:—-|:———–
consistent_puts | Number of strongly consistent PUTs coordinated by this node in the last minute
consistent_puts_total | Total number of strongly consistent PUTs coordinated by this node
consistent_put_objsize_mean | Mean object size for strongly consistent PUTs on this node in the last minute
consistent_put_objsize_median | Median object size for strongly consistent PUTs on this node in the last minute
consistent_put_objsize_95 | 95th-percentile object size for strongly consistent PUTs on this node in the last minute
consistent_put_objsize_99 | 99th-percentile object size for strongly consistent PUTs on this node in the last minute
consistent_put_objsize_100 | 100th-percentile object size for strongly consistent PUTs on this node in the last minute
consistent_put_time_mean | Mean time between reception of client PUTs to strongly consistent keys and subsequent response
consistent_put_time_median | Median time between reception of client PUTs to strongly consistent keys and subsequent response
consistent_put_time_95 | 95th-percentile time between reception of client PUTs to strongly consistent keys and subsequent response
consistent_put_time_99 | 99th-percentile time between reception of client PUTs to strongly consistent keys and subsequent response
consistent_put_time_100 | 100th-percentile time between reception of client PUTs to strongly consistent keys and subsequent response







Strong Consistency and Active Anti-Entropy


Riak’s [[active anti-entropy]] (AAE) feature can repair strongly
consistent data. Although it is not necessary to use active anti-entropy
if you are using strong consistency, we nonetheless recommend doing so.


Without AAE, all object conflicts are repaired via [[read
repair|Active Anti-Entropy#Read-Repair-vs.-Active-Anti-Entropy]].
Read repair, however, cannot repair conflicts in so-called “cold data,”
i.e. data that may not be read for long periods of time. While using AAE
does entail small performance losses, not using AAE can lead to problems
with silent on-disk corruption.


To avoid these problems, you should [[enable active anti-entropy|Managing
Active Anti-Entropy##Enabling-Active-Anti-Entropy]] in your cluster.





Strong Consistency and Bitcask


One feature that is offered by Riak’s optional [[Bitcask]] backend is
[[object expiry|Bitcask#Configuring-Bitcask]]. If you are using strong
consistency and Bitcask together, you should be aware that object
metadata is often updated by the strong consistency subsystem during
leader changes, which typically take place when nodes go down or during
network partitions. When these metadata updates take place, the time to
live (TTL) of the object is refreshed, which can lead to general
unpredictably in objects’ TTL. Although leader changes will be rare in
many clusters, we nonetheless recommend that you use object expiry in
strongly consistent buckets only in situations when these occasional
irregularities are acceptable.





Important Caveats


The following Riak features are not currently available in strongly
consistent buckets:



		[[Secondary indexes|Using Secondary Indexes]] — If you do attach
secondary index metadata to objects in strongly consistent buckets,
strongly consistent operations can still proceed, but that metadata
will be silently ignored.


		[[Riak Data Types|Using Data Types]] — Data Types can currently be
used only in an eventually consistent fashion


		[[Using commit hooks]] — Neither pre- nor post-commit hooks are
supported in strongly consistent buckets. If you do associate a
strongly consistent bucket with one or more commit hooks, strongly
consistent operations can proceed as normal in that bucket, but all
commit hooks will be silently ignored.





Furthermore, you should also be aware that strong consistency guarantees
are applied only at the level of single keys. There is currently no
support within Riak for strongly consistent operations against multiple
keys, although it is always possible to incorporate client-side write
and read locks in applications that use strong consistency.





Known Issues


There are a few known issues that you should be aware of when using the
latest version of strong consistency.



		Consistent reads of never-written keys create tombstones — A
[[tombstone|Object Deletion]] will be written if you perform a read
against a key that a majority of peers claims to not exist. This is
necessary for certain corner cases in which offline or unreachable
replicas containing partially written data need to be rolled back in
the future.


		Consistent keys and key listing — In Riak, key listing
operations, such as listing all the keys in a bucket, do not filter
out tombstones. While this is rarely a problem for
non-strongly-consistent keys, it does present an issue for strong
consistency due to the tombstone issues mentioned above.


		Secondary indexes not supported — Strongly consistent
operations do not support [[secondary indexes|Using Strong
Consistency]] (2i) at this time. Furthermore, any other metadata
attached to objects, even if not related to 2i, will be silently
ignored by Riak in strongly consistent buckets.


		Multi-Datacenter Replication not supported — At this time,
consistent keys are not replicated across clusters using [[Multi-
Datacenter Replication|Multi Data Center Replication: Architecture]]
(MDC). This is because MDC Replication currently supports only
eventually consistent replication across clusters. Mixing strongly
consistent data within a cluster with eventually consistent data
between clusters is difficult to reason about from the perspective of
applications. In a future version of Riak, we will add support for
strongly consistent replication across multiple datacenters/clusters.


		Client library exceptions — Basho’s official [[client
libraries]] convert errors returned by Riak into generic exceptions,
with a message derived from the returned server-side error message.
More information on this problem can be found in [[Using Strong
Consistency|Using Strong Consistency#Error-Messages]].









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/advanced/ring-resizing.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Ring Resizing
project: riak
version: 2.0.0+
document: cookbook
toc: true
audience: advanced
keywords: [ops, ring, ring-resizing]




The ring resizing feature in Riak 2.0 and greater enables Riak operators
to change the number of partitions in a Riak cluster’s
[[ring|Clusters#The-Ring]] during normal operations, under load.


Previously, any Riak cluster was limited to having the number of
partitions specified in its configuration throughout its entire
lifespan. This number is determined by the ring_size parameter in the
newer, riak.conf-based configuration system and by
ring_creation_size in the older, app.config-based system. In order
to change the number of partitions previously, a separate cluster would
need to be spun up alongside the original cluster and the data migrated
between the two.


A ring resize operation can be useful in the following two cases:



		If a cluster has been created with either too few or too many
partitions


		If a cluster’s capacity, in terms of the number of nodes, has changed
in such a way that the optimal ring size has changed





You should consult our documentation on [[cluster capacity planning]]
before committing to a ring resize operation. Please note that there
is an important difference between changing the ring size and adding and
removing nodes. If you are looking to add or remove concurrent
processing ability to/from a cluster, you are advised to do so by
[[adding or removing nodes|Adding and Removing Nodes]].



Feature Incompatibility


Ring resizing cannot be used in clusters using the following features:



		[[Riak Search 2.0|Using Search]]


		[[Strong consistency]]





In addition, ring resizing cannot be used in clusters using the
[[Multi-Datacenter Replication|Multi Data Center Replication v3
Architecture]] capabilities included with Riak
Enterprise [http://basho.com/riak-enterprise/].





Considerations Prior to Ring Resizing


There are a number of important considerations to bear in mind while
running a ring resizing process:



		For a resize to succeed, all nodes should be up. The only cluster
operation permitted during a ring resize is force-remove. Other
operations will be delayed while the resize completes.


		If you perform a [[listkeys|HTTP List Keys]] or [[secondary
index|Using Secondary Indexes]] query during a ring resize, you may
get duplicates or miscounts in coverage queries. In an upcoming
release of Riak, this will be self-healing (see this pull
request [https://github.com/basho/riak_kv/pull/685] for more
information).


		Resizing partitions can take up a lot of disk space. Make sure that
you have sufficient storage to complete the resize operation.


		Basho strongly recommends that you do not use the force-replace
command (part of the [[riak-admin|riak-admin Command Line#cluster-force-replace]] interface) during ring resizing.








Starting the Resize


To resize your Riak cluster, use the riak-admin cluster command
interface to submit, plan, and commit the change to your cluster.
The command to submit a resize request has the following form:


riak-admin cluster resize-ring <new_size>



The following command would schedule changing the size of the ring to
64:


riak-admin cluster resize-ring 64



If successful, the following would appear in the console:


Success: staged resize ring request with new size: 64



Note: The size of a Riak ring should always be a 2n
integer, e.g. 16, 32, 64, etc.


Prior to committing any ring size-related changes, you will need to view
the planned changes using the plan command (as you would for any
cluster-wide changes):


riak-admin cluster plan



This will result in output along the following lines:


=============================== Staged Changes ================================
Action         Details(s)
-------------------------------------------------------------------------------
resize-ring    32 to 64 partitions
-------------------------------------------------------------------------------


NOTE: Applying these changes will result in 1 cluster transition

###############################################################################
                         After cluster transition 1/1
###############################################################################

================================= Membership ==================================
Status     Ring    Pending    Node
-------------------------------------------------------------------------------
valid      21.9%     20.3%    'dev1@127.0.0.1'
valid      21.9%     20.3%    'dev2@127.0.0.1'
valid      18.8%     20.3%    'dev3@127.0.0.1'
valid      18.8%     20.3%    'dev4@127.0.0.1'
valid      18.8%     18.8%    'dev5@127.0.0.1'
-------------------------------------------------------------------------------
Valid:5 / Leaving:0 / Exiting:0 / Joining:0 / Down:0

Ring is resizing. see riak-admin ring-status for transfer details.



If you are satisfied with the changes, begin the resize operation by
committing the changes using the commit command:


riak-admin cluster commit



If successful, you should see the following in the console:


Cluster changes committed



If you change your mind prior to committing, you can abort the pending
changes using the clear command:


riak-admin cluster clear




Note on cluster operations

We do not recommend that you stage or commit other cluster operations
while a ring resize is in process. Although this is unadvisable, Riak
will allow you to commit other operations but will delay them until
after the resize has completed. The one exception to this is the
`[[force-replace|riak-admin Command Line#force-replace]]` command,
which will not be delayed. We also do not recommend this command due to
a [known issue](https://github.com/basho/basho_docs/pull/1285) that will
be addressed in a future release.If a cluster-level change is necessary during a resize, we recommend
aborting the resize as described above, making the necessary change, and
then restarting the resize operation.






Monitoring Resize Progress


With the new plan committed, the progress of the resize operation can
be monitored using the same means used to monitor other handoff
operations. You can use the ring-status command to view changes to the
cluster that are either in progress or queued:


riak-admin ring-status



Response:


================================== Claimant ===================================
Claimant:  'dev1@127.0.0.1'
Status:     up
Ring Ready: true

============================== Ownership Handoff ==============================
Owner:      dev1@127.0.0.1
Next Owner: $resize

Index: 0
  Waiting on: [riak_kv_vnode]
  Complete:   [riak_pipe_vnode]

Index: 228359630832953580969325755111919221821239459840
  Waiting on: [riak_kv_vnode]
  Complete:   [riak_pipe_vnode]

Index: 456719261665907161938651510223838443642478919680
  Waiting on: [riak_kv_vnode,riak_pipe_vnode]

Index: 685078892498860742907977265335757665463718379520
  Waiting on: [riak_kv_vnode,riak_pipe_vnode]

Index: 913438523331814323877303020447676887284957839360
  Waiting on: [riak_kv_vnode,riak_pipe_vnode]

Index: 1141798154164767904846628775559596109106197299200
  Waiting on: [riak_kv_vnode,riak_pipe_vnode]

Index: 1370157784997721485815954530671515330927436759040
  Waiting on: [riak_kv_vnode,riak_pipe_vnode]

# The output directly above will be repeated for all nodes in the
cluster, e.g. dev2, dev3, etc.

-------------------------------------------------------------------------------

============================== Unreachable Nodes ==============================
All nodes are up and reachable



You can also throttle the ring resize activity using riak-admin transfer-limit, which will change the handoff_concurrency limit.


For the whole cluster:


riak-admin transfer-limit <limit>



For a specific node:


riak-admin transfer-limit <node> <limit>



Using riak-admin transfers will provide you more information about the
partitions that are currently in progress.


riak-admin transfers



Response:


'dev5@127.0.0.1' waiting to handoff 3 partitions
'dev4@127.0.0.1' waiting to handoff 1 partitions
'dev3@127.0.0.1' waiting to handoff 1 partitions
'dev2@127.0.0.1' waiting to handoff 2 partitions

Active Transfers:

transfer type: resize_transfer
vnode type: riak_kv_vnode
partition: 1438665674247607560106752257205091097473808596992
started: 2014-01-20 21:03:53 [1.14 min ago]
last update: 2014-01-20 21:05:01 [1.21 s ago]
total size: 111676327 bytes
objects transferred: 122598

                         1818 Objs/s
     dev1@127.0.0.1        =======>       dev4@127.0.0.1
        |=========================                  |  58%
                         950.38 KB/s

transfer type: resize_transfer
vnode type: riak_kv_vnode
partition: 205523667749658222872393179600727299639115513856
started: 2014-01-20 21:03:53 [1.14 min ago]
last update: 2014-01-20 21:05:01 [1.29 s ago]
total size: 100143148 bytes
objects transferred: 130510

                         1939 Objs/s
     dev1@127.0.0.1        =======>       dev5@127.0.0.1
        |==============================             |  69%
                         1013.71 KB/s

transfer type: resize_transfer
vnode type: riak_kv_vnode
partition: 1233142006497949337234359077604363797834693083136
started: 2014-01-20 21:04:44 [17.81 s ago]
last update: 2014-01-20 21:05:01 [1.19 s ago]
total size: 82010614 bytes
objects transferred: 37571

                         2259 Objs/s
     dev3@127.0.0.1        =======>       dev5@127.0.0.1
        |==========                                 |  24%
                          1.15 MB/s

transfer type: resize_transfer
vnode type: riak_kv_vnode
partition: 251195593916248939066258330623111144003363405824
started: 2014-01-20 21:04:55 [7.24 s ago]
last update: 2014-01-20 21:05:01 [898.81 ms ago]
total size: 82012730 bytes
objects transferred: 11864

                         1870 Objs/s
     dev3@127.0.0.1        =======>       dev2@127.0.0.1
        |===                                        |   7%
                         977.72 KB/s



You can confirm that the resize operation is no longer running using the
transfers command and verifying that there are no active or pending
transfers:


riak-admin transfers



Response:


No transfers active



You can also verify that there are the expected number of partitions in
the ring by opening the Erlang shell via the [[riak attach|riak Command Line#attach]] command and running this snippet:


length(riak_core_ring:all_owners(2, riak_core_ring_manager:get_my_ring())).



This command will return the number of partitions as an integer.





Aborting a Ring Resize Already in Progress


The process to abort a currently running resize is very similar to the
process used to set one up. You must submit an abort request, plan it,
and commit it, all using the riak-admin cluster interface.


Submit an abort request:


riak-admin cluster resize-ring abort



One of the following messages will appear, depending on the outcome of
the abort request. If successful:


Success: staged abort resize ring request



If unsuccessful:


Failure: ring is not resizing or resize has completed



View planned changes:


riak-admin cluster plan



In the output, you should find something like the following:


Action         Details(s)
--------------------------------------
resize-ring    abort. current size: 128



Commit planned changes:


riak-admin cluster commit



If successful, you should see the following:


Cluster changes committed



If console output confirms that the changes have been committed, then
your resize operation has been successfully aborted.





Secondary Indexes and MapReduce


If you are using [[secondary indexes (2i)|Using Secondary Indexes]] or
[[MapReduce|Using MapReduce]], there are some special steps that must be
undertaken on each node.


First, there is a Riak environment variable called
fold_preflist_filter that should be set to true on all nodes prior
to the ring resize operation. If you’d like to set that variable
without restarting the node, you can do so via the Erlang shell. To
access the shell, run [[riak console|riak Command Line#console]]; once
in the shell, you can set the variable using this command:


application:set_env(riak_kv, fold_preflist_filter, true).



Once you have done this, however, you should also set the variable in
each node’s advanced.config file so that new value of the variable is
registered any time the node restarts.


[
    {riak_kv, [
        %% ...
            {fold_preflist_filter, true},
        %% ...
    ]}
]



More information on setting parameters in advanced.config can be found
in our documentation on [[advanced configuration|Configuration
Files#Advanced-Configuration]].


The second step in preparing for a ring resize operation is to ensure
that coverage queries do not unnecessarily hinder the resize. This
means, first of all, that you should ensure that no [[list buckets|HTTP
List Buckets]] or [[list keys|HTTP List Keys]] operations whatsoever are
performed during the operation. While we do not recommend list buckets
or list keys in production in general, this is especially important
during ring resizing.


Second of all, please be aware that although ring resizing is compatible
with [[secondary index|Using Secondary Indexes]] queries, you should use
secondary index queries conservatively during ring resizing. In
addition, it is not advisable that you run any MapReduce operations
during a resize.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/advanced/configs/load-balancing-proxy.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Load Balancing and Proxy Configuration
project: riak
version: 1.0.0+
document: cookbook
toc: true
audience: advanced
keywords: [operator, proxy]
moved: {
‘1.4.0-‘: ‘/cookbooks/configuration/Load-Balancing-and-Proxy-Configuration’
}




The recommended best practice for operating Riak in production is to
place Riak behind a load-balancing or proxy solution, either hardware-
or software- based, while never directly exposing Riak to public network
interfaces.


Riak users have reported success in using Riak with a variety of load-
balancing and proxy solutions. Common solutions include proprietary
hardware-based load balancers, cloud-based load balancing options, such
as Amazon’s Elastic Load Balancer, and open-source software based
projects like HAProxy and Nginx.


This guide briefly explores the commonly used open-source software-based
solutions HAProxy and Nginx, and provides some configuration and
operational tips gathered from community users and operations oriented
engineers at Basho.


While it is by no means an exhaustive overview of the topic, this guide
should provide a starting point for choosing and implementing your own
solution.



HAProxy


HAProxy [http://haproxy.1wt.eu/] is a fast and reliable open-source
solution for load balancing and proxying of HTTP- and TCP-based
application traffic.


Users have reported success in using HAProxy in combination with Riak in
a number of configurations and scenarios. Much of the information and
example configuration for this section is drawn from experiences of
users in the Riak community in addition to suggestions from Basho
engineering.



Example Configuration


The following is an example starting-point configuration for HAProxy to
act as a load balancer. The example cluster has 4 nodes and will be
accessed by Riak clients using both the Protocol Buffers and HTTP
interfaces.



Note on open files limits

The operating system's open files limits need to be greater than 256000
for the example configuration that follows. Consult the [[Open Files
Limit]] documentation for details on configuring the value for different
operating systems.

global
        log 127.0.0.1     local0
        log 127.0.0.1     local1 notice
        maxconn           256000
        chroot            /var/lib/haproxy
        user              haproxy
        group             haproxy
        spread-checks     5
        daemon
        quiet

defaults
        log               global
        option            dontlognull
        option            redispatch
        option            allbackups
        maxconn           256000
        timeout connect   5000

backend riak_rest_backend
       mode               http
       balance            roundrobin
       option             httpchk GET /ping
       option             httplog
       server riak1 riak1.<FQDN>:8098 weight 1 maxconn 1024  check
       server riak2 riak2.<FQDN>:8098 weight 1 maxconn 1024  check
       server riak3 riak3.<FQDN>:8098 weight 1 maxconn 1024  check
       server riak4 riak4.<FQDN>:8098 weight 1 maxconn 1024  check

frontend riak_rest
       bind               127.0.0.1:8098
       # Example bind for SSL termination
       # bind             127.0.0.1:8443 ssl crt /opt/local/haproxy/etc/data.pem
       mode               http
       option             contstats
       default_backend    riak_rest_backend


backend riak_protocol_buffer_backend
       balance            leastconn
       mode               tcp
       option             tcpka
       option             srvtcpka
       server riak1 riak1.<FQDN>:8087 weight 1 maxconn 1024  check
       server riak2 riak2.<FQDN>:8087 weight 1 maxconn 1024  check
       server riak3 riak3.<FQDN>:8087 weight 1 maxconn 1024  check
       server riak4 riak4.<FQDN>:8087 weight 1 maxconn 1024  check


frontend riak_protocol_buffer
       bind               127.0.0.1:8087
       mode               tcp
       option             tcplog
       option             contstats
       mode               tcp
       option             tcpka
       option             srvtcpka
       default_backend    riak_protocol_buffer_backend



A specific configuration detail worth noting from the example is the
commented option for SSL termination. HAProxy supports SSL directly as
of version 1.5. Provided that your HAProxy instance was built with
OpenSSL support, you can enable it by uncommenting the example line and
modifying it to suit your environment. More information is available in
the HAProxy
documentation [http://cbonte.github.io/haproxy-dconv/configuration-1.5.html#5-ssl].


Also note that the above example is considered a starting point and is a
work in progress based upon this
example [https://gist.github.com/1507077]. You should carefully examine
the configuration and change it according to your specific environment.





Maintaining Nodes Behind HAProxy


When using HAProxy with Riak, you can instruct HAProxy to ping each node
in the cluster and automatically remove nodes that do not respond.


You can also specify a round-robin configuration in HAProxy and have
your application handle connection failures by retrying after a timeout,
thereby reaching a functioning node upon retrying the connection
attempt.


HAPproxy also has a standby system you can use to remove a node from
rotation while allowing existing requests to finish. You can remove
nodes from HAProxy directly from the command line by interacting with
the HAProxy stats socket with a utility such as
socat [http://www.dest-unreach.org/socat/]:


echo "disable server <backend>/<riak_node>" | socat stdio /etc/haproxy/haproxysock



At this point, you can perform maintenance on the node, down the node,
and so on. When you’ve finished working with the node and it is again
available for requests, you can re-enable it:


echo "enable server <backend>/<riak_node>" | socat stdio /etc/haproxy/haproxysock



Consult the following HAProxy documentation resources for more
information on configuring HAProxy in your environment:



		HAProxy Documentation [http://code.google.com/p/haproxy-docs/w/list]


		HAProxy Architecture [http://haproxy.1wt.eu/download/1.2/doc/architecture.txt]










Nginx


Some users have reported success in using the Nginx [http://nginx.org/]
HTTP server to proxy requests for Riak clusters. An example that
provides access to a Riak cluster through GET requests only is
provided here for reference.



Example Configuration


The following is an example starting point configuration for Nginx to
act as a front-end proxy to a 5-node Riak cluster.


This example forwards all GET requests to Riak nodes while rejecting all
other HTTP operations.



Nginx version notes
Nginx version
1.2.3. Please be aware that earlier versions of Nginx did not
support any HTTP 1.1 semantics for upstream communication to backends.
You should carefully examine this configuration and make changes
appropriate to your specific environment before attempting to use
it

Here is an example nginx.conf file:


upstream riak_hosts {
  # server  10.0.1.10:8098;
  # server  10.0.1.11:8098;
  # server  10.0.1.12:8098;
  # server  10.0.1.13:8098;
  # server  10.0.1.14:8098;
}

server {
  listen   80;
  server_name  _;
  access_log  /var/log/nginx/riak.access.log;

  # your standard Nginx config for your site here...
  location / {
    root /var/www/nginx-default;
  }

  # Expose the /riak endpoint and allow queries for keys only
  location /riak/ {
      proxy_set_header Host $host;
      proxy_redirect off;

      client_max_body_size       10m;
      client_body_buffer_size    128k;

      proxy_connect_timeout      90;
      proxy_send_timeout         90;
      proxy_read_timeout         90;

      proxy_buffer_size          64k;  # If set to a smaller value,
                                       # nginx can complain with an
                                       # "too large headers" error
      proxy_buffers              4 64k;
      proxy_busy_buffers_size    64k;
      proxy_temp_file_write_size 64k;

    if ($request_method != GET) {
      return 405;
    }

    # Disallow any link with the MapReduce query format "bucket,tag,_"
    if ($uri ~ "/riak/[^/]*/[^/]*/[^,]+,[^,]+," ) {
      return 405;
    }

    if ($request_method = GET) {
      proxy_pass http://riak_hosts;
    }
  }
}




Note on access controls

Even when filtering and limiting requests to GETs only as done in the
example, you should strongly consider additional access controls beyond
what Nginx can provide directly, such as specific firewall rules to
limit inbound connections to trusted sources.




Querying Secondary Indexes Over HTTP


When accessing Riak over HTTP and issuing Secondary Index queries, you
can encounter an issue due to the default Nginx handling of HTTP header
names containing underscore (_) characters.


By default, Nginx will issue errors for such queries, but you can
instruct Nginx to handle such header names when doing Secondary Index
queries over HTTP by adding the following directive to the appropriate
server section of nginx.conf:


underscores_in_headers on;









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

source/languages/en/riak/ops/advanced/security.html


    
      Navigation


      
        		
          index


        		Basho Docs latest documentation »

 
      


    


    
      
          
            
  

title: Security and Firewalls
project: riak
version: 0.10.0+
document: cookbook
toc: true
audience: advanced
keywords: [troubleshooting, security]
moved: {
‘1.4.0-‘: ‘/cookbooks/Network-Security-and-Firewall-Configurations’
}





Internal security

This document covers network-level security. For documentation on the
authentication and authorization features introduced in Riak 2.0, see
[[Authentication and Authorization]] and [[Managing Security Sources]].

This article discusses standard configurations and port settings to use
when providing network security for a Riak Cluster. There are two
classes of access control for Riak:



		Other Riak nodes participating in the cluster


		Clients making use of the Riak cluster





The settings for both access groups are located in your cluster’s
configuration settings. If you are using the newer configuration system,
you can set a host and port for each node in that node’s riak.conf
file, setting listener.protobuf if you are using Riak’s Protocol
Buffers interface or listener.http if you are using HTTP (or
listener.https if you are using SSL). If you are using the older
configuration system, adjust the settings of pb, http, or https,
depending on which client interface you are using.


Make note of these configurations and set up your firewall to allow
incoming TCP access to those ports or IP address/port combinations.
Exceptions to this are the handoff_ip and handoff_port directives.
Those are for communication between Riak nodes only.



Inter-node Communication


Riak uses the Erlang distribution mechanism for most inter-node
communication. Riak identifies other machines in the ring using Erlang
identifiers (<hostname or IP>, e.g. riak@10.9.8.7). Erlang resolves
these node identifiers to a TCP port on a given machine via the Erlang
Port Mapper daemon (epmd) running on each cluster node.


By default, epmd binds to TCP port 4369 and listens on the wildcard
interface. For inter-node communication, Erlang uses an unpredictable
port by default; it binds to port 0, which means the first available
port.


For ease of firewall configuration, Riak can be configured
to instruct the Erlang interpreter to use a limited range
of ports. For example, to restrict the range of ports that Erlang will
use for inter-Erlang node communication to 6000-7999, add the following
lines to the configuration file on each Riak node:


erlang.distribution.port_range.minimum = 6000
erlang.distribution.port_range.maximum = 7999



{ kernel, [
            {inet_dist_listen_min, 6000},
            {inet_dist_listen_max, 7999}
          ]},



The above lines should be added into the top level list in app.config,
at the same level as all the other applications (e.g. riak_core).
Then configure your firewall to allow incoming access to TCP ports 6000
through 7999 from whichever network(s) contain your Riak nodes.



Riak Node Ports


Riak nodes in a cluster need to be able to communicate freely with one
another on the following ports:



		epmd listener: TCP:4369


		handoff_port listener: TCP:8099


		range of ports specified in app.config or riak.conf








Riak Client Ports


Riak clients must be able to contact at least one machine in a Riak
cluster on the following TCP ports:


Protocol | Port
:——–|:—-
HTTP | TCP port 8098
Protocol Buffers | TCP port 8087





Riak Search Ports


Riak’s [[search|Using Search]] feature relies on Apache
Solr [http://lucene.apache.org/solr/], which runs on each Riak node if
security has been [[enabled|Riak Search Settings#Enabling-Riak-Search]].
When Riak’s Search subsystem starts up,
JMX [http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html]
opens a well-known port as well as some ephemeral ports. The well-known
port is determined by the value of the search.solr.jmx_port in each
node’s [[Search configuration|Configuration Files#Search]]. The default
is 8985.


In addition to JMX ports, Solr also binds to a well-known port of its
own, as determined by each node’s search.solr.port setting, which is
also located in each node’s Search configuration. The default is 8093.









Riak Security Community



Riak


Riak is a powerful open-source distributed database focused on scaling
predictably and easily, while remaining highly available in the face of
server crashes, network partitions or other (inevitable) disasters.





Commitment


Data security is an important and sensitive issue to many of our users.
A real-world approach to security allows us to balance appropriate
levels of security and related overhead while creating a fast, scalable,
and operationally straightforward database.



Continuous Improvement


Though we make every effort to thwart security vulnerabilities whenever
possible (including through independent reviews), no system is
completely secure. We will never claim that Riak is 100% secure (and you
should seriously doubt anyone who claims their solution is). What we can
promise is that we openly accept all vulnerabilities from the community.
When appropriate, we’ll publish and make every attempt to quickly
address these concerns.





Balance


More layers of security increase operational and administrative costs.
Sometimes those costs are warranted, sometimes they are not. Our
approach is to strike an appropriate balance between effort, cost, and
security.


For example, Riak does not have fine-grained role-base security. Though
it can be an attractive bullet-point in a database comparison chart,
you’re usually better off finely controlling data access through your
application or a service layer.





Notifying Basho


If you discover a potential security issue, please email us at
security@basho.com, and allow us 48 hours to reply.


We prefer to be contacted first, rather than searching for blog posts
over the Internet. This allows us to open a dialogue with the security
community on how best to handle a possible exploit without putting any
users at risk.


For sensitive topics, you may send a secure message. The security team
has the following GPG key:


-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v1.4.12 (Darwin)mQENBFAQM40BCADGjCmwn9Q9xpWfJ4HpKGwt5kGyf4Oq4PglC28MhtscT9cGwtJv
gRK1ckzkwhCdw6uQKRN3o3iVFHFp+uD8G28zs1fGNfpUZls7WV29WyxfIgB3f01Q
Ll6tiZ2fLG69lSlLTPn7JlzZz1sRVrAKdwUVEYRKCidF0bqaztBCkKbcNAmIvV1E
TboEGMPLXqOnK2134NP+tp0B15oNwSQd9jmOrClvhCF5NR4ATQguS5ecp05/GldZ
8vQQ1XOBc2uiuWpzvhD2CAXQ/Spxir8JjbqpzjPo6d4yte7pYvx6wfnJ9b2KC+sn
AtdqqQslZ3saceXAFXFOIGk7NOq8LSattmRbABEBAAG0GkJhc2hvIDxzZWN1cml0
eUBiYXNoby5jb20+iQE4BBMBAgAiBQJQEDONAhsDBgsJCAcDAgYVCAIJCgsEFgID
AQIeAQIXgAAKCRDEq056TdGVhHl7B/9rXnzZOdC7M8NN+BAEO8kucw0dXGhgcahs
zS81WDRpRJD1fi+QBinfohGg2phIq5TlrXNmduFwCpvyujNkeiCr+Nh00mp6SdU2
m7XFzfPIz3ZWR0YNdvruaf0W5K6jAaHcJkkc3Xwpgk6rxTcNwWUqYRGD7zie4Iad
At0WLJXMUvJH2XoMf8MGO5mHspkqC5M/HvNvH3ZG5CldIHPqgZdg4NXMcGtFAr8z
72wFamick31oCpJyWq+AloOxh3mJpfhp94EBrc/lGbbOD/Sg4oyT+B/4Ee0zWqN5
hDBefi3FCyjo2NuhM1YyRrrvWe7Kwaj8iuItYPIpEwGUqEJzZ7kYuQENBFAQM40B
CAC4J0Pb1WXjGpsQnfOdzZUq57x63RaVA74IIuLSU7v//04wNgNGiLdMbz4isr6K
5NfXTu0i+GqQdcj7UnajwxYCUEnXYpKQBLfT82tTgdw/DPXYgSnxIC02POrwCnhr
wSDbUryuTdbZFS13HPrQPdOXZlmG8oHOgu04a9vPUlkshYmUZm+zRY2FIuW8fJ44
ysJBm49hxkF9WuyGnNiU8UJEvw0sS63x4EUkYdJXLzzdC9T8/t8HGV3aKFEZ3km0
GgYUlt04FdWtFjYcMQnrhJSf7atxwQLpfH78sFCyEH+PFIRfnkirVx9TbN0QSw/z
VaRNxJQde2SHfEft66mf0RJ5ABEBAAGJAR8EGAECAAkFAlAQM40CGwwACgkQxKtO
ek3RlYRPFwf+LiHlf9tCqRLwmI2X8bBmoQTV/Eb4pbPF/1WR6W/afAMp4ZiLpWtn
XeZ9UNdnQDPJIMPhaWrPHB4oLCnDBm1m6wq6FVjHcDur+s7QtWnnTuaVKBDKY42T
NkFj+WP3ZBsfDBtt49KRLm0bWqzkhK7IA+1DMKRmTUhf0tIeLb0um0hL+mXNucrE
dMk+Fdh/54IfHMMw3GwtNd+ZMLf8cht+z3Z0Y0qONe0ClfkiligYItD+P5tufhew
HtU5clY0rP8W/Nr7tC+ZGH2bjT1bmN1E9IM4wjBdyWGTosvY6ciIxuY5p5Iy/UhB
7Xk9zl4ZkKcsVnuscYQPNE2jb393XAhFEg==
=1KRp
—–END PGP PUBLIC KEY BLOCK—–












Security Best Practices



Authentication and Authorization


For instructions on how to apply permissions and to require client
authentication, please see our documentation on [[Riak
Security|Authentication and Authorization]].





Network Configurations


Being a distributed database means that much of Riak’s security springs
from how you configure your network. We have a few recommendations for
[[Security and Firewalls]].





Client Auth


Many of the Riak drivers support HTTP basic auth, though this is not a
role-based security solution. You might instead wish to connect over
HTTPS or through a VPN.





Multi-Datacenter Replication


For those versions of Riak that support Multi Data Center (MDC)
Replication, you can configure Riak 1.2+ to communicate over SSL, to
seamlessly encrypt the message traffic.


See also: [[Multi Data Center Replication: SSL]] in the Enterprise
Documentation.










          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

